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Spatiotemporal spread of Fermi-edge singularity as time-delayed interaction and impact
on time-dependent RKKY-type coupling
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Fermi-edge singularity and Anderson’s orthogonality catastrophe are paradigmatic examples of non-
equilibrium many-body physics in conductors, appearing after a quench is created by the sudden change of a
localized potential. We investigate if the signal carried by the quench can be used to transmit a long ranged
interaction, reminiscent of the RKKY interaction, but with the inclusion of the full many-body propagation over
space and time. We calculate the response of a conductor to two quenches induced by localized states at different
times and locations. We show that building up and maintaining coherence between the localized states is possible
only with finely tuned interaction between the localized states and the conductor. This puts bounds to the use of
time controlled RKKY type interactions and may limit the speed at which some quantum gates could operate.
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I. INTRODUCTION

The Fermi-edge singularity (FES) problem [1–4] and An-
derson’s orthogonality catastrophe (OC) [5] are the concepts
behind one of the first and most important examples of how
a quench can drive a strongly correlated quantum response of
a fermionic conductor. For the OC the quench is caused by
abruptly switching a localized scattering potential producing
a proliferation of zero-energy particle-hole excitations. For
the FES this is accompanied by the injection of an extra
fermion into the conduction band, or its extraction. In both
cases a screening cloud builds up near the potential that in
the long time limit settles to a new ground state that is, up
to the extra fermion for the FES, orthogonal to the initial
ground state. The relaxation of the overlap of initial and final
ground states follows a characteristic power law in time that
depends only on the potential’s scattering phase shift. Such a
time dependence resembles the universal power-law responses
of strongly correlated systems and makes FES/OC a model
system for quantum critical behavior in the time domain. The
Kondo effect in particular can be viewed as a superposition of
OC cascades triggered by the Kondo spin flips [6]. Its univer-
sal many-body behavior has made FES an important testing
ground for a multitude of many-body techniques over more
than 50 years [1–19]. Experimental and theoretical evidence
started with absorption and emission spectra in metals and
semiconductors [20–28], and extended then to nanostructured
systems [29–49] and atomic gases [50–55].

It is, however, notable that with few exceptions [56,57] the
focus has been on global response functions, and that there
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is a major lack of investigation of the spatial build-up and
spread of the FES. In this paper we show that the spatio-
temporal spread offers a new perspective on FES physics,
and we provide a systematic access. The FES quench can
indeed be viewed as a coherent signal propagating through
a fermionic bath. Picking up the signal at some distance
causes a coupling with the source of the quench. We formalize
this aspect and formulate the FES signal as a time delayed,
long ranged effective interaction with a strong memory effect
due to the slow power-law decay of response functions. The
memory effect invalidates the use of an effective Hamilto-
nian so that we provide two appropriate formulations. One
is fundamental in the form of a time dependent action on the
Keldysh contour that incorporates the concept of time delayed
interaction. The other one is formulated in the language of
open system dynamics and concretely focuses on the time
evolution of the density matrix. The focus on the density ma-
trix is motivated by the requirements of quantum information
processing. We illustrate the approaches through the example
sketched in Fig. 1 where we investigate FES in combination
with a quantum gate operation between two localized qubit
type states. For concrete realizations one could consider a
quantum wire coupled to two quantum dots or a fermionic
atomic gas extending across two trapped charges. To transmit
the signal we choose to inject a fermion into the conductor and
extract it at a different location as this represents the simplest
case of such a transmission that captures the relevant physics.

The time delay in the signal is due to the finite Fermi
velocity vF and does not require the FES itself. The latter,
however, causes a significant renormalization of the transmis-
sion amplitude and decoherence even after extraction unless
special fine tuned conditions are met. This is in contrast
the usual modeling of effective interactions carried through
a different medium such as the RKKY interaction. These
are permanently present and thus time and FES are of no
significance. But if they are intended to be switched on and
off as required for a quantum gate operation [58] our pa-
per shows that time delay, entanglement with the conductor
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FIG. 1. Sketch illustrating the time nonlocal interaction medi-
ated by a fermionic conductor, triggered by the tunneling transitions
Wj (t j ) at positions x j and times t j for j = 1, 2. The same transitions
switch on the FES scattering potentials Vj renormalizing the excita-
tion peak traveling at velocity v.

and the FES are essential processes to be taken into
account.

The structure of the remaining paper is as follows. In Sec. II
we introduce the model represented in Fig. 1. In Sec. III we
derive the time dependent action providing the conceptual
picture for the time delayed interaction. Section IV contains
the concrete calculation of the spatio-temporal response and
its discussion. We conclude in Sec. V. Our results follow
from calculations of a considerable length, as a side effect of
such a mature research topic. To keep this work accessible we
concentrate in the main text on presenting the physics of the
spatio-temporal characteristics of FES with the discussion of
its consequences, and we leave the proper calculations in the
background. We thus use the appendices to provide the neces-
sary methodologic and calculational details underpinning the
discussion in a self-contained way. Appendix A contains the
derivation of the path integral. In Appendix B we derive
the shape of the evolution operator under the applied pulses,
and in Appendix C we evaluate it explicitly. The structure of
the amplitudes in the density matrix is derived in Appendix D,
and in Appendix E we compute these amplitudes through the
bosonization method.

II. MODEL

The minimal model shown in Fig. 1 consists of a Fermi gas
with two localized states. For simplicity we consider spinless
or spin polarized fermions, and we start with a noninteracting
Hamiltonian

Hc =
∑

k

εkc†
kck, (1)

where εk is the dispersion and ck are the fermion operators,
but an extension to interactions will be considered later. The
localized states are single orbitals located at positions x j with
operators d j , energies Ej , and Hamiltonians

Hj = Ejd
†
j d j, (2)

for j = 1, 2. Transitions are induced by tunneling terms

HW =
∑

j

Wj (t )d†
j ψ (x j ) + H.c., (3)

where ψ (x) is the field operator corresponding to ck , and Wj (t )
are time dependent amplitudes, applied over a range δxW �
π/kF (with Fermi momentum kF ) such that tunneling can be
expressed as point-like at x j . The FES physics arises from the
interaction

HV = V1ψ
†(x1)ψ (x1)d1d†

1 + V2ψ
†(x2)ψ (x2)d†

2 d2. (4)

Here we assume that initially level d1 is occupied and d2

empty such that tunneling out of d1 and into d2 switches on
the scattering potentials Vj . Tunneling events are induced by
sharp pump peaks Wj (t ) = Wjδ(t − t j ) that trigger the FES
and make the concept of a time delayed interaction between
times t1 and t2 well defined. Such an operation comes also
closest to controlling an interaction between the d j levels as
required for a quantum gate operation. In the present case this
could take the form of a conductor coupled to two quantum
dot or defect states that are pulsed to induce injection and
readout. We thus treat HW separately from the evolution under
H = Hc + H1 + H2 + HV .

