
PHYSICAL REVIEW RESEARCH 4, 013120 (2022)

Optimal sensing and control of run-and-tumble chemotaxis
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Run-and-tumble chemotaxis is a representative search strategy for odor sources by sensing its spatial gradients.
The optimal ways of sensing and control in run-and-tumble chemotaxis have been theoretically analyzed to
elucidate the efficiency of the strategies implemented in organisms. However, because of theoretical difficulties,
most attempts have been limited to either linear or deterministic analysis, even though real biological chemotactic
systems involve considerable stochasticity and nonlinearity in their sensory processes and controlled responses.
In this study, by combining the theories of optimal filtering and Kullback-Leibler control of a partially observed
Markov decision process (POMDP), we derive an optimal and fully nonlinear strategy for controlling run-and-
tumble motion depending on the noisy sensing of a ligand gradient. The derived optimal strategy comprises
optimal filtering dynamics to estimate the run direction from the noisy sensory input and control function
to regulate the motor output. Furthermore, we show that this optimal strategy can be naturally associated
with a standard biochemical model and experimental data of the chemotaxis of Escherichia coli. Our results
demonstrate that our theoretical framework can be used as a basis for analyzing the efficiency and optimality of
run-and-tumble chemotaxis.
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I. INTRODUCTION

A wide variety of organisms, from animals to single cells,
are capable of searching for odor sources. These abilities are
essential for finding food, suitable environments, and mates,
and the search strategies of organisms are subject to selection
pressures and are expected to be optimized evolutionarily.
Thus, efficient or optimal search strategies have been explored
for various living organisms [1–3]. One of the most inten-
sively investigated strategies is the run-and-tumble motion
in the chemotaxis of Escherichia coli, whose biochemical
signaling pathways have also been elucidated [4].

E. coli can climb up a spatial ligand gradient by sensing
temporal changes in the ligand concentration and accord-
ingly regulating the motor (Fig. 1(a)). The motor switches
between run and tumble states, resulting in repeated ballistic
swimming (run) interrupted by random changes in direction
(tumble). By inhibiting tumbles when sensing an increase in
ligand concentration and vice versa, E. coli can selectively
enhance positive displacement along the gradient’s increasing
direction. Such a sensory-motor cycle has been theoretically
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modeled in E. coli chemotaxis [5–9] based on biochemical
models of the intracellular signaling pathway [10–16].

To discuss how well E. coli is structured to perform chemo-
taxis, it is important to understand its sensory-motor cycle in
terms of optimality. While biochemical models describe how
the actual biochemical pathway behaves, optimality models
aim to characterize the best possible chemotactic performance
under physical constraints and the strategy that achieves the
performance. By comparing the optimality models with the E.
coli chemotactic responses measured experimentally [13,17–
21], one can understand how close to the physical limit a
cell can perform chemotaxis and whether its biochemical sig-
naling pathway is organized in a reasonable way to achieve
efficient chemotaxis. Previous attempts using optimality mod-
els can be classified into two directions. One uses optimal
control models by focusing on the optimal strategy to mod-
ulate the tumble rate based on sensing signals. This approach
formulates the tumble rate as a functional of sensing sig-
nals and considers the optimization of functional with respect
to chemotactic performance, such as the gradient climbing
speed [22–25]. The other uses optimal filtering models by
focusing on the optimality to sensory noise. Because sensory
noise cannot be ignored at the cellular level, the biochemical
signaling pathway of E. coli is expected to possess noise-
immune properties. By deriving an optimal filtering strategy
that extracts the ligand concentration or its changes from
the noisy signal, we can discuss how well the E. coli bio-
chemical signaling pathway is designed to decode information
[26–30].

