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Topological superfluid transition in bubble-trapped condensates
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Ultracold quantum gases are highly controllable and thus capable of simulating difficult quantum many-body
problems ranging from condensed matter physics to astrophysics. Although experimental realizations have so
far been restricted to flat geometries, recently also curved quantum systems, with the prospect of exploring
tunable geometries, have been produced in microgravity facilities as ground-based experiments are technically
limited. Here, we analyze bubble-trapped condensates, in which the atoms are confined on the surface of a thin
spherically symmetric shell by means of external magnetic fields. A thermally induced proliferation of vorticity
yields a vanishing of superfluidity. We describe the occurrence of this topological transition by conceptually
extending the theory of Berezinskii, Kosterlitz, and Thouless for infinite uniform systems to such finite-size
systems. Unexpectedly, we find universal scaling relations for the mean critical temperature and the finite width
of the superfluid transition. Furthermore, we elucidate how they could be experimentally observed in finite-
temperature hydrodynamic excitations.
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I. INTRODUCTION

The physical understanding of nature, since the birth of
modern science, relies on the reduction of a complex system
to a properly idealized model that allows a mathematical
description. In principle, it is possible to engineer different
physical systems in such a way that they are described by
the same laws: The study of each system therefore will offer
important information on the others. These basic concepts
are at the core of Feynman’s visionary idea [1] of sim-
ulating the complex behavior of many-body systems with
controllable algorithms that, rather than being implemented
in classical computers, are based on the laws of quan-
tum mechanics [2,3]. Nowadays, experimental techniques in
the field of ultracold atomic gases allow one to tune and
control every term of the Hamiltonian [4], either kinetic,
potential, or interaction ones. On one hand, it is thus pos-
sible to explore the different physical regimes of quantum
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many-body systems by engineering the Hamiltonian with ex-
ternal electric and magnetic fields [5,6]. On the other, the
Hamiltonian of experimentally inaccessible systems can be
mapped to analog models for ultracold atoms [7]: The Hawk-
ing radiation [8], for instance, was observed for the first time
in analog black holes [9,10].

Until now, most experiments with ultracold quantum
gases focused on the investigation of flat geometries. The
prospect of producing two-dimensional superfluid manifolds
[11], whose geometry and curvature can be properly tuned,
would offer, besides the intrinsic scientific interest, additional
degrees of freedom for simulating physical systems. Consid-
ering two-dimensional curved gases in regimes of quantum
degeneracy, it is quite natural to ask whether the delicate
interplay of curvature, geometry, and interactions allows for
the superfluid properties to emerge [12]. In particular, it is
unclear whether and how the Berezinskii-Kosterlitz-Thouless
(BKT) transition [13–15] of the superfluid density occurs
in curved closed shells and whether its driving mechanism
is the thermally driven unbinding of vortex-antivortex ex-
citations also for these finite-size systems. This peculiar
topological transition, even for infinite-system sizes, does not
affect the thermodynamic functions, but results in a univer-
sal jump in the superfluid density at a critical temperature
[16]. Describing the BKT transition and its main experimental
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consequences in the simple paradigmatic case of a curved
spherical shell thus would set a milestone in the development
of quantum many-body physics with ultracold atoms.

Here, we focus our theoretical investigation on the
quantum statistical and topological properties of bubble-
trapped Bose-Einstein condensates [17], which result from
cooling and confining atomic gases on thin two-dimensional
shells [18–20]. The experimental study of these systems,
which are technically difficult to produce in the presence
of gravity [21,22], is made possible by the recent devel-
opment of microgravity settings for studying Bose-Einstein
condensates, either space-based ones [23–25] such as the Cold
Atom Laboratory (CAL) on the International Space Station
or ground-based free-falling ones [26,27]. Around the tem-
perature of the topological BKT transition we find here the
emergence of universal laws in microgravity bubble-trapped
superfluids, despite the naive expectation of nonuniversal, i.e.,
system-dependent, physics. For different shell sizes and densi-
ties we predict a data collapse for both the critical temperature
and the transition width. This theoretical finding is immedi-
ately testable in the current microgravity experiments [18,19],
as they are the cleanest platform to analyze such a BKT
finite-size scaling. In particular, for the experimentally rele-
vant parameters in which the finite-size effects are sizable, we
calculate the frequencies of the hydrodynamic excitations of
the superfluid, which represent the main experimental probe
of BKT physics [28,29]. All these results are obtained with ad-
vanced techniques for the description of curved Bose-Einstein
condensates and contribute to the fundamental understanding
of BKT and vortex physics, a paradigmatic topic in statistical
physics, condensed matter physics, and biology [30–32].