III. TIME NONLOCAL INTERACTIONS

To illustrate how FES appears in this interaction we con-
sider the effective action between the d j levels obtained in
the standard way from integrating out the conductor’s degrees
of freedom in a path integral formulation. To focus entirely
on the physical interpretation we provide this derivation in
Appendix A. For noninteracting fermions the action is
quadratic in the ψ (x) fields and the path integral is readily
evaluated. This leads, in addition to the bare propagation un-
der the Hj , to the effective action Seff = SL + SC with (setting
h̄ = 1 throughout)

SL =
∑
j, j′

∫
K

dt dt ′Wj (t )d†
j (t )G(x j, t ; x j′ , t ′)Wj′ (t

′)d j′ (t
′),

(5)

and

SC = −iTr ln(GcG−1), (6)

which are derived in Eqs. (A8) and (A9). Here G is the full
fermion propagator in the presence of a path of the d j fields
and Gc the propagator for d j ≡ 0. In the FES language of
Ref. [4] SL is the open line propagator and SC is the closed
loop sum expressing the OC, which both are further resolved
in space and include the two scattering centers j = 1, 2. The
full time dependence is retained, and the time integrations run
over the Keldysh contour K : −∞ → +∞ → −∞. The trace
in SC involves integration over contour time and space.

The Wj (t ) control the paths d j (t ) in Seff and thus the
response to this interaction. Different paths of the dj (t ) on
the Keldysh branches K± : ∓∞ → ±∞ encode all possible
FES scenarios. Notable first is the absence of OC for classical
realizations of d j (t ), which are equal on K±, and thus for-
ward and backward time integrations are identical, akin to the
linked cluster theorem. Any interesting FES/OC effect is thus
quantum with different d j (t ) on K±. The overlap integrals
of FES spectra or of Loschmidt echos are extreme exam-
ples with Vj (t ) nonzero only on one branch. More general
amplitudes involve the superposition of different paths, and
a richer example of quantum interference, involving newly
the spatio-temporal response too, is the off-diagonal density
matrix element calculated below.

We observe that the time delayed interaction is carried only
through the Green’s function G(x j, t ; x j′ , t ′) in SL, the open
line contribution, as a consequence of the tunnel type inter-
action. This would be replaced by two-fermion propagators
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for density-density interactions in HW instead, but does not
involve the OC, which always acts as a ground-state shake-up.
In a fermionic liquid the (x, t ) dependence of Green’s func-
tions is dominated by the Fermi edge cutoff, which causes the
characteristic power-law decay. The peak of these power laws
travels with vF and thus causes largest impact at a distance x
only at time x/vF . The interaction Vj modifies the power-law
exponents through the characteristic phase shifts δ j . Thus the
interaction described by Seff combines three effects: The finite
velocity of the interaction peak, which does not involve FES
physics, the renormalization of the peak shape by FES, which
can enhance or weaken the signal, and the general decay
by the OC, which is always detrimental unless its long time
behavior can be switched off by fine tuning. To substantiate
these observations we consider now a concrete calculation.

IV. TIME EVOLUTION OF DENSITY MATRIX

We illustrate the impact of spatio-temporal FES on the
reduced density matrix ρd of the two d j states as a quantity
relevant for quantum information processing that is accessible
e.g. through quantum state tomography. Due to Wjδ(t − t j )
all times t, t ′ in the path integral are pinned to t j on the
Keldysh branches K±. The number of possible paths d j (t )
is then small and the path integral is evaluated directly. It is
advantageous to delay tracing out the ψ (x) and write ρd (t ) =
Trc{U (t )ρ(0)U †(t )}, where ρ(0) is the full initial density
matrix, U (t ) the evolution operator, and Trc the trace over
the conductor’s degrees of freedom. In this way we rewrite
the conceptual path integral in the language of open system
dynamics of a reduced density matrix ρd . For the pulsed
transitions the number of paths is small and in this formulation
we can evaluate the contribution from each path directly. The
placement of U and U † corresponds to the evolution on the
two Keldysh branches. For the pulsed transitions the evolution
operator takes the form [59,60]

U (t ) = e−iH0t e−iŴ2 e−iŴ1 (7)

at t > t2 > t1, where

Ŵj = e−iH0t j [Wjd
†
j ψ (x j ) + H.c.]eiH0t j . (8)

The effect of the pulses is thus entirely contained in the unitary
operators e−iŴj , and in Appendix B we provide a discussion of
the derivation of Eq. (7). It is easy to show furthermore (see
Appendix C) that

e−iŴj = 1 − iα jŴj − β jŴ
2
j , (9)

with α j = sin(w j )/w j, β j = [1 − cos(w j )]/w2
j and w j ∼

Wj/
√

δxW . This means that the exact result takes the form of
a second-order perturbative expansion but with renormalized
coefficients α j and β j . This is a direct consequence of fermion
statistics and has the advantage that the number of paths dj (t )
created remains small such that the full time evolution can be
evaluated exactly.

The two short pulses are chosen by analogy with the
switching on and off of an exchange interaction between two
qubits as the basis of a quantum gate generating entanglement
between two qubits [58]. For the transmitted signal we ob-
tain a similar gate operation between the dj levels but also

decoherence due to the continuum of the fermionic fluctua-
tions, both being strongly affected by the FES. To illustrate
we assume that initially ρd (0) = |1, 0〉〈1, 0|, where |n1, n2〉 is
the occupation number basis for nj = 0, 1 the eigenvalues of
d†

j d j . Applying a pulse on d1 at t1 followed by a pulse on d2

at t2 the density matrix at time t > t2 > t1 takes the form

ρd (t ) =

⎛
⎜⎝

D0 0 0 0
0 A C∗ 0
0 C B 0
0 0 0 D1

⎞
⎟⎠, (10)

spanned in the basis {|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉}. The zeros
arise from terms without particle conservation along the full
Keldysh contour.

Initially A = 1 and all other amplitudes are zero. To put
the result in context we compare it with the effect of a con-
ventional exchange interaction HJ = J (d†

1 d2 + d†
2 d1). Since

H3
J = J2HJ the evolution operator becomes UJ (t ) = e−iHJ t =

1 − i sin(Jt )HJ − [1 − cos(Jt )]H2
J /J , similarly to the form

of U (t ). The resulting density matrix takes the same form
as Eq. (10) with A = cos(Jt ), B = sin(Jt ),C = i sin(2Jt )/2,
and D0 = D1 = 0. The density matrix remains a pure state
but entangles the qubits. Therefore, such an interaction can be
used for a quantum gate, with the time of interaction t being
the control parameter.