Despite the progress in optimality models, there is still
no theory that properly deals with the “sensory-motor cycle,”
“nonlinear response,” and “sensory noise” at the same time
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(a)

(b)

FIG. 1. (a) Schematic diagram of the sensory-motor cycle in E. coli chemotaxis. (b) Sample paths of the variables involved in the cycle
driven by the optimal strategy. Each panel shows the tumble event sequence Mt , swimming direction Xt , location ξt , ligand concentration
on a logarithmic scale log[L]t , sensing signal Yt , and the posterior probability of the swimming direction Zt . The gray regions represent
the time intervals during which the swimming direction is up the gradient, that is, Xt = +1. These trajectories were simulated using the
dimensionless parameter values β̃ = 100.6, R̃0 = 100.4, and λ̃ = 100.5. In the context of E. coli chemotaxis, these dimensionless parameter val-
ues can correspond to the following biologically realistic dimensional parameter values: v = 20μm s−1, c = 10−3μm−1, σ = 8.7 × 10−3s−1,
γ = 9.2 × 10−3s−1, β = 1.8 × 10−3μm−1, and R0 = 2.3 × 10−2s−1.

from the perspective of optimality. The optimality of the entire
sensory-motor cycle is crucial because the sensing strategy
shapes the information available for motor control and the
motor control strategy affects what is sensed through mo-
tion modulation. However, previous optimal filtering models
[26–30] have neglected the influence of motor control on
sensing signals. In addition to motor control, previous opti-
mality models have failed to include the nonlinear responses
observed (for example, in the biochemical pathway of E. coli
chemotaxis [16,21]). They considered only linear responses
and derived the optimal strategy in that class by assuming a
weak ligand gradient [22–25]. Moreover, sensory noise has
been neglected in the derivation of those optimal control mod-
els. Several theoretical studies have addressed the optimality
of the sensory-motor cycle in the presence of nonlinearity
and/or noise [7,31–40]. However, it is generally difficult to
analytically investigate the effects of noise and nonlinearity;
therefore, such effects are often treated only by simulations.
A few of these studies analytically treat the impact of noise
and nonlinearity on the optimality; however, they do so at the
parameter level by assuming fixed structures of strategies. To
determine whether the actual biochemical pathway of E. coli
is structurally optimized, it is important to include a suffi-
ciently large class of strategies as candidates for an optimal
strategy.

In this article, we propose an optimality model that con-
siders the “sensory-motor cycle,” “nonlinear response,” and
“sensory noise” integratively based on the framework of a
partially observable optimal control [41]. We derive the op-
timal strategy for tumble rate regulation and show that the
strategy is implemented as a combination of two separate

components: An optimal filtering dynamics that yields an
estimate of the swimming direction and an optimal control
function that converts the estimate to the tumble rate. We
show that the obtained optimal strategy can be related to both
the biochemical model as well as the experimental data of
the E. coli signaling pathway. Finally, we discuss possible
extensions of the optimality model.

II. MODELING AND FORMULATION

To consider a minimal setting, we focus on a control
strategy to regulate the run-and-tumble motion on a one-
dimensional axis along a spatial ligand gradient (Fig. 1(b)).
We model a tumble as an instantaneous event that occurs ac-
cording to the Poisson process with rate Rt � 0 and denote by
Mt ∈ N the total number of tumble events up to time t . We do
not explicitly include the dispersal of swimming direction dur-
ing the run phase and assume that E. coli changes its direction
only at tumble events (see Supplemental Material, SM [42] for
the case in which the direction can change independently of
controlled tumble events, which includes Refs. [43–48]). We
denote by Xt ∈ {+1,−1} the swimming direction and assume
that Xt flips with probability 1/2 every time a tumble occurs
(see SM for a more general case where the directional change
occurs with other probabilities [42]). With these assumptions,
we can express the time evolution of the probability of Xt

under a given tumble rate Rt using a continuous-time Markov
chain:

d pt

dt
= 1

2
Rt

(−1 1
1 −1

)
pt , (1)
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where pt := (P (Xt = +1),P (Xt = −1))T , and the initial
condition is set to P (Xt = −1) = π ∈ [0, 1]. ξt ∈ R denotes
the position of E. coli, and E. coli is assumed to move at
a constant speed v in the current direction, dξt/dt = vXt .
Note that if the tumble rate Rt is constant, there is no net
displacement on average because the transition matrix of the
direction is symmetric.