II. MICROGRAVITY BUBBLE-TRAPPED CONDENSATES

Our theoretical analysis of the topological BKT transi-
tion and of its observable consequences is motivated by
the possibility of producing two-dimensional bubble-trapped
Bose-Einstein condensates [19]. These systems are the first
realization of a compact and curved Bose gas, whose lo-
cal curvature can be controlled, even in the spherical case,
by tuning the mean radius of the shell. In the absence
of the gravitational contribution to the external potential,
made possible by the microgravity conditions of the exper-
iments [18,19], the atoms can be confined on a spherically
symmetric shell with a bubble-trap potential [17] U (�r) =√

(mω2
r r2/2 − h̄�)2 + h̄2�2

r , where �, �r , and ωr are experi-
mentally tunable frequencies [18], m is the atomic mass, and h̄
is Planck’s constant. In the limit of a thin large shell, � > �r ,
the external potential coincides with the radially shifted har-
monic trap [33,34] Uthin(�r) = mω2

⊥(r − R)2/2, where ω⊥ =
ωr (2�/�r )1/2, R = [2h̄�/(mω2

r )]1/2 is the radius of the
spherical shell, and l⊥ = [h̄/(mω⊥)]1/2 is its always finite
thickness; see also the early study in Ref. [35]. To visually
illustrate these systems, we show a schematic setup in Fig. 1.

The results of the following sections rely on the derivation
of the beyond-mean-field equation of state, which, to avoid
introducing many technical details, is reported in Appendix A.
With this background, we will discuss the finite-size BKT
transition of condensate shells, analyzing universal results

FIG. 1. Bubble-trapped Bose-Einstein condensates can be exper-
imentally realized in microgravity conditions, where the gravitational
contribution to the external potential is negligible. In this paper, we
model a two-dimensional spherical shell with radius R and thickness
l⊥ � R, and we employ a system of spherical coordinates (θ, ϕ) ∈
[0, π ] × [0, 2π ].

that, by definition, do not depend on the microscopic details
of the bosonic system. Nonetheless, to feature the typical
parameters of the setup and to facilitate comparison with the
possible regimes of the experiments, we will also present
nonuniversal results, obtained for specific values of the trap
frequencies. In this case, unless differently specified, we will
consider 87Rb atoms, and we will fix ωr = 2π × 173 Hz, � =
2π × 30 kHz, �r = 2π × 3 kHz [18], so that R = 15 μm and
l⊥ = 0.4 μm.

III. UNIVERSAL SCALING OF FINITE-SIZE BKT PHYSICS

In two-dimensional atomic superfluids at finite tempera-
ture, the possibility of establishing a superfluid flow relies
on the absence of a turbulent vorticity field: In its presence,
indeed, the ordering associated with a coherent flow of the
quantum liquid is unattainable. The analysis of Kosterlitz
and Thouless [14] and Kosterlitz [15], which we extend here
to the spherically symmetric shell-shaped case, is devoted
to understanding the statistical properties of vortices, whose
appearance is regulated by the system temperature.

Creating a vortex-antivortex pair at a distance equal to
their core size ξ requires an energy 2μv and requires that, in
the low-temperature regime of β−1 = kBT � μv , where T is
the temperature and kB is the Boltzmann constant, the vortex
fugacity y0 = e−βμv is a small parameter. As a consequence,
a superfluid has practically zero vorticity at low temperature,
and the superfluid density is well approximated by the bare
one, which is denoted by n(0)

s , and is given by a microscopic
derivation of the Landau formula [36,37]. As the temperature
is increased, however, it becomes easier to excite vortices,
whose physics is equivalent to that of a classical Coulomb gas
on a sphere.