The present case for ρd has several crucial differences due
to the coupling to a fluctuating fermionic continuum. Primar-
ily it makes the evolution of ρd (t ) nonunitary, by the creation
of entanglement with the continuum that is lost for entangling
the qubits. This naturally causes decoherence but also the time
retardation features by the FES and the interaction that are
our focus here. These are illustrated through the coefficient C,
expressing the only route to build up entanglement between
the two d j states. The other coefficients involve only classical
paths d j (t ) as they are on the diagonal of ρd (t ) and thus must
have identical sequences of Ŵj in the evolution operators to
the left and right of ρd (0), which means identical sequences
on both branches of the Keldysh contour. As noted above
this cancels the OC response and as a consequence these
coefficients show no or only a weak FES dependence. On the
other hand, coefficient C is off diagonal and requires differ-
ent numbers of operators Ŵj on the two Keldysh branches.
Namely we have

C = −α1α2 〈1, 0|Trc
{
e−iHt

(
1 − β2Ŵ

2
2

)(
1 − β1Ŵ

2
1

)
× ρ(0)Ŵ1Ŵ2eiHt

}|0, 1〉. (11)

The detailed derivation of this expression as well as expres-
sions for the other coefficients is provided in Appendix D.
Equation (11) is exact but the contributions in terms of β1,2

provide only qualitatively similar corrections to the leading
term so that in the discussion we shall focus on the leading
expression only, whereas in the figures we plot the full ex-
pression. Since the operators on both Keldysh branches, to the
left and right of ρ(0) in Eq. (11), are different both FES and
OC persist. With the Ŵ1Ŵ2 operators on the right to the initial
density matrix C takes indeed a form similar to the Loschmidt
echo, characterized by the interference of the perturbed sys-
tem with the free evolution, with the difference that at time t2
instead of switching off the interaction a tunneling event takes
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place and the system evolves further to time t (notice also that
C = 0 for t < t2).

Since three times t1, t2, t and two positions x1, x2 are in-
volved the number of correlation functions is large for each
amplitude in ρ(t ) but an analytic evaluation is possible. To
maximize the amplitude of the transmitted interaction we
consider a one-dimensional (1D) conductor in which exci-
tations can run only to the left or the right. This allows us
in addition to use the bosonization technique, which pro-
vides the most straightforward technique to access the FES
physics [7,61–63] and allows us to include interactions in
the 1D conductor as well. In 1D the interactions are entirely
characterized through a parameter K such that in the nonin-
teracting case K = 1, for repulsive interactions 0 < K < 1,
and for attractive interactions K > 1. Considering the zero-
temperature limit the coefficients of ρ are then composed of
power laws expressing the propagation of the fermion from
(x1, t1) to (x2, t2). Through the FES the power-law exponents
depend on the phase shifts δ j = 2VjK/v induced by the scat-
tering potentials Vj [7]. Here v = vF /K is the interaction
renormalized Fermi velocity [61–63]. The detailed evaluation
is a standard calculation of some length but does not con-
tribute further to the discussion. We thus provide the details in
Appendix E and analyze here instead the physics resulting
from the spatio-temporal spread. We should notice though
that we do not consider backscattering on the Wj potentials.
Although this scattering is relevant in 1D it matters for weakly
interacting systems mostly at time scales that can be tuned
to be longer than the times considered here, and its inclusion
would unnecessarily obscure the results. Further technical but
also more quantitative arguments are given in Appendix E.

To leading order in the power laws C is expressed as

C = −α1α2W1W2e−i	E1(t1−t )e−i	E2(t2−t )

× (e−ikF (x1−x2 )C− + e+ikF (x1−x2 )C+)/2πa, (12)

where a is the short distance cutoff, and where the coefficients
Cν with ν = ± arise from the injection of a right or left
moving fermion with momenta near the Fermi momentum
νkF . If we introduce gx,t = (a − ix + ivt )/a as the power-law
basis we have [see Eq. (E17)]

Cν = g
δ1
πK − 2δ2

1
π2K

0,t1−t g
− δ2

πK − 2δ2
2

π2K
0,t2−t g

− νδ1
π

+ δ1δ2
π2K

x1−x2,0
g

νδ1
π

+ δ1δ2
π2K

x2−x1,0

× g
− (1+Kν)2

4K + (δ1−δ2 )(1+Kν)
2πK + δ1δ2

π2K
x1−x2,t1−t2 g

δ2 (1+Kν)
2πK − δ1δ2

π2K
x1−x2,t1−t

× g
− (1−Kν)2

4K + (δ1−δ2 )(1−Kν)
2πK + δ1δ2

π2K
x2−x1,t1−t2 g

δ2 (1−Kν)
2πK − δ1δ2

π2K
x2−x1,t1−t

× g
− δ1 (1−Kν)

2πK − δ1δ2
π2K

x1−x2,t2−t g
− δ1 (1+Kν)

2πK − δ1δ2
π2K

x2−x1,t2−t . (13)

The multitude of power laws in Eq. (13) expresses the
main result of this paper. It describes the various ways in
which FES and OC shake up the conductor and propagate
between the times t1, t2, and t , as well as between the posi-
tions x1 and x2, and how the interaction with K 
= 1 causes
further fractionalization of the charge excitations. To un-
derstand the result let us consider first t = t2, at which all
dependence on δ2 vanishes as V2 acts only for t > t2. We
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FIG. 2. Plot of coefficient |C(t = t2)| at K = 1 for the indicated
phase shifts δ1 for repulsive Vj < 0 at 	x = x2 − x1 = 1000a (using
a = vF = 1 to set space and time units). The finite time-of-flight
causes the sharp peak at t2 − t1 = 	x/v, and the FES its substantial
suppression. The insets show the further suppression of the peak
amplitude with interactions K (right), and with δ1 for a selection of
K (left). Used parameters are Wj = 0.8

√
a, np = 0.4/a, nh = 0.6/a,

δxW = a.

then have

Cν = g
δ1
πK − 2δ2

1
π2K

0,t1−t2
g
− δ1 (1+Kν)

2πK
x1−x2,0

g
− δ1 (1−Kν)

2πK
x2−x1,0

× g
− (1+Kν)2

4K + δ1 (1+Kν)
2πK

x1−x2,t1−t2 g
− (1−Kν)2

4K + δ1 (1−Kν)
2πK

x2−x1,t1−t2 . (14)

For x2 − x1 = 0 this expression reduces further to the standard
FES response whereas at nonzero x2 − x1, as seen in Fig. 2,
the last two factors produce a pronounced peak at t2 − t1 =
|x2 − x1|/v as consequence of the finite propagation velocity.
Hence, in contrast to the instantaneous HJ a fine tuning must
be made to maximize the correlation between the two levels.
Note that since the Hamiltonian is nonrelativistic tails of the
correlators build up immediately and C is nonzero already at
all t2 − t1 < |x2 − x1|/v.