Under this setting, we consider the optimal strategy for
regulating the tumble rate Rt to climb a spatial ligand gradient
depending on the noisy sensing of the environment. We intro-
duce sensory noise by defining a sensing signal Yt and specify
the available information for the regulation of Rt as follows:

Rt =Rc
t [Y0:t ], (2)

Yt := h(ξt ) + √
σWt , (3)

where Y0:t := {Yt ′ | t ′ ∈ [0, t]}. Rc
t is a control functional

representing the strategy of tumble regulation, which can ex-
plicitly depend on time. h is a function that represents the
ligand-dependent part of the signal, which will be specified
later. Wt is a standard Wiener process that models the sensory
noise, and σ > 0 represents the noise intensity. Note that we
do not restrict the candidates of strategies to those realized
by a linear response. Of all possible control functionals, we
aim to find the optimal control functional R∗

t , satisfying the
following maximization problem:

R∗
0:∞ := argmax

Rc
0:∞

J
(
π,Rc

0:∞
)
, (4)

where J is a utility functional defined as follows:

J
(
π,Rc

0:∞
)

:= Ec

[∫ ∞

0
e−γ tvXt dt

]
− 1

β
C
[
Rc

0:∞
]
.

The first term is the temporal integration of velocity vXt

and measures the extent to which it climbs a spatial ligand
gradient. In the second term, we introduce a control cost
C to obtain a bounded control functional and consider the
possible physical cost of tumble regulation. Therefore, the
optimization in Eq. (4) represents the problem of how far
up the gradient an organism can climb while keeping the
cost low. Ec indicates that the expectation is taken under the
controlled process generated by Eqs. (1)–(3) with the initial
condition P (X0 = −1) = π . 1/β > 0 and γ > 0 represent the
weight of the control cost and the temporal discounting rate,
respectively (see SM for another interpretation of 1/β [42]).
By introducing a temporal discounting factor, the optimization
takes greater account of the impact of control in the near
future than that in the distant future, and we can interpret
the reciprocal of discounting rate as the effective time inter-
val over which the optimization considers (see SM for the
interpretation of temporal discounting based on random time
interval [42]). Biologically, it is reasonable to assume that
organisms are optimized to take greater account of near-future
impacts because the impact of current control should decrease
over time owing to rotational diffusion or changes in the
environment. We consider that the temporal discounting rate
is set according to the time scale of these factors. Temporal
discounting also has a technical advantage, making it easier to
investigate optimal control both analytically and numerically
[49].

Defining the control cost is nontrivial, especially for
biological systems. While quadratic cost functions are con-
ventionally used in control theory, a quadratic form of C[Rc

0:t ]
may not admit a natural interpretation. In addition, C[Rc

0:t ]
should be designed appropriately to guarantee that the derived
optimal control functional does not produce biologically ir-
relevant values such as Rt < 0 or Rt = 0. To deal with this
difficulty, we introduce a control cost using the framework of
Kullback-Leibler (KL) control. The KL control framework as-
sumes an uncontrolled process and defines the control cost by
the discrepancy between the controlled and uncontrolled pro-
cesses in terms of the KL divergence, DKL[P c ‖ P 0], where
P c and P 0 denote the path probabilities of the controlled and
uncontrolled processes of tumbling causally conditioned on
the sensing signals, respectively. We model an uncontrolled
tumbling process using a reference constant-rate process, that
is, R0

t = R0 > 0. Because the constant rate Poisson process is
the simplest and least predictable, it can work as a representa-
tive of an uncontrolled situation. With a temporal discounting
factor, we derive the control cost functional under our setting
(see SM [42] for derivation and the relation to the information
flow discussed in Ref. [25]):

C
[
Rc

0:∞
]

:= Ec

[∫ ∞

0
e−γ t

{
log

Rt

R0
dMt − (Rt − R0)dt

}]
.