Correspondingly, the bare fugacity y0 is renormalized to
y(θ ), with θ ∈ [0, π ] being the spherical coordinate, while the
bare superfluid density, expressed through the adimensional
parameter K0 = h̄2n(0)

s /(mkBT ), is screened by a factor equal
to the superfluid dielectric constant ε(θ ): K0 becomes K (θ ) =
K0/ε(θ ). The dependence on θ signals the running of the bare
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FIG. 2. Topological superfluid transition of a thin bubble-trapped superfluid. (a) The renormalized superfluid fraction ns/n of a shell-shaped
superfluid does not display an abrupt jump at the Kosterlitz-Nelson temperature (KN) where K (π ) = 2/π , but vanishes smoothly around the
temperature Tin of the inflection point. (b) For different densities, shell widths, and rescaled radii R/ξ , implying different effective interactions
g2D, the values of kBTin/[h̄2ns(Tin )/m] collapse on the same curve (the dashed line is a guide to the eye). (c) The relative width of the superfluid
transition �T/Tin goes to zero in the thermodynamic limit of N, R → ∞, with n fixed, and all the points collapse on the interpolating dashed
curve �T/Tin = 2.1/ ln2(5R/ξ ) if the abscissa is rescaled as R/ξ [44–46], while the inset shows the explicit dependence on R and on �. We
use in (a) the parameters of the first section, and for N = 2 × 104 atoms, we find Tin = 35 nK and �T = 4 nK.

parameters y0 and K0 due to the existence of vortex-antivortex
dipoles in the superfluid with distance θ ′ < θ .

We outline in Appendix B the derivation of the renor-
malization group equations that describe how K (θ ) and y(θ )
change with the system scale. We find

∂K−1(θ )

∂�(θ )
= 4π3y2(θ ),

∂y(θ )

∂�(θ )
= [2 − πK (θ )] y(θ ), (1)

which extend the Kosterlitz-Nelson equations [16] to a
spherical superfluid. We introduce here the renormalization
group scale �(θ ) = ln[(2R/ξ ) sin(θ/2)], which depends on
the three-dimensional (3D) vortex-antivortex distance rather
than on the geodesic distance θ [38,39], a condition which is
made possible only by the curvature of the superfluid. Let us
now discuss the finite-size BKT transition, highlighting the
role of the spherical geometry.

We solve numerically Eq. (1) in the interval
[�(ξ/R), �(π )], using the bare superfluid density n(0)

s
as the initial condition at �(ξ/R) 	 0 and obtaining the
renormalized superfluid density ns(T ) = mkBT K (π )/h̄2. As
a consequence of the finite system size, �(θ ) can run only
up to the finite scale �(π ), and ns(T ) vanishes smoothly in a
finite temperature region. This behavior is shown in Fig. 2(a),
where the inflection point of the superfluid fraction, i.e., Tin,
estimates the location of the transition [40] and where the
finite transition width �T corresponds to the intersection
between ns/n = 0, ns/n = 1, and the tangent in Tin. Although
one would expect the broadening of the superfluid transition
to be nonuniversal, i.e., system dependent, a proper rescaling
of the system variables highlights the collapse of the data for
different densities n and for different ratios of R/ξ .

For the following discussion, we need an explicit model
of the vortex core size ξ . We identify it with the heal-
ing length ξ = [h̄2/(2mg2Dn)]1/2, and, considering relatively
large shells, we analyze the regime of R 
 ξ , in which the
scattering properties of the bosonic gas can be approximately
described as those of the flat 2D system. Thus we adopt

the mean-field interaction strength of flat 2D superfluids,
which reads g2D = −4π h̄2/[m ln(na2)] [41], with a being the
s-wave scattering length on the shell [42], assumed to be a =
2(π/C)1/2 exp[−γ − (π/2)1/2 l⊥/a3D] l⊥, where a3D = 5 nm
and C = 0.915 obtained by solving the two-body scattering
problem [43].