Figure 2 also shows the substantial impact of FES. Varying
δ1 from 0 to ±π/2 suppresses the peak amplitude by more
than an order of magnitude, but in the tails we observe that the
interplay between the OC and the contribution from the added
fermion can lead to both larger or smaller amplitudes. The
figure shows as well that interactions have a similar reducing
effect but display also a partial compensation of the FES effect
by shifting the maximum of C. Similar behavior can be found
in the dynamics of a Kondo spin coupled to interacting chains
[64] and is thus not specific for 1D.

Further distinction from a standard quantum gate arises
entirely from the OC induced relaxation. This is the lasting
effect of the correlation with the conductor and takes the
role of an interaction that cannot just be switched off unless
further fine tuning is achieved. Indeed C ∼ t−2(δ1+δ2 )2/π2K at
long times t � t2, suppressing with C → 0 thus the transfer
of information between the d j unless the Vj are such that
δ1 = −δ2. The behavior as function of t > t2 is shown for a
selection of phase shifts and K = 1 in Fig. 3 in which the
condition δ1 = δ2 = 0 leaves C unchanged from its magnitude
at t = t2, as is indeed expected for a RKKY type coupling
in a noninteracting system. For δ1 = −δ2 
= 0 the amplitude
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FIG. 3. Plot of |C(t )| at t > t2 for K = 1 and parameters as in
Fig. 2. For δ1 = −δ2 coefficient |C| becomes constant at large t
but decays for all other δ j . The inset shows the dependence on
interactions K for δ1/π = −0.1 and δ2/π = 0.25.

saturates as noted at a constant value at large t . But the
signal shows now a transient behavior with a satellite peak
at t − t2 = |x2 − x1|/v caused by one of the last two factors
in Eq. (13) and relies on δ1 
= 0. This effect arises due to the
many-body interference of the OC at x1 with the excitations
created by the fermion absorption at (x2, t2), manifesting as
another Fermi-edge-style singularity. For δ1 + δ2 
= 0 we see
a similar transient behavior but then the further (albeit rather
slow) decay with increasing t . Interactions with K 
= 1 are
shown in the inset of Fig. 3. Here interactions can reduce and
even enhance the amplitudes but do not change the qualitative
features.

The time and space resolved spread of FES described by
Eq. (13) therefore not just exhibits what could be thought as
an obvious extension of the well known FES results to a peak
traveling at finite velocity v. Instead all possible interference
effects in time only, space only, and time and space mixed
contribute each with a characteristic power-law exponent.

V. CONCLUSIONS

The results above provide an extension to our under-
standing of FES/OC physics to how the excitation extends
nonlocally through space and time. We illustrated the impact
on response functions through the example of correlated tun-
nel events, as a simple example of a quantum information
type setup. With the finite propagation velocity the transition
amplitudes are strongly peaked at the characteristic run time,
and the FES causes a reduction of the peak amplitude together
with the modification of the power-law tails. The OC gener-
ally remains detrimental to any long-term quantum coherence,
even long after the second transition, unless the different
scatterers are fine tuned to identical phase shifts. But even
then there is a transient further decay before matrix elements
of ρd converge to a nonzero constant, which is the general
result of the many interference processes in Eq. (13) distin-
guishing this case from the standard global FES/OC response.
As the transient regime contains the most interesting coher-
ent correlations, experimental probing would require ultrafast
techniques, e.g., for electron conductors with THz resolu-

tion. This could be offered by multidimensional spectroscopy
[65–67], and could target the tomography of ρd or the con-
ductor’s excitations directly. On the other hand if conductors
are used for RKKY type interactions between quantum gates
[68,69], then sharp pulses triggering FES should be avoided
and a smoother operation such as with minimal excitation
pulses [70,71] should be chosen. This would necessarily slow
down the rate at which such a gate could be operated. As a
fundamental result, however, we have shown that the inclusion
of a spatial component causes the FES response to split into all
possible interference combinations between the involved time
and space variables. While the OC diagrammatically remains
decoupled from all other correlators and thus maintains its
pure time dependence, all other FES processes connect the
variables in a rather nontrivial manner, yet all with character-
istic power laws.

ACKNOWLEDGMENTS

We thank H. Türeci for a stimulating discussion. C.J.
acknowledges the support from the EPSRC under Grant No.
EP/L015110/1. The work presented in this paper is theoreti-
cal. No data were produced, and supporting research data are
not required.

APPENDIX A: PATH INTEGRAL FOR INTERACTION

The derivation of the effective action for the time retarded
interaction starts from the full action of the combined system
of localized d j states and the continuum ψ (x). If these d j and
ψ (x) represent now Grassmann fields the action reads S =
Sc + ∑

j=1,2 S j + SV + SW , with

Sc =
∫
K

dt
∫

dx ψ†(x, t )(i∂t − Hc)ψ (x, t ), (A1)

S j =
∫
K

dt d†
j (t )(i∂t − Ej )d j (t ), (A2)

SV = −
∫
K

dt V1ψ
†(x1, t )ψ (x1, t )[1 − d†

1 (t )d1(t )]

−
∫
K

dt V2ψ
†(x2, t )ψ (x2, t )d†

2 (t )d2(t ), (A3)

SW =
∑
j=1,2

∫
K

dt Wj (t )ψ†(x j, t )d j (t ) + c.c., (A4)

in which the time integrals run over the Keldysh contour
K : −∞ → +∞ → −∞. We consider only noninteracting
fermions here in which Hc is local and thus Sc requires only a
single spatial integral.

To obtain an effective action for the dj levels we integrate
out the ψ (x) fields as

eiSeff[d
†
j ,d j ] =

∫
D[ψ†, ψ] ei(Sc+SV +SW ), (A5)

such that the total effective action is
∑

j S j + Seff. In the
absence of interactions, as considered for the evaluation of
the path integral, the ψ (x) integrals are Gaussians and the ψ

integration is straightforward,∫
D[ψ†, ψ] ei(ψ |G−1ψ )+(b|ψ )+(ψ |b) = det(iG−1) ei(b|Gb), (A6)
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where the inner product (·|·) consists of the x and t integra-
tions. We write the Green’s function in the kernel as G−1 =
G−1

c − V , with G−1
c (x, t ; x′, t ′) = δ(t − t ′)δ(x − x′)[i∂t − Hc]

and V (x, t ; x′, t ′) = δ(t − t ′){V1δ(x − x1)δ(x′ − x1)[1 −
d†

1 (t )d1(t )] + V2δ(x − x2)δ(x′ − x2)d†
2 (t )d2(t )}, and the

inhomogeneous terms as b(x, t ) = ∑
j Wj (t )δ(x − x j )d j (t ).