(5)

We can derive the optimal control functional R∗
0:∞ in

Eq. (4) based on the framework of the partially observable
control [41] (see SM for derivation [42]). Even though we
assume that the tumble rate Rt at each time t can depend
on the entire history of the sensing signal, Y0:t , we can prove
that the optimal control under a certain condition is achieved
only by using the posterior probability of the direction Zt :=
P (Xt = −1 | Y0:t ), which summarizes the information con-
tained in Y0:t . In particular, if the function h in the sensing
signal [Eq. (3)] is affine, that is, h(ξt ) = λξt + const., where
λ is a constant, the optimal control functional is expressed by
the following optimal control function R∗, which takes Zt as
its argument:

R∗
t [Y0:t ] = R∗(Zt ) := R0 exp

{
−β̃

(
Zt − 1

2

)
dṼ

dZ
(Zt )

}
. (6)

Here, Ṽ is a scaled value function on [0,1] that satis-
fies Ṽ (π ) = maxRc

0:∞ J̃ (π,Rc
0:∞), where J̃ := (γ /v)J is

a scaled utility functional. Ṽ is obtained by solving the
following second-order differential equation, known as the
Hamilton-Jacobi-Bellman (HJB) equation, in the optimal con-
trol theory:

Ṽ = R̃0

β̃

[
exp

{
−β̃

(
Z − 1

2

)
dṼ

dZ

}
− 1

]
(7)

+ {λ̃Z (1 − Z )}2 d2Ṽ

dZ2
− (2Z − 1), (8)

where R̃0 := R0/γ , λ̃ := √
2λv/

√
σγ , and β̃ := βv/γ are

dimensionless parameters that describe the ratio between the
temporal discounting rate and the reference tumble rate, the
signal-to-noise ratio of the sensory signal Yt , and the relative
weight of the net displacement with respect to the control cost,
respectively.
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We can show that the information needed for optimal con-
trol Zt can be calculated sequentially and separately before
feeding it into the optimal control function [Eq. (6)]. Based on
the theory of nonlinear filtering, we derived the time evolution
of Zt as the following stochastic differential equation:

dZt

dt
= − R∗(Zt )

(
Zt − 1

2

)
− KZt (1 − Zt ) ◦ dYt

dt
. (9)

Here, ◦ represents the Stratonovich integral. The first and the
second terms represent the prediction based on prior knowl-
edge of the directional change represented by Eq. (1) and the
update of the posterior based on the sensing signal [Eq. (3)],
respectively, [30]. K and the initial state of Zt should be
adjusted to K = 2λv/σ and Z0 = π such that the dynamics
of Zt are compatible with the optimal control function.

From the above discussion, we obtain the optimal strategy
for tumble regulation as a combination of the filtering dy-
namics [Eq. (9)] of the sensing signal and the optimal control
function [Eq. (6)] driven by the filtered signal Zt (Fig. 1(b)).

III. COMPARISON AND CORRESPONDENCE
WITH THE BIOCHEMICAL MODEL

To relate the optimal but abstract strategy represented by
Eqs. (9) and (6) to the actual biochemical pathway of E. coli,
we introduce two additional assumptions about the sensing
process. First, we assume that the ligand concentration [L]t

sensed by E. coli is exponentially distributed along the ξ axis,
[L]t ∝ exp(cξt ), where c represents the steepness of the gradi-
ent. Second, we assume that the sensory noise is Gaussian in
log concentration Yt = log[L]t + √

σWt . The setting specified
by these two assumptions satisfies the condition that h in the
sensing signal [Eq. (3)] is affine with the parameter set to
λ = c.

Under this setting, we transform Eq. (9) into a form that
clarifies its relation with a biochemical model of the E. coli
signaling pathway [16]. Following a previous paper [30], we
define the log-likelihood ratio as θt := log{(1 − Zt )/Zt } and
introduce an additional variable μt , called a prediction term.
Then, we can derive the following equivalent expression of
the filtering dynamics Eq. (9):

Zt = 1

1 + exp(θt )
, (10)

θt = − κμt + K[log[L]t + √
σWt ] + φ, (11)

dμt

dt
= − R∗(Zt )

κ

Zt − 1/2

Zt (1 − Zt )
=: FOPT(Zt ), (12)

where κ > 0 is an arbitrary constant and φ := log{(1 −
π )/π} − K log[L]0 + κμ0 is a constant of the integral (see
SM for derivation [42]).

