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A close connection between antiferromagnetism and superconductivity is at the core of high-temperature
superconductivity. Here, we put forward the projected BCS theory for the unification of antiferromagnetism
and strongly correlated superconductivity. Specifically, it is shown that, with the d-wave pairing symmetry, the
projected BCS theory can provide excellent trial states at general doping for the exact ground states of the t-J
model in the square lattice, generating a unified theory of high-temperature superconductivity as a continuous
function of hole concentration. A key to the success of the projected BCS theory is an accurate treatment of the
strong correlation between Cooper pairs, which not only causes the breakdown of superconductivity itself at half
filling but also defines the precise nature of strongly correlated superconductivity at moderate doping. Also, via
the proper incorporation of particle number fluctuations, the projected BCS theory allows direct computation of
the superconducting order parameter, shedding important light on the pseudogap phenomenon.
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I. INTRODUCTION

Despite the large variety in material properties, there is a
certain list of common features robust across various high-
temperature superconductors. One of the most salient features
in such a list is the proximity between antiferromagnetism and
superconductivity. An important question is exactly how these
two phenomena are connected together.

The spin singlet is the smallest unit of antiferromagnetism.
Simply put, the BCS state is the antisymmetrized condensate
of spin-singlet electron pairs, i.e., Cooper pairs. Therefore it
is natural to expect that antiferromagnetism, at least with the
short-range order, is closely connected with superconductivity
in some form. The resonating valence bond (RVB) state is
the trial state constructed under this rationale. Specifically,
the RVB state is the projected BCS state with all components
containing doubly occupied sites projected out [1–8]. Known
as the Gutzwiller projection, this projection implements the
effect of infinitely strong on-site repulsive interaction, while
it can be also partially imposed [9–11].

A problem is that, at half filling, the RVB state reduces
to a spin liquid rather than the true antiferromagnet with the
long-range order, i.e., the Néel state. In principle, quantum an-
tiferromagnets can host various different types of spin liquids
and valence bond solids in two dimensions [12]. Experimen-
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tally, however, all known high-temperature superconductors
tend to have the Néel order at half filling. If so, it would mean
that superconductivity is fundamentally incompatible with the
long-range antiferromagnetic order. Is this true?

Here, we show that it is possible to construct a unified
theory of antiferromagnetism (AF) and strongly correlated
superconductivity (SCSC). A breakthrough of the unified
theory is that the Gutzwiller projection is directly applied
onto the BCS Hamiltonian itself, not just its ground state.
Specifically, the BCS Hamiltonian is directly diagonalized in
the projected Hilbert space under the no-double-occupancy
constraint [13,14]. Let us call this theory the projected BCS
theory.

To provide the validity of the projected BCS theory, we per-
form exact diagonalization of the projected BCS Hamiltonian
and compare the so-obtained exact ground states with those
of the t-J model. Actually, a similar exact-diagonalization
technique has been previously used to analyze the projected
BCS Hamiltonian [13,14]. While generating promising re-
sults, however, this previous analysis suffered from various
problems due to critical finite-size effects. Here, we overcome
these problems by devising the proper overlap valid in the
presence of particle number fluctuations.

As a result, it is shown that the projected BCS theory
provides excellent trial states for the exact ground states of
the t-J model in the square lattice for a wide range of hole
concentration. In particular, it is proved analytically that the
exact ground states of the t-J model and the projected BCS
theory are entirely equivalent at half filling. At moderate
doping, the projected BCS theory with the d-wave pairing
symmetry continues to provide excellent trial states for the t-J
model, demonstrating the merit of unifying AF and SCSC, as
emphasized by the SO(5) theory [15].
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Also, properly incorporating particle number fluctuations,
the projected BCS theory allows direct computation of the su-
perconducting order parameter, providing concrete evidence
for the split between the “bare” and real superconducting
order parameters at low doping, which can in principle explain
one of the great mysteries in high-temperature superconduc-
tivity, the pseudogap phenomenon.

Finally, the projected BCS theory can be also used to
investigate the relevance of the s-wave pairing symmetry as
well as the geometrical frustration to high-temperature super-
conductivity.

II. RESULTS

A. High-temperature superconductivity
and the fractional quantum Hall effect

Arguably, there are two main pillars in the research of
strongly correlated electron systems, high-temperature super-
conductivity and the fractional quantum Hall effect (FQHE).
Our work is motivated by a remarkable similarity between the
RVB state [1] for high-temperature superconductivity and the
composite fermion (CF) state [16] for the FQHE.

To begin with, the RVB state is the electron-electron paired
state projected onto the Hilbert space with no double occu-
pancy:

ψRVB = PGψBCS, (1)

where PG is the Gutzwiller projection operator, and ψBCS is
the BCS wave function. In view of the Gutzwiller projection,
it is convenient to write ψBCS in the real space:

ψBCS = A[φ(r1 − r2)φ(r3 − r4) · · · φ(rN−1 − rN )], (2)

where A is the antisymmetrization operators and φ(ri − r j )
is the pair function between the ith and jth electrons. Specifi-
cally, φ(ri − r j ) can be written as follows:

φ(ri − r j ) = ϕ(ri − r j )
1√
2

(|↑↓〉 − |↓↑〉)i j, (3)

where ϕ(ri − r j ) is the real-space part of the pair function.
The next step is to perform PG by removing the dou-

bly occupied components from ψBCS. Concretely, after the
Gutzwiller projection, the amplitude of ψRVB can be written
for a given spin distribution {r↑, r↓} as follows:

ψRVB({r↑, r↓}) = det[ϕ(ri − r j )], (4)

where i and j run though the coordinates of all spin up and
down electrons in {r↑, r↓}, respectively [3]. See Appendix A
for details.