As we show in Fig. 2(b), the ratio mkBTin/[h̄2ns(Tin)]
scales in a universal way with R/ξ , revealing that ns(Tin) →
ns(T +

BKT) = 0 at the thermodynamic limit, with TBKT being the
infinite-system transition temperature. Moreover, as Fig. 2(c)
depicts, also the relative width of the transition region �T/Tin

scales logarithmically with R/ξ as �T/Tin = c1/ ln2(c2R/ξ ),
where c1 and c2 are adimensional parameters [44–46]. The
previous relation can be derived from the correlation length ξc

of the infinite superfluid [15], i.e., ξc/R = c2 exp[(c1/τ )1/2],
by assuming that τ = �T/Tin when ξc = ξ .

In our experimentally relevant regimes, the scalings of
Figs. 2(b) and 2(c) are universal, i.e., the collapse appears
also if l⊥ and the interaction strength g2D are changed, but c1,2

depend in a nontrivial way on ωr and �r , which we suppose
to be fixed [18]. The independence of g2D and of l⊥ suggests
that our findings are qualitatively relevant for ellipsoidal shells
[19]. We have actually found a similar logarithmic scaling
in box-trapped superfluids [47], which are analyzed in detail
in Ref. [48]. Concerning other geometries, a BKT transition
should not necessarily occur in cylindrical or large toroidal
superfluids [12].

These universal laws are of immediate experimental in-
terest, as they are obtained with the first derivation of the
BKT equations (1) for shell-shaped condensates. Our whole
analysis relies on a microscopic derivation of the correspond-
ing beyond-mean-field equation of state and on the extension
of BKT theory to the spherical case (see Appendixes A and B).
We emphasize that our purely two-dimensional description
is valid if {g2D n, kBTin} < h̄ω⊥ [41] and that the scattering
properties are described correctly for R 
 ξ . The previous
inequalities, considering, for instance, the values of l⊥ and of
R of the previous section, imply that the number of particles
must be in the interval 2 × 102 � N � 2 × 104. In all our
simulations, in which we change the number density n, we
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choose the appropriate number of atoms to ensure that the
system is two dimensional and that the condition R 
 ξ is
satisfied.

IV. PROBING THE SUPERFLUID BKT TRANSITION

The occurrence of the superfluid BKT transition and
the universal scaling of the finite-size corrections in
bubble-trapped superfluids can be experimentally probed
with qualitative and quantitative means. We expect that, in the
temperature-broadened BKT transition region, the absorption
imaging of the expanding shell will produce a wavy
interference pattern [49], different from the zero-temperature
one [33], which will reflect the specific configuration of
the vortices. This qualitative observation will prove that the
vortex-antivortex unbinding is the driving mechanism of the
superfluid transition in two-dimensional compact shells. A
more quantitative description of the superfluid density and
of its vanishing at the BKT transition can be achieved by
measuring the temperature dependence of the first and second
sound [28,29]. To investigate this phenomenon in the context
of bubble-trapped superfluids, we need first to extend the
Landau two-fluid model [50].

A. Two-fluid model description of a superfluid shell

Let us extend the Landau two-fluid model [50] to a bubble-
trapped superfluid, with the aim of calculating the frequencies
of the hydrodynamic modes ω. We assume that, after a small
perturbation of the superfluid shell, the system remains locally
at equilibrium, so that the thermodynamic variables acquire an
additional dependence on the time t and on the spherical co-
ordinates (θ, ϕ). Following Landau [50], we obtain two wave
equations for the superfluid shell: ∂2ρ/∂t2 = (−L̂2P)/(R2h̄2),
which describes the dynamics of pressure-density oscillations,
with ρ being the mass density and P being the pressure,
and ∂2s̃/∂t2 = (ns/nn)s̃2 (−L̂2T )/(R2h̄2), describing the evo-
lution of temperature-entropy oscillations, with s̃ being the
entropy per unit of mass and atom number and nn = n − ns

being the renormalized normal density. Note that these dif-
ferential equations contain the angular momentum operator in
spherical coordinates, i.e., L̂2.