Next, we briefly review the standard biochemical model of
the E. coli signaling pathway represented by Eqs. (13)–(15),
which are subsequently compared with Eqs. (10)–(12). In an
E. coli cell, the ligand is sensed by an array of receptors,
each of which takes either an active or inactive state, and the
active receptors increase the rate of the tumbles by mediat-
ing proteins. The biochemical model defines and quantifies
the receptor activity at by the ratio of active receptors. The
receptors are also influenced by their methylation, which is

quantified in the model by the average methylation level mt .
The dependence of at on mt and on the ligand concentration
[L]t is described by the Monod-Wyman-Changeux (MWC)
allosteric model:

at = 1

1 + exp( ft )
, (13)

ft = N (−αmt + log[L]t + I ), (14)

where ft is the free energy difference between the active and
inactive states. N, α, and I are biochemical parameters. The
receptor activity at affects the methylation and demethylation
enzymes CheR and CheB, and the resultant kinetics of methy-
lation is modeled as

dmt

dt
= F (at ), (15)

where F is a decreasing function of [0,1] with a single zero
point ā. We can see that the kinetics represented by F works
as a negative feedback on at by noting that ∂at/∂mt > 0 and
F ′(at ) < 0 hold. The dependence of the tumble rate on the
state of the receptors can be modeled by setting the tumble rate
as an increasing function of at [5,6,8,9,50]. The biochemical
model composed of Eqs. (13)–(15) can describe the experi-
mental responses of E. coli to various ligand profiles [16,51].

We can now see that the biochemical quantities (at , ft , mt )
in Eqs. (13)–(15) have the same kinetic structure as the fil-
tering quantities (Zt , θt , μt ) in Eqs. (10)–(12). The posterior
probability Zt and the receptor activity at are described by
the sigmoidal transformation of θt and ft , respectively. The
log-likelihood ratio θt and the free energy difference ft are
expressed by the sum of log[L]t , μt , and mt . The dynamics
of the prediction term μt and the methylation level mt are
described by functions of Zt and at , respectively. The tumble
rate is modeled by the functions Zt and at in the optimal
and biochemical models, respectively. This correspondence
between the optimal and biochemical models suggests that the
E. coli biochemical signaling pathway possesses a desirable
structure for the optimal control of tumble regulation under
sensory noise. It should be noted that even though we do
not include other stochasticities in the biochemical reactions
than the receptors in our optimality modeling, from the cor-
respondence of Eqs. (11) and (14), the optimality model can
effectively accommodate the noise of methylation reaction by
adding that effect to

√
σWt because mt and

√
σWt appear

additively in Eq. (14).
To see whether the dependence of the tumble rate on Zt

and at is consistent between the optimal and biochemical
models, we investigated the functional form of the optimal
control function R∗(Zt ). We calculate R∗ by substituting into
Eq. (6) the value function, Ṽ , obtained by numerically solving
the HJB equation [Eq. (8)]. In Fig. 2(a), we show the optimal
control function for a representative set of parameter values. It
can be seen that R∗(Z ) monotonically increases with Z and is
greater than R0 for Z > 1/2 and smaller than R0 for Z < 1/2.
As shown in Fig. 4, this property of R∗ is robust to changes in
parameter values (see also SM for the detail of the functional
form of R∗). The result indicates that the tumble rate should be
high when the direction is likely to be down the gradient and
vice versa to perform chemotaxis optimally under noise. This
property of the optimal control function is consistent with the
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(a) (b)

FIG. 2. (a) Numerical solution of the optimal control function
R∗. (b) A comparison between the feedback function of the optimal-
ity model, FOPT (red curve) and that of the experimental data, Fexp,
(black points) [21]. The parameter values in R∗ and FOPT are set to
R0 = 2.3 × 10−2, β̃ = 100.6, R̃0 = 100.4, and λ̃ = 100.5 (see SM for
the fitting procedure [42]).

regulation of the tumble rate in cells of E. coli, which can be
modeled by an increasing function of a [5,6,8,9].