The determinant factor can be written in the form

det(iG−1) = det(iG−1
c ) exp(Tr ln(GcG−1)). (A7)

Here det(iG−1
c ) is an unimportant constant that can be

dropped. On the other hand eiSC = exp (Tr ln(GcG−1)) is im-
portant. If we write it as

SC = −iTr ln(1 + iGcV ) (A8)

we see from expanding the logarithm that it describes the
full set of simple closed loop diagrams connecting vertices V .
This term therefore incorporates the closed loop contribution
responsible for the OC [4]. The full effective action then
becomes Seff = SL + SC with

SL =
∑
j, j′

∫
dt dt ′ Wj (t )d†

j (t )G(x j, t ; x j′ , t ′)Wj′ (t
′)d j′ (t

′),

(A9)

in which G is the full Green’s function on the Keldysh contour
including the scattering on the time dependent potential V
created by the realizations of the d j (t ) fields. In contrast to
the closed loops in SC the propagator is pinned to the times
t, t ′ at which the pulses Wj are active and thus SL generalizes
the open line diagrams of the FES [4].

APPENDIX B: EVOLUTION OPERATOR
FOR DELTA FUNCTION PULSES

We consider a time dependent Hamiltonian of the form

Hfull(t ) = H + W δ(t − t1), (B1)

with H = Hc + ∑
j Hj + HV time independent and W ap-

plied only through a pulse at time t1 that is sharp enough
to be treated as a delta function pulse. Such a time depen-
dence allows for a simple solution for the evolution operator
U (t ) which, however, requires some care. Indeed integrat-
ing the equation of motion i∂tU (t ) = Hfull(t )U (t ) over times
t1 − δt < t < t1 + δt for some δt > 0 produces U (t1 + δt ) −
U (t1 − δt ) = −iWU (t ). The fact that the right hand side is
nonzero shows on the left hand side that U (t ) is discontinuous
at t1. This in turn makes the right hand side ambiguous. The
correct treatment of this situation is an old problem and, for
instance, in Refs. [59,60] a thorough discussion is provided.

It turns out that the naive solution produces the correct
answer. If we solve the equation of motion in the usual way
by going to the interaction picture with W as perturbation and
perform a formal integration we obtain the standard form of
the time ordered exponential

U (t ) = e−iHt T exp

(
−i

∫ t

0
dt ′ Ŵ (t ′)δ(t ′ − t1)

)
, (B2)

where T is the time ordering operator and Ŵ (t ) = e−iHtWeiHt .
The implicit but far from obvious assumption in Eq. (B2) is
that T commutes with the integration. Accepting it though

allows us immediately evaluate the integral in the exponential.
Noting then that T has no effect for equal time expressions we
obtain

U (t ) = e−iHt e−iŴ (t1 ) = e−iH (t−t1 )e−iW e−iHt1 , (B3)

for t > t1 and U (t ) = e−iHt for t < t1. Although a rigorous
treatment requires a more refined approach [59,60], Eq. (B3)
is indeed the correct result. The last part of the equa-
tion provides the appropriate physical picture: The system
evolves under H before and after t1, and the effect of the
pulse is entirely contained in the unitary and nonperturbative
operator e−iW .

From the latter expression it is straightforward to obtain
the evolution operator for sequences of pulses. Considering
two pulses, Hfull = H + W1δ(t − t1) + W2δ(t − t2), we have

U (t ) = e−iH (t−t2 )e−iW2 e−iH (t2−t1 )e−iW1 e−iHt1

= e−iHt e−iŴ2 (t2 )e−iŴ1(t1 ), (B4)

where we have assumed t > t2 > t1. Further pulses chain up
in the same way.

APPENDIX C: EVALUATION OF THE PULSE OPERATORS

The operators e−iŴj in the evolution operator resulting from
pulses at times t j can be given a closed form in which we
only need to be careful with infinities. The point-tunneling
expressions

Ŵj = eiHt j (Wjd
†
j ψ (x j ) + H.c.)e−iHt j (C1)

cause at higher powers in the expansion of e−iŴj products
of ψ (x j ) and ψ†(x j ) that through the anticommutation rule
{ψ (x), ψ†(x′)} = δ(x − x′) cause divergences. It thus must be
noted that Eq. (C1) itself is only a convenient limit of the more
general interaction

Ŵj = eiHt j

∫
dx(Wj (x)d†

j ψ (x) + H.c.)e−iHt j , (C2)

where Wj (x) is a spatially dependent potential that is sharply
peaked at x = x j and integrates to the amplitude Wj in
Eq. (C1). The order Ŵ 2

j itself would be unproblematic even
with Eq. (C1). Using Eq. (C2) we find that

Ŵ 2
j = eiHt j

∫
dxdx′ Wj (x)Wj (x

′)

× (d†
j d jψ (x)ψ†(x′) + d jd

†
j ψ

†(x)ψ (x′))e−iHt j

≈ W 2
j eiHt j (d†

j d jψ (x j )ψ
†(x j ) + d jd

†
j ψ

†(x j )ψ (x j ))e
−iHt j ,

(C3)

where the second line would also follow from Eq. (C1) and
can be used for the practical evaluation of Ŵ 2

j . For Ŵ 3
j , how-

ever, we obtain

Ŵ 3
j = eiHt j

∫
dxdx′dx′′ Wj (x)Wj (x

′)Wj (x
′′)

× (d†
j d jd

†
j ψ (x)ψ†(x′)ψ (x′′) + d jd

†
j d jψ

†(x)ψ (x′)

× ψ†(x′′))e−iHt j . (C4)
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Through the anticommutation relations for the ψ (x) and d j

this expression can then be reduced to

Ŵ 3
j = eiHt j

∫
dxdx′ Wj (x)W 2

j (x′)

× (d†
j ψ (x) + d jψ

†(x))e−iHt j = w2
jŴj, (C5)

with

w2
j =

∫
dx W 2

j (x). (C6)

Without the x integrations this expression would have been
left with the complication of diverging anticommutators
that would have required an unnecessary cure, for instance,
through point splitting. From the two results above it follows
immediately that Ŵ 2n+1

j = w2n
j Ŵj and Ŵ 2n

j = w2n−2
j Ŵ 2

j for
integer n. Consequently we have

e−iŴj = 1 − iα jŴj − β jŴ
2
j , (C7)

with

α j = sin(w j )/w j, (C8)

β j = [1 − cos(w j )]/w
2
j . (C9)

This means that the exact form of e−iŴj looks like its second-
order expansion with renormalized amplitudes. Notably, if we
let w j → 0 then α j → 1 and β j → 1/2, matching the second-
order amplitudes. Unitarity of Eq. (C7) imposes furthermore
that

α2
j Ŵ

2
j = 2β jŴ

2
j − β2

j Ŵ
4
j . (C10)

By the same methods that brought Eq. (C4) to Eq. (C5) we
verify that indeed Ŵ 4

j = w2
jŴ

2
j , and unitary follows from the

trigonometric identity 2β j − w2
j β

2
j = α2

j .