It is important to note that, expressed in terms of the deter-
minant, the above form of ψRVB tells us that Cooper pairs can
be treated as being more or less weakly interacting, while the
pairing correlation becomes somewhat weakened. The precise
nature of the weakened pairing correlation depends on the
hole concentration.

Similarly, the CF state is the electron-vortex bound state
projected onto the lowest Landau level (LL):

ψCF = PLLLψJ, (5)

where PLLL is the lowest LL projection operator, and ψJ is the
Jastrow-factor correlated wave function,

ψJ =
∏
i< j

J2
i j det[φnm(z∗

i , zi )], (6)

where Ji j = zi − z j is the Jastrow factor with z = x + iy, and
φnm(z∗

i , zi ) is the wave function for the LL eigenstate under a
reduced effective magnetic field with n and m being the effec-
tive LL index and the angular momentum quantum number,
respectively. Note that, here, we focus on the circular gauge
in the planar geometry.

The next step is to perform PLLL by appropriately splitting
the Jastrow factors and absorbing the split parts into the de-
terminant. Concretely, after the lowest LL projection, the CF
state can be written as follows:

ψCF = det

[
φ̂nm

(
∂

∂zi
, zi

) ∏
j �=i

Ji j

]
, (7)

where φ̂nm is the normal-ordered operator derived from φnm

with z∗ replaced by ∂/∂z:

φ̂nm

(
∂

∂zi
, zi

)
=: φnm

(
z∗

i → ∂

∂zi
, zi

)
: (8)

where the normal ordering means that differential operators
go all the way to the front of the expression. See Ref. [17] for
details.

It is important to note that the above form of ψCF is also
given in terms of the determinant, meaning that CFs can be
also treated as being more or less weakly interacting. Simi-
lar to the Gutzwiller projection, however, the electron-vortex
binding becomes weakened by the lowest LL projection. In
other words, vortices are somewhat detached from electrons
after the lowest LL projection, while the precise degree of
detachment depends on the filling factor.

In conclusion, the great merit of both RVB and CF states
lies in the fact that relevant quasiparticles, Cooper pairs
and CFs, respectively, can be treated as being more or less
weakly interacting. Specifically, the “plain vanilla” version
of the RVB theory assuming basically noninteracting Cooper
pairs can provide a semiquantitative understanding of high-
temperature superconductivity [8]. Similarly, the FQHE can
be understood as the integer quantum Hall effect of weakly
interacting CFs [16], explaining various essential properties
of the FQHE [17].

As mentioned above, however, both Gutzwiller and lowest
LL projections weaken paired and bound states, respectively,
by generating the residual interaction between quasiparticles.
A natural question is what happens if the residual interaction
gets too strong to cause the breakdown of otherwise weakly
interacting quasiparticles.

Actually, the RVB state is bound to break down in the
vicinity of half filling, where the phase fluctuation of Cooper
pairs becomes too strong, and thus the long-range antifer-
romagetic order takes over. Meanwhile, the CF state breaks
down when promoted to the second LL, where the resid-
ual interaction between CFs becomes attractive [18–22], and
consequently the even-denominator FQHE state can occur at
filling factor ν = 5/2 [23]. What would be the wave function
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capturing such strongly correlated states and how can we
obtain them?

Fundamentally, we need to improve the weakly interacting
part of the wave function. For example, ψBCS and ψJ can
be systematically improved to some extents via the second
quantization formalism. Concretely, various gauge theories
have been constructed for high-temperature superconductivity
by implementing PG in the slave particle formalism [24]. Sim-
ilarly, the Chern-Simons gauge theory has been constructed
for the FQHE by implementing PLLL in both mean-field and
one-loop levels [25–27]. Despite some reasonable successes,
however, these approaches are not properly equipped to cap-
ture the sheer breakdown of weakly interacting quasiparticles,
which requires a much more accurate treatment of strong
correlation. To this end, we get inspirations from the afore-
mentioned even-denominator FQHE at filling factor ν = 5/2.

It is generally believed that the 5/2 FQHE state is a paired
quantum Hall state induced by the emergent, attractive cor-
relation between CFs [18–22]. Among the most promising
trial states for the 5/2 FQHE state are the Moore-Read (MR)
Pfaffian state [18,19], the particle-hole (PH) conjugate of the
MR Pfaffian state (also known as the anti-Pfaffian state), and
their PH-symmetrized combination [28–30]. While the MR
Pfaffian state can be written explicitly in the planar geometry,
it is generally much more convenient to analyze the model
Hamiltonian, which generates the MR Pfaffian state as the
exact ground