Next, we clarify whether the optimal feedback function,
FOPT(Z ) = −{R∗(Z )/κ}(Z − 1/2)/{Z (1 − Z )}, in Eq. (12)
explains the corresponding feedback function F in Eq. (15),
which describes the methylation kinetics. Although the bio-
chemical mechanism governing the kinetics is not fully
understood, the functional form of F is experimentally esti-
mated using exponential ramp-response measurements [21].
We compare FOPT with the experimentally measured feedback
function FEXP. We obtain FOPT by substituting a numerical
solution of R∗ into the equation of FOPT and fit FOPT to FEXP

by adjusting β̃, R̃0, and R0 (see SM for details of the fitting
procedure [42]). Figure 2(b) shows the functional form of
FOPT and the experimental data, FEXP [21]. FOPT explains
FEXP well, particularly its characteristic nonlinearity, the gen-
tle slope around a = 1/2, and the steep slope near a = 1.
The steep slope near a = 1 is conjectured to be generated by
CheB phosphorylation, and its functional role has not been
completely clarified [21,31,52]. The agreement between FOPT

and FEXP indicates that the methylation kinetics represented
by FEXP can be understood as a property of optimal filtering
incorporating the prediction of motor regulation.

We should note that, in our previous paper, we related FEXP

to the feedback function obtained without considering mo-
tor control [30]. The feedback function there was FOPT(z) =
−(R/κ )(z − 1/2)/{z(1 − z)}, where R∗(z) in Eq. (12) is re-
placed with a constant R. Because this function is symmetric
with respect to z = 1/2, whereas FEXP is asymmetric, a change
of the variable for Z had to be introduced to fit FOPT to FEXP in
the previous study. In this study, the effect of the control R∗(Z )
accounts for the asymmetry of the function without such a
change of variable. Thus, we have obtained a more natural
explanation of FEXP by considering optimal motor control.

Even after considering motor control, there is still a dis-
crepancy between the zero-point of FOPT (z = 1/2) and the
previously estimated zero point of FEXP (a ≈ 0.3). We think
that there are at least three possible causes of the discrep-
ancy. The first is that at and Zt may not directly correspond.
The optimal control model can be transformed by adding a
constant to θt as done in [30], with which the zero point
of FOPT shifts without breaking the correspondence between
the biochemical model and the optimal control model. The

(a)

(b)

FIG. 3. Dependence of the net displacement, Ĩ = ∫ ∞
0 e−τ Xτ dτ ,

the control cost C, and the utility J̃ = Ĩ − C/β̃ on λ̃ and R̃0 (a) and
on β̃ and R̃0 (b). We used the parameter values, β̃ = 100.5, R̃0 =
1, λ̃ = 100.5, except for those designated in each panel.

second possibility is that the zero-point estimated from the
data has a statistical variation. Estimating the zero point can
be a difficult problem due to the gentle slope of F around
the zero point. The last is that the experimental estimation
of F may be biased because the sensory noise was ignored
in the previous research [21] (see SM for detail [42]). Further
analysis of the experimental data is needed to clarify the cause
of the discrepancy.

IV. PARAMETER DEPENDENCY OF CONTROL
FUNCTION AND PERFORMANCE

The results described above indicate that the biochemical
pathway of E. coli can be understood as a physical implemen-
tation of the optimal strategy under sensory noise.

We then explore how the optimal control strategy and its
chemotactic performance depend on conditions such as the

(a) (b)

(c)

FIG. 4. Dependence of normalized optimal control function
R∗(Z )/R0 on parameters λ̃ (a), β̃ (b), and R̃0 (c). We used the param-
eter values β̃ = 100.5, R̃0 = 1, λ̃ = 100.5, except for those designated
in each panel.
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signal-to-noise ratio using numerical simulations under var-
ious parameters. Of the control function [Eq. (6)] and the
filtering dynamics [Eq. (9)] that comprise the optimal strategy,
we focus only on the parameter dependence of the nor-
malized optimal control function, R∗(Z )/R0 = exp{−β̃(Z −
1/2)∂Ṽ /∂Z )} [Eq. (6)] (see Ref. [30] and SM for the pa-
rameter dependence of the filtering dynamics, Eq. (9)). To
quantify the chemotactic performance, we introduce three di-
mensionless performance indices: the scaled net displacement
along the ligand gradient Ĩ := E[