APPENDIX D: STRUCTURE OF DENSITY MATRIX
AND CORRELATORS

Let |n1, n2〉 denote the occupation state of the d1 and d2

levels. We assume that at time t = 0 the localized states
are in the |1, 0〉 configuration and the fermionic conductor
is in equilibrium. The initial density matrix is thus ρ(0) =
|1, 0〉〈1, 0| ⊗ ρc, with ρc the conductor’s equilibrium density
matrix. We apply the first W1 pulse at time t1 > 0 and the
second W2 pulse at time t2 > t1. At any time t > t2 the reduced
density matrix takes the form

ρd (t ) =

⎛
⎜⎝

D0 0 0 0
0 A C∗ 0
0 C B 0
0 0 0 D1

⎞
⎟⎠, (D1)

spanned in the basis {|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉}. The zeros
arise from amplitudes that do not preserve the particle number
in the fermionic conductor. (Note that here particle conserva-
tion must be considered only along the full Keldysh contour;
in real time the number of particles in the conductor is allowed
to vary.) The nonzero amplitudes at times t > t2 > t1 are

given by

A = 〈1, 0|Trc
{
e−iHt

(
1 − β2Ŵ

2
2

)(
1 − β1Ŵ

2
1

)
ρ(0)

× (
1 − β1Ŵ

2
1

)(
1 − β2Ŵ

2
2

)
eiHt

}|1, 0〉, (D2)

B = α2
1α

2
2 〈0, 1|Trc{e−iHtŴ2Ŵ1ρ(0)Ŵ1Ŵ2eiHt }|0, 1〉, (D3)

C = −α1α2 〈1, 0|Trc
{
e−iHt

(
1 − β2Ŵ

2
2

)(
1 − β1Ŵ

2
1

)
× ρ(0)Ŵ1Ŵ2eiHt

}|0, 1〉, (D4)

D0 = α2
1 〈0, 0|Trc

{
e−iHt

(
1 − β2Ŵ

2
2

)
Ŵ1ρ(0)Ŵ1

× (
1 − β2Ŵ

2
2

)
eiHt

}|0, 0〉, (D5)

D1 = α2
2 〈1, 1|Trc

{
e−iHtŴ2

(
1 − β1Ŵ

2
1

)
ρ(0)

× (
1 − β1Ŵ

2
1

)
Ŵ2eiHt

}|1, 1〉. (D6)

The evaluation of these amplitudes is done by keeping track
of which tunneling transitions are nonzero on the dj levels,
which gives rise to corresponding ψ (x j ) or ψ†(x j ) operators.
The latter are then rearranged, using the cyclicity of Trc such
that standard correlators 〈. . . 〉 = Trc{. . . ρc} with ρc, at the far
right, are obtained. Expressions such as W 2

j (ψ†(x j )ψ (x j ))2

are replaced by w2
j ψ

†(x j )ψ (x j ) as shown in Appendix C.
Further simplifications are obtained through identity (C10)
and the trigonometric relation between α j and β j .

In the expressions below we let ψ j = ψ (x j ) and use
the notations h0 = H |V1=V2=0, h1 = H |V1 
=0,V2=0, and h12 =
H |V1 
=0,V2 
=0. We then obtain

A = 1 − A1 − A2 + A3 + A4, (D7)

A1 = α2
1W 2

1 〈eih0t1ψ1ψ
†
1 e−ih0t1〉, (D8)

A2 = α2
2W 2

2 〈eih0t2ψ
†
2 ψ2e−ih0t2〉, (D9)

A3 = 4β1β2W
2

1 W 2
2 Re〈eih0t2ψ

†
2 ψ2e−ih0(t2−t1 )ψ1ψ

†
1 e−ih0t1〉,

(D10)

A4 =β2
1β2

2W 4
1 w2

2W 2
2 〈eih0t1ψ1ψ

†
1 e−ih0 (t1−t2 )ψ

†
2 ψ2

× e−ih0 (t2−t1 )ψ1ψ
†
1 e−ih0t1〉, (D11)

which are all expressions independent of the scattering poten-
tials Vj . The further diagonal entries are

B = α2
1α

2
2W 2

1 W 2
2

〈
eih0t1ψ1e−ih1(t1−t2 )ψ

†
2 ψ2

× e−ih1(t2−t1 )ψ
†
1 e−ih0t1

〉
, (D12)

D0 = A1 − B, (D13)

D1 = A2 − A3 − A4. (D14)

While D1 remains independent of the Vj there is an explicit V1

dependence in B and D0. However, all time dependence so far
is pinned to the pulse times t1 and t2. The dependence on t (for
t > t2 > t1) enters only through the off-diagonal component

C = −α1α2W1W2
〈
eih0t1ψ1e−ih1(t1−t2 )ψ

†
2

× e−ih12(t2−t )e−ih0t
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× (
1 − β1W

2
1 eih0t1ψ1ψ

†
1 e−ih0t1

)
× (

1 − β2W
2

2 eih0t2ψ
†
2 ψ2e−ih0t2

)〉
, (D15)

which is also the only term depending on V2 as the latter
potential is switched on only for times t > t2.

The amplitudes A1,2 can be evaluated immediately.
Since h0 does not perturb the ground state the correlator
〈eih0t1ψ1ψ

†
1 e−ih0t1〉 equals the local hole density nh. Like-

wise 〈eih0t2ψ
†
2 ψ2e−ih0t2〉 gives the local particle density np.

This leads to A1 = α2
1W 2

1 nh and A2 = α2
2W 2

2 np. The remain-
ing amplitudes contain time propagating components and are
evaluated through the bosonization technique.

APPENDIX E: BOSONIZATION

In the following we focus on one-dimensional (1D) sys-
tems such that the traveling signal remains directed and does
not weaken its amplitude by expanding in a higher dimen-
sional space. This has the additional advantage that we can use
the bosonization technique [61–63], which a reliable method
for the explicit evaluation of correlators. Bosonization allows
us furthermore to quantitatively include the renormalization
of system properties by interactions. We should emphasize,
however, that we choose a 1D system and bosonization for
convenience to provide explicit analytical results but we do
not wish to lose universality by the restriction to the partic-
ular pure 1D physics. Indeed in many cases the interactions
in 1D can cause a collective strong coupling response that
qualitatively changes the system’s properties. Such physics
has been a central theme for 1D systems since many years but
it is specific for this dimensionality. Notable is in particular
that backscattering on the impurity causes an interaction-
independent universal long time decay of the standard FES
[10]. Yet here we explicitly exclude such strong coupling
physics. We thus shall use bosonization in the same spirit
as Schotte and Schotte [7] who mapped the radial expansion
of a pure s-wave scattering in higher dimensions onto a 1D
description solved by bosonization and thus could capture in
such an elegant way the main many-body features of FES. For
the present 1D description we shall keep nonetheless the fact
that modes can travel to the right or the left and use a pure 1D
description, but we either need to assume that backscattering
on the impurity does not become relevant for the described
physics (conditions are provided below), or that we deal with
a quasi-1D system with sufficient degrees of freedom in the
transverse directions such that the backscattering effect is
reduced. Of course, purely 1D systems without backscattering
can be realized experimentally as well such as through chiral
quantum Hall edge states or helical edge states in topological
insulators, and for such systems the description below can be
applied with only straightforward adjustments.