We now linearize these equations by decomposing all
the thermodynamic variables as x(θ, φ, t ) = x0 + x′(θ, φ, t ),
with x0 being the equilibrium value and x′ � x0 being
the small elongation field. Then, we rewrite the wave
equations by expressing the fluctuations of the thermodynam-
ics variables in terms of P′ and T ′ only, obtaining a system
of two differential equations in P′ and in T ′. The dynamics
of an excited superfluid shell can be decomposed as the su-
perposition of orthonormal modes in the basis of spherical
harmonics Y ml

l (θ, φ): Rewriting the elongation fields as P′ =
P̃(ω, l, ml ) eiωt Y ml

l (θ, φ) and T ′ = T̃ (ω, l, ml ) eiωt Y ml
l (θ, φ),

the system of differential equations becomes algebraic. Set-
ting the system determinant to zero, we obtain the following
biquadratic equation:

ω4 − ω2

(
v2

A + v2
L

)
R2

[l (l + 1)] + v2
Av2

L

R4

[l (l + 1)]2

κT /κs̃
= 0, (2)

which extends the familiar result of Landau [50] to a spher-
ically symmetric superfluid. In particular, here we define the
adiabatic velocity v2

A = (∂P/∂ρ)s̃, the isothermal compress-
ibility κT , the adiabatic compressibility κs̃, and the Landau
velocity v2

L = nsT s̃2/(nnc̃v ), with c̃v being the specific heat
per unit of mass and atom number. Note that all the thermo-
dynamic quantities can be derived from the equation of state
at finite temperature (see Appendix A).

By solving Eq. (2), we obtain the frequencies of the
hydrodynamic excitations of frequency ω1 and ω2 (< ω1),
which read

ω2
1,2 =

[
l (l + 1)

R2

][
v2

A + v2
L

2
±

√(
v2

A + v2
L

2

)2

− v2
Av2

L

κT /κs̃

]
.

(3)

We emphasize that, in the spherical case, the dispersion rela-
tion between ω and l , with l being the quantum number of
angular momentum, is not linear, and the familiar first and
second sound modes correspond to hydrodynamic excitations
of frequency ω1 and ω2.

B. Hydrodynamic excitations of bubble-trapped superfluids

By making use of the equation of state, whose derivation
is outlined in Appendix A, and fixing the trap parameters
of Fig. 2(a), we explicitly calculate the frequencies ω1 and
ω2. In Fig. 3(a) we plot the hydrodynamic frequencies as a
function of the temperature. While, as a consequence of the
vanishing superfluid density, the surface modes are not mono-
tonic around Tin, the thermodynamic functions are monotonic;
see Fig. 3(b). Note that, in the limit of a very large ra-
dius of the sphere, these frequencies would converge to the
familiar first and second sound of flat superfluids [41]. We
also emphasize that these hydrodynamic excitations consist
of a displacement of the atoms along a tangent direction to the
shell itself: We assume that the radius R remains fixed during
the dynamics and that the experimental protocol does not
excite any radial motion. Clearly, it is impossible to observe
the higher-energy surface modes without violating this hy-
pothesis, and only the surface modes with frequency ω � ω⊥
can be observed. Following this criterion, we predict that in
the ongoing experiments, whose typical trap parameters are
outlined in Fig. 2(a), it will be possible to observe up to
l = 3 modes.