∫ ∞
0 e−τ Xτ dτ ], the control

cost C, and the scaled utility J̃ := (γ /v)J = Ĩ − C/β̃ where
we define τ := γ t . We note that the function R∗(Z )/R0 and the
performance indices Ĩ, C, and J̃ are determined only by the
dimensionless parameters β̃, R̃0, and λ̃, which appear in the
HJB equation [Eq. (8)]. We plot the parameter dependence
of the performance indices and normalized optimal control
function as shown in Figs. 3 and 4, respectively (see also SM
for the plot of maximum net displacement Ĩ as a function of
control cost C).

We first investigate whether a high signal-to-noise ratio
improves the net displacement and how the control strategy
changes depending on the dimensionless signal-to-noise ratio,
λ̃. From Fig. 3(a), we can see that in a high signal-to-noise
ratio situation, a large net displacement can be obtained at the
expense of a high control cost, as both the net displacement Ĩ
and the control cost C become large when λ̃ is high. On the
other hand, Fig. 4(a) shows that the optimal control function
is almost unchanged even though the value of λ̃ changes. This
phenomenon can be understood by considering that the signal-
to-noise ratio is reflected in tumble regulation only through
the uncertainty of the estimator. If the signal-to-noise ratio
is high, the swimming direction can be estimated with high
precision to be either up Zt ≈ 0 or down Zt ≈ 1 the gradient.
In contrast, if the signal-to-noise ratio is low, it is difficult to
accurately estimate whether the swimming direction is up or
down; thus, the estimator tends to take an intermediate value
around Zt ≈ 0.5 (See also the SM for the behavior of Zt under
different values of λ̃). Therefore, even though the functional
form of R∗/R0 is almost invariant to λ̃, the actual tumble rate
would be modulated drastically under high λ̃ and gently under
low λ̃.

Next, we investigate whether and how the net displacement
can be increased by varying the relative weight of the control
cost to the net displacement in the utility functional, that is,
1/β̃. Figure 3(b) shows that both the net displacement Ĩ and
the control cost C are increasing functions of β̃ and Fig. 4(b)
shows that the slope of R∗/R0 increases with the increase of
β̃. This result indicates that as the weight of the control cost
decreases, the optimal control strategy tends to use abrupt
switching of motors to increase the net displacement. If the
weight of the control cost is high, the optimal strategy em-
ploys moderate switching of the motor. Thus, the steepness
of the control function may be used to estimate the potential
control costs of the actual biological systems.

Finally, by varying R̃0 = R0/γ , we investigate how the
chemotactic performance and optimal control function depend
on the ratio of the time scale of the reference tumbling rate
(R0)−1 and the time scale of the utility discounting γ −1. The
timescale of utility discounting indicates how far into the
future the optimization will take into account. From Fig. 4(c),

we can see that the fold change in the optimal control function
decreases with an increase in R̃0, indicating that the tumbling
rate needs to be controlled gently to maximize the long-term
utility. Figure 3 shows that there is an optimal value of R̃0

that maximizes the net displacement. The existence of the
optimum may be understood as a compromise between the
speed and accuracy of decision-making under sensory noise.
If R̃0 is small, the estimation of the swimming direction can be
accurate because the noisy signal can be integrated for a long
time before the next tumbling occurs. However, if R̃0 is too
small, the initiation of the tumble may be deferred even when
the swimming direction is not appropriate. The optimal R̃0 is
approximately R̃0 ≈ 1, irrespective of the other parameters,
suggesting that a finite optimal basal tumble rate emerges
from the finite temporal discounting rate of the utility. This
result is consistent with a previous paper [25] that reported
that an optimal basal tumble rate emerges from the rotational
diffusion because the temporal discounting rate can be inter-
preted as the rotational diffusion rate.

In summary, chemotactic performance in terms of the net
displacement along the ligand gradient increases at the ex-
pense of a large control cost when the SN ratio is high and
the optimal control function has a steep slope. The net dis-
placement also depends on the balance between the time scale
for tumbling and that for performance evaluation. The optimal
control function is an increasing function of Z in a wide range
of parameters, and the steepness of its slope is modulated
depending on the parameters β̃ and R̃0; however, it is almost
independent of λ̃.