The basic condition for bosonization is that the fermionic
band is sufficiently filled such that one can consider the
portions near the Fermi points ±kF as two independent
bands of right movers R (near kF ) and left movers L (near
−kF ). The original fermion field operator is then written
as ψ (x) = eikF xψR(x) + e−ikF xψL(x), where ψν denotes the
fermion operator on the ν = R, L movers branch. Furthermore
the dispersion relation is linearized such that εk,ν ≈ vF (k −

νkF ), with the signs ν = R = + and ν = L = − replacing the
letters R, L where necessary. The resulting model is known
as the Tomonaga-Luttinger model and is described by the
Hamiltonian

HT L =
∑

ν

∫
dx ψ†

ν (−iνvF )∂xψν + Hint, (E1)

in which we have chosen the chemical potential to be zero
such that HT L measures the excitations about the ground state.
The Hamiltonian Hint contains the fermion-fermion interac-
tions and can be expressed as

Hint =
∑
ν,ν ′

∫
dxdx′ V (x − x′)ψ†

ν (x)ψ†
ν ′ (x′)ψν ′ (x′)ψν (x),

(E2)

with V the interaction potential. In Hint we have omitted
terms that couple the R and L movers beyond the written
density-density interaction. Indeed such terms are irrelevant
in the renormalization group sense unless the fermion density
is commensurate with the underlying lattice. We exclude such
specific cases here, also in the spirit of the comments on the
choice of a 1D model given above.

The mapping on bosonic degrees of freedom is then a
standard procedure (see, e.g., Refs. [61–63] for an in depth
discussion), with the boson fields representing density fluctu-
ations of the R and L movers. The Hamiltonian (E1) becomes
quadratic in the boson fields, and for a sufficiently short
ranged (screened) interaction V such that the interaction is
most pronounced within a range <π/kF all interactions can
be treated as local. The Hamiltonian HT L then becomes a
quadratic form described by a 2 × 2 matrix for the bosonic
R and L fields with the off diagonal terms arising from the
R and L density coupling in Hint. Such a matrix can be im-
mediately diagonalized and the resulting eigenmodes, φ̃R,L,
describe wave packets that still move only to the right or to
the left, although when V 
= 0 both contain contributions from
both original R and L moving density waves. The Hamiltonian
is written accordingly as HT L = H̃R + H̃L with

H̃ν =
∫

dx
v

4πK
(∂xφν (x))2, (E3)

for ν = R, L. Here K encodes the interaction strength of V ,
normalized such that K = 1 corresponds to the noninteract-
ing limit, 0 < K < 1 to repulsive interactions and K > 1 to
attractive interactions, and v is a renormalized Fermi velocity,
often equal to v = vF /K . The eigenmodes φ̃ν obey the com-
mutation relations

[∂xφ̃ν (x′), φ̃ν ′ (x)] = 2iπKνδν,ν ′δ(x − x′), (E4)

such that φ̃ν and ∂xφ̃ν are conjugate boson fields up to a nor-
malization. In terms of the eigenmodes the original fermion
operators are expressed as

ψν (x) = ην√
2πa

e− i
2 (ν−K−1 )φ̃L (x)− i

2 (ν+K−1 )φ̃R (x), (E5)

with a a short distance cutoff, typically on the order of the
lattice spacing. The ην are Klein factors, operators that lower
the overall fermion number by one and guarantee fermionic
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exchange statistics. But for the further analysis they produce
only unit expectation values and will be dropped.

The scattering potentials Vj are in their fermionic form
given by the Hamiltonian

HV = V1ψ
†(x1)ψ (x1)d1d†

1 + V2ψ (x2)ψ†(x2)d†
2 d2. (E6)

With the splitting into R and L movers HV has a forward
scattering contribution remaining either in the R or in the L
band, and a backscattering contribution transferring between
R and L. We shall neglect the latter, although this may seem
counter-intuitive as backscattering produces a relevant FES
response with a universal time decay that is independent of
Vj [10]. Yet as mentioned above our main aim is to provide a
description of the traveling FES signal and use bosonization
as a convenient tool, but not to be limited to the particu-
larities of the pure 1D response. In addition, even for the
pure 1D case we should stress that the universal decay is a
strong coupling response. It does not set in immediately but
takes a characteristic time τ ∼ (V b

j )−1(ξ/V b
j )K/(1−K ) to build

up before crossing over to the universal behavior [10]. Here
V b

j = |Vj (2kF )| is the backscattering Fourier amplitude of Vj .
The time τ is of significance mostly for strongly interacting
systems with K < 0.7 at which it can become very short.
However, for typical scales as found in nanowires and not too
strong interactions with K > 0.7 the value of τ becomes on
the order of microseconds or much larger such that the strong
coupling limit from backscattering is not reached in the time
scales governing the described physics otherwise. The physics
then remains perturbative in the backscattering amplitude and
has a direct Vj dependence similar to the effect of forward
scattering [10]. To capture the general effect of FES it is even
in this pure 1D situation therefore sufficient to include only
forward scattering.

In this case HV is expressed in terms of the boson fields as

HV =
∑

ν

[V1ψ
†
ν (x1)ψν (x1)d1d†

1 + V2ψν (x2)ψ†
ν (x2)d†

2 d2]

=
{
	E1 − V1

2πK
[∂xφ̃L(x1) + ∂xφ̃R(x1)]

}
d1d†

1

+
{
	E2 − V2

2πK
[∂xφ̃L(x2) + ∂xφ̃R(x2)]

}
d†

2 d2, (E7)

which incorporate the fluctuating parts of the forward scat-
tering. Here 	Ej = NV 2

j /4πvK , with N the system’s particle
number, are d j dependent energy shifts providing a ground
state energy renormalization by the Vj potentials. Since
Eq. (E7) is linear in φ̃ν the total Hamiltonian HT L + HV can be
brought to the form of HT L by completing the square through
a shift in the boson fields, ∂xφ̃ν − 	, such that the term pro-
portional to (∂xφ̃ν )	 matches HV . This can be performed on
the operator level [7] by defining the shift operators

T̂1 = exp

(
i

δ1

πK
[φ̃R(x1) − φ̃L(x1)]d1d†

1

)
, (E8)