V. CONCLUSIONS

The experiments with quantum gases, from NASA Jet
Propulsion Laboratory Cold Atom Laboratory [24], which
allows for a clean production of single shells [18,19], and, in
perspective, from Bose-Einstein Condensate and Cold Atom
Laboratory (BECCAL) [51], are the ideal platform to ex-
plore the superfluid BKT transition in finite-size systems
and to analyze its qualitative and quantitative consequences.
This line of research is highly relevant, as the past experi-
ments with superfluid helium adsorbed in porous materials,
modeled as a collection of packed spheres, did not produce
a unique conclusion on the existence and nature of finite-
size BKT physics in shells [52,53] (see also the note in
Ref. [54]). It is also important to stress that the study of
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FIG. 3. Hydrodynamic surface modes at finite temperature.
(a) Frequency of the first and second excited modes ω1,2

plotted as a function of T and rescaled with (l2 + l )1/2ωB, where
ωB = √

μ/(mR2) and μ is the chemical potential. The shaded area
highlights the region of width �T/Tin, in which, for the specific
parameters of Fig. 2(a), the superfluid density vanishes. (b) While
the surface modes are nonmonotonic around the infinite-order BKT
transition, the thermodynamic functions are monotonic: We plot the
entropy s̃ per unit of mass and atom number (black thin line), the
specific heat c̃V per unit of mass and atom number (green dot-dashed
line), the ratio of isothermal and adiabatic compressibilities κT /κs̃

(orange dashed line), the chemical potential μ/El⊥ (red long-dashed
line), and the grand potential −�/El⊥ (blue thick line). The physical
parameters chosen for this figure are the same as those in Fig. 2(a),
and we define El⊥ = h̄2/(2ml2

⊥).

these finite-temperature properties is not only relevant, but
also necessary: In bubble-trapped condensates, the typical
temperatures at which the regime of quantum degeneracy
is reached are lower in comparison with the more familiar
harmonically trapped condensates [19,33,55]. In conclusion,
our work contributes to the fundamental understanding of
the Berezinskii-Kosterlitz-Thouless transition in finite-size
systems and, specifically, in topologically nontrivial bubble-
trapped superfluids. Their analysis in microgravity facilities
[19] will offer the definitive proof that, despite the peculiar
topology, a thin two-dimensional shell can host a superfluid
flow at finite temperature and that the basic mechanism of the
superfluid transition relies on the vortex-antivortex unbind-
ing of the seminal BKT theory. A quantitative understanding
of the superfluid properties in two-dimensional shell-shaped
condensates is the first fundamental step in the development of
analog simulation of quantum many-body physics with curved
quantum gases.

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with A. Fetter,
T.-L. Ho, N. Lundblad, and D. R. Nelson. A.P. acknowledges
financial support by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) via the Collaborative
Research Center SFB/TR185 (Project No. 277625399). A.T.
acknowledges the support of the ANR grant Droplets (19-
CE30-0003).

APPENDIX A: EQUATION OF STATE OF A 2D
SPHERICAL SHELL

We derive the equation of state of a shell-shaped Bose gas
starting from the beyond-mean-field grand potential � ob-
tained at a one-loop level in Ref. [36]. Thus we consider here
� = �0 + �(0)

g + �(T )
g , where �0 = −4πR2μ2/(2g0) is the

mean-field contribution, with μ being the chemical potential
and g0 being the bare interaction strength. The beyond-
mean-field contribution at zero temperature, including the
counterterms produced by convergence factor regularization
[56], reads

�(0)
g = 1

2

∞∑
l=1

l∑
ml =−l

(El − εl − μ), (A1)

where EB
l = √

εl (εl + 2μ) is the Bogoliubov spectrum, with
εl = h̄2l (l + 1)/(2mR2). The beyond-mean-field contribution
at finite temperature is

�(T )
g = 1

β

∞∑
l=1

l∑
ml =−l

ln(1 − e−βEB
l ). (A2)

To find the renormalized grand potential �, we repeat the
scattering-theory [57] procedure outlined in Refs. [58,59]. In
particular, in the sum over l of �(0)

g we introduce the ultravio-
let cutoff lc, and we integrate instead of summing. In terms of
this cutoff, we also obtain the bare interaction strength

g0 = −2π h̄2

m

1

ln[
√

lc(lc + 1) a eγ /(2R)]
, (A3)

where a is the two-dimensional s-wave scattering length
on the sphere [42]. The logarithmic divergence of �(0)

g ∼
ln[lc(lc + 1)] is perfectly balanced by �0, which is also
divergent through its dependence on g0 ∼ 1/ ln[lc(lc + 1)].
Therefore the dependence on the ultraviolet cutoff lc cancels
out, and we find the renormalized grand potential per unit
of area:

�

4πR2
= − mμ2

8π h̄2

[
ln

(
4h̄2

mμa2 e2γ+1

)
+ 1

2

]

+ mEB
1

8π h̄2 (EB
1 − ε1 − μ) + mμ2

8π h̄2 ln

(
EB

1 + ε1 + μ

μ

)

+ 1

4πR2

1

β

∞∑
l=1

l∑
ml =−l

ln(1 − e−βEB
l ). (A4)

In the limit of infinite radius, Eq. (A4) coincides with the flat-
case result of Ref. [59] at a one-loop level.
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From the grand potential �(μ,V, T ), all the thermody-
namic quantities can be obtained with standard thermody-
namic relations. In particular, for a fixed area V = 4πR2

and temperature T , we calculate the number of particles
N = −(∂�/∂μ)V,T as a function of the chemical potential μ.
Inverting numerically this relation, we obtain the chemical po-
tential μ(N,V, T ), which allows us to derive the Bogoliubov
spectrum EB

l and to obtain the free energy with a stan-
dard Legendre transformation F (N,V, T ) = μ(N,V, T )N +
�(μ(N,V, T ),V, T ). Consequently, the entropy per unit of
mass and atom number reads s̃ = −(mN )−1(∂F/∂T )N,V ,
the specific heat per unit of mass and atom number is
c̃v = −T/(mN )(∂2F/∂T 2)N,V , and the pressure reads P =
−(∂F/∂V )N,T .

APPENDIX B: VORTICES AND BKT TRANSITION

We introduce here the bare superfluid density and the
vortex chemical potential, and we discuss how to derive the
renormalization group equations that describe how these bare
parameters are renormalized by the topological excitations of
the superfluid, i.e., the vortices.

1. Bare superfluid density and vortex chemical potential

Let us derive the bare superfluid density n(0)
s and the vortex

chemical potential μv of a bubble-trapped superfluid. For this
scope, we need to model the additional kinetic energy contri-
bution E (vor) of a system of vortices in a spherical superfluid,
a contribution which is neglected in �, that takes into account
only the Bogoliubov quasiparticles. We calculate E (vor) as

E (vor) = 1

2
mn(0)

s

∫ 2π

0
dϕ

∫ π

0
dθ R2 sin θ (�v · �v), (B1)

where the bare superfluid density n(0)
s is a low-temperature

approximation of the renormalized one, ns, and reads [36]

n(0)
s = n − β

∞∑
l=1

(2l + 1)

4πR2

h̄2l (l + 1)

2mR2

eβEB
l

(eβEB
l − 1)2

, (B2)

which is derived with a microscopic quantum-field-theory
calculation analogous to that of Ref. [37]. To obtain the
chemical potential of the vortices μv , we need to inte-
grate Eq. (B1), and therefore we have to derive the velocity
field �v of the superfluid part of the fluid with nonzero
vorticity. We model the velocity of an incompressible su-
perfluid containing vortices as �v = 2π h̄/m r̂ × �∇R χ (θ, ϕ),
where �∇R is the gradient in spherical coordinates [11] and
χ (θ, ϕ) is the stream function [39], constant along the stream-
lines of the fluid. For a system of M vortices with zero
global charge, with vortex cores at (θ1, ϕ1), . . . , (θM , ϕM )
and charges q1, . . . , qM , the stream function reads χ (θ, ϕ) =∑M

i=1 χi(θ, ϕ) with χi(θ, ϕ) = qi/(2π ) ln[sin(γi/2)], where
γi is the angular distance between (θ, ϕ) and (θi, ϕi ) [39].
Given the velocity field �v associated with a configuration
of vortices with stream function χ (θ, ϕ), we calculate the
kinetic energy of the vortical configurations E (vor) [38,39],

obtaining

E (vor) =
M∑

i=1

q2
i μv

− h̄2πn(0)
s

m

M∑
i, j=1
i �= j

qiq j ln

[
2R sin(γi j/2)