V. SUMMARY AND DISCUSSION

In this work, we derived an optimal sensing and motor-
control strategy under sensory noise, which characterizes the
performance limit of general run-and-tumble chemotaxis. We
also investigated the connection between the derived optimal
strategy and a well-characterized biochemical model of the
signaling pathway of E. coli. By explicitly considering motor
control and its optimality, we verified that E. coli model and
data can be related to the structure of the optimal strategy
more naturally and reasonably. This result reinforces the idea
that E. coli exploits the structure of the optimal strategy that
is necessary for attaining the performance limit [30].

To verify the connection more quantitatively with other
experimental data, we need to study the motor control in a
more detailed manner because the proposed optimality model
cannot be compared directly with the currently available ex-
perimental data of E. coli motor control. The motor state of
E. coli is experimentally measured by a clockwise (CW) bias
[50]. To define the CW bias, the duration of tumble should
be finite; however, we derived the optimality model under the
approximation that the duration of tumble is infinitely small.
One way to alleviate this problem is to experimentally mea-
sure the frequency of tumble as a function of receptor activity,
which can be compared directly with our results. The other
way is to model the motor control as a stochastic switching
between run and tumble [5,6,9] such that we can compare
the model with the CW bias data. To this end, the proposed
model can be extended by considering a Markov chain with
four states, (Xt , M̃t ), where Xt ∈ {+1,−1} is the swimming
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direction and M̃t ∈ {run, tumble} is the motor state. Such an
extension may enable us to further verify if the optimality
model can explain the experimental data of motor control.

With the above extension, we may discuss the optimality
of a broader class of exploratory behaviors observed in other
organisms [53,54]. For example, Drosophila larvae show head
casting behavior in which gradients can be sensed without
moving [54]. Such behavior can be treated by adding a head
cast to the motor state M̃ and by modeling the velocity and
sensing signal appropriately during the head cast. It would be
interesting to see how the optimal frequency and duration of
the head cast depend on conditions such as the signal-to-noise
ratio in the run and head cast states.

Another possible direction is to extend sensory models to
multiple ligands. In this study, we assumed that there is a
single type of attractant ligand; however, there may be many
types of ligands that work as attractants or repellents with
different importance [55–57]. We may incorporate the sensing
of multiple ligands by modeling the gradient of each ligand
and extending the sensing signal Yt to a vector-valued Wiener
process. The importance of different ligands may temporally
change depending on the internal state of the cell, such as nu-
tritional requirements [58]. It would be interesting to consider
not only the regulation of the motor but also the integration
of sensory information. By changing the sensory integration
based on nutritional requirements, a cell may focus its at-
tention on the gradients of important nutrients. In addition,
generally, there is cross talk between receptors. By modeling
the sensing signal appropriately, we may discuss the effect
of the cross talk on the performance of sensing and motor
control.

In the extensions described so far, the estimated state is
limited to finite states. However, actual organisms move in a
two-dimensional space or in more complex environments and

may need to estimate the direction and other environmental
factors as continuous quantities. The posterior distribution
of even a single continuous quantity cannot be represented
by a finite vector in general, and it is difficult to imple-
ment its storage and update strictly in living organisms. To
effectively deal with such difficulties with limited capacity
and memory, organisms may internally represent complex
environments by simpler approximate models. To discuss the
optimal control based on approximate representations, we
may need to consider other formulations, such as the active
inference framework, which uses variational approximation
of posterior distributions [59]. Also, there may be different
ways to incorporate an environmental factor in approximate
representation. For example, we explained that the effect of
rotational diffusion can be incorporated through the temporal
discounting factor, but it may also be incorporated by modify-
ing the model of cell motion. To address the problem of which
representation is more advantageous and is actually used by
organisms, we need to further develop the formulation of op-
timization problem and compare it with various experimental
results.

The combination of optimal filtering and KL control for
partially observed systems can work as a theoretical basis for
all these extensions as well as for analyzing the efficiency and
optimality of various chemotactic phenomena.
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