T̂2 = exp

(
i

δ2

πK
[φ̃R(x2) − φ̃L(x2)]d†

2 d2

)
, (E9)

where δ j = 2KVj/v is the scattering phase shift, which for
the linearized spectrum matches the Born approximation [7].
Through the commutation relations (E4) we see that HT L +

HV = T †
2 T †

1 HT LT1T2 + 	E1d1d†
1 + 	E2d†

2 d2. If we let T1 =
T̂1|d1d†

1 =1 and T2 = T̂2|d†
2 d2=1 then it follows that e−ih1t =

T †
1 e−ih0t T1e−i	E1t and e−ih12t = T †

2 T †
1 e−ih0t T1T2e−i(	E1+	E2 )t ,

which allows us to write the correlators in ρd entirely in terms
of a time evolution under h0. For instance, we have

C = −α1α2W1W2
〈
eih0t1ψ1T †

1 e−i(h0+	E1 )(t1−t2 )T1ψ
†
2

× T †
2 T †

1 e−i(h0+	E1+	E2 )(t2−t )T1T2e−ih0t

× (
1 − β1W

2
1 eih0t1ψ1ψ

†
1 e−ih0t1

)
× (

1 − β2W
2

2 eih0t2ψ
†
2 ψ2e−ih0t2

)〉
. (E10)

Inserting the time dependence O(t ) = eih0t Oe−ih0t for any op-
erator O the latter expression can be rewritten as

C = −α1α2W1W2e−i	E1(t1−t )e−i	E2(t2−t )

× 〈
ψ1(t1)T †

1 (t1)T1(t2)ψ†
2 (t2)T †

2 (t2)T †
1 (t2)T1(t )T2(t )

× (
1 − β1W

2
1 ψ1(t1)ψ†

1 (t1)
)

× (
1 − β2W

2
2 ψ

†
2 (t2)ψ2(t2)

)〉
. (E11)

Similarly we find

B = α2
1α

2
2W 2

1 W 2
2 〈ψ1(t1)T †

1 (t1)T1(t2)ψ†
2 (t2)ψ2(t2)

× T †
1 (t2)T1(t1)ψ†

1 (t1)〉, (E12)

and corresponding expressions without Tj operators for all
other amplitudes in ρd . In all these expressions the fermion
operators are replaced by Eq. (E5) and we note that [61,62]

ψ†(x)ψ (x) = np − 1

2π
[∂xφ̃L(x) + ∂xφ̃R(x)]

+ 1

2πa
(ei[φ̃L (x)+φ̃R (x)] + H.c.), (E13)

and ψ (x)ψ†(x) = (np + nh) − ψ†(x)ψ (x), where the densi-
ties np and nh regularize the divergences from the delta
function of the anticommutator.

The final evaluation of all correlators is done by using the
identity 〈∏i exp(λiφ̃i )〉 = exp(

∑
i< j λiλ jGi j ) valid for any

theory with a quadratic bosonic Hamiltonian where φ̃i =
φ̃νi (xi, ti ) and [63]

Gi j = 〈
φ̃iφ̃ j − (

φ̃2
i + φ̃2

j

)
/2

〉

= −Kδνi,ν j ln

[
a − iνi(xi − x j ) + iv(ti − t j )

a

]
. (E14)

In the latter equation we use the zero temperature T = 0
limit, which is applicable as long as all considered time scales
are shorter than the thermal time τT = 2π/kBT . For density-
density correlators involving products of gradients we have

〈∂xφ̃i∂xφ̃ j〉 = Kδνi,ν j

[a − iνi(xi − x j ) + iv(ti − t j )]2
. (E15)

A subtlety arises from the term ψ1(t1)ψ†
2 (t2)ψ2(t2)ψ†

1 (t1) in
B, which must remain real and the standard point splitting
method of bosonization is ambiguous. But there is no ambi-
guity in the noninteracting K = 1, δ j = 0 limit in which the
evaluation of the fermionic amplitude is a basic application of
Wick’s theorem. From continuity with this result we find that
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in this case the correlators of the form of Eq. (E15) must in-
stead be given by −Kδνi,ν j /{a2 + [νi(xi − x j ) − v(ti − t j )]2}.

The final results for the amplitudes A, B,C, D0,1 are then
obtained straightforwardly but require a good bookkeeping
as they consist of products of many factors of the form
{[a − iνi(xi − x j ) + iv(ti − t j )]/a}γi j with the various expo-
nents γi j arising from the ψ and T operators. We shall
write out explicitly only the leading part of the amplitude
C, without the higher order contributions proportional to
β1,2, as the discussion in the main text focuses on the latter.
We have

C = − α1α2W1W2e−i	E1(t1−t )e−i	E2(t2−t )

× (e−ikF (x1−x2 )C− + e+ikF (x1−x2 )C+)/2πa, (E16)

in which the amplitudes Cν , for ν = ± (denoting R and L
movers, respectively), are products of the power laws arising
from the multiple contractions between the boson fields. With

gx,t = (a − ix + ivt )/a we have

Cν = g
δ1
πK − 2δ2

1
π2K

0,t1−t g
− δ2

πK − 2δ2
2

π2K
0,t2−t g

− νδ1
π

+ δ1δ2
π2K

x1−x2,0
g

νδ1
π

+ δ1δ2
π2K

x2−x1,0

× g
− (1+Kν)2

4K + (δ1−δ2 )(1+Kν)
2πK + δ1δ2

π2K
x1−x2,t1−t2 g

δ2 (1+Kν)
2πK − δ1δ2

π2K
x1−x2,t1−t

× g
− (1−Kν)2

4K + (δ1−δ2 )(1−Kν)
2πK + δ1δ2

π2K
x2−x1,t1−t2 g

δ2 (1−Kν)
2πK − δ1δ2

π2K
x2−x1,t1−t

× g
− δ1 (1−Kν)

2πK − δ1δ2
π2K

x1−x2,t2−t g
− δ1 (1+Kν)

2πK − δ1δ2
π2K

x2−x1,t2−t . (E17)

The first two x j independent factors arise only from the OC.
The next two time independent factors compensate in ampli-
tude but provide a phase to the coefficient. The further terms
encode the full spatio-temporal spread of the FES signal, with
peaks whenever in gx,t the condition x − vt = 0 is met. At
t = t2 this expression simplifies to

Cν = g
δ1
πK − 2δ2

1
π2K

0,t1−t2
g
− δ1 (1+Kν)

2πK
x1−x2,0

g
− δ1 (1−Kν)

2πK
x2−x1,0

× g
− (1+Kν)2

4K + δ1 (1+Kν)
2πK

x1−x2,t1−t2 g
− (1−Kν)2

4K + δ1 (1−Kν)
2πK

x2−x1,t1−t2 , (E18)

in which all dependence on δ2 drops out.
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