ξ

]
,

(B3)

where, due to R 
 ξ , we deduce the flat-case value of the vor-
tex chemical potential μv = h̄2n(0)

s π [ln(2
√

2) + γ ]/m [14],
with γ being the Euler-Mascheroni constant. Note that 2μv is
the energy required to create a couple of vortices with charges
q1 = −q2 = 1 at the minimal distance.

2. Renormalization of the bare parameters

Following the works of Kosterlitz and Thouless [14] and
Kosterlitz [15], we now discuss the main technical steps to
derive the renormalization group equations of the main text.

The fundamental correspondence between a superfluid
with nonzero vorticity and a classical Coulomb gas, on
which the analysis of Kosterlitz and Thouless is based,
holds also in shell-shaped systems. Thus we reinterpret
the kinetic energy E (vor) of the superfluid containing vor-
tices as the interaction energy between charged particles
on a shell. In particular, we focus on a vortex-antivortex
dipole on the surface of the sphere with charges q1 =
−q2 = 1, whose cores are at the positions (θ1, ϕ1) = (θ, 0)
and (θ2, ϕ2) = (0, 0) and whose bare interaction energy is
βU0(θ ) = 2βμv + 2πK0 ln[2R sin(θ/2)/ξ ], with K0 defined
in the main text. Due to the polarization of the medium at θ ′ <

θ , the force between the dipoles is screened as dU (θ )/dθ =
ε(θ )−1dU0(θ )/dθ , where ε(θ ) is the relative dielectric con-
stant, and [53,60]

βU (θ ) = 2π

∫ �(θ )

�(ξ/R)
K (θ ′) d[�(θ ′)], (B4)

with K (θ ) defined in the main text, and where the
logarithm of the distance between the vortices, �(θ ) =
ln[(2R/ξ ) sin(θ/2)], appears explicitly as the new integration
variable.

In two-dimensional electrostatics the dielectric constant
ε(θ ) is related to the susceptibility χ (θ ) as ε(θ ) = 1 +
4πχ (θ ), where χ (θ ) = ∫ θ

ξ/R dθ ′nd (θ ′) α(θ ′) is obtained in-
tegrating the product of nd (θ ′), the density of dipoles
with angular separation θ ′, and of α(θ ′), the polarizability
of the medium at separation θ ′. Following Ref. [53], we
find nd (θ ′) = 2π (R2/ξ 4) sin θ ′ y2

0 e−βU (θ ′ ) + o(y4
0 ). However,

interpreting the dipole moment differently from Ref. [53],
as the product between the vortex charge and the 3D dis-
tance among the charges, we get α(θ ′) = 2πK0 R2 sin2(θ ′/2).
Taking into account this crucial difference, we derive χ (θ ),
inserting it in ε(θ ), and finally, at the lowest order in y0, we
find the renormalized K (θ ):

K−1(θ ) = K−1
0 + 4π3

∫ �(θ )

�(ξ/R)
y2(θ ′) d[�(θ ′)], (B5)
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where we define the square of the renormalized fugacity
y2(θ ) as

y2(θ ) = y2
0

sin4(θ/2)

[ξ/(2R)]4
e−βU (θ ). (B6)

Note that Eqs. (B5) and (B6) are analogous to those of
Ref. [60], derived in the flat case, and the renormalization
group equations of the main text are obtained by differenti-

ating Eqs. (B5) and (B6) with respect to the distance between
the vortices, i.e., ln[sin(θ/2)].

To obtain the renormalized superfluid density ns, we cal-
culate the bare superfluid density n(0)

s (T ), which fixes the
values of the initial conditions K0 and y0. Thereafter, we
solve numerically the renormalization group equations for
each temperature T , obtaining the renormalized K (θ ), and,
from that, ns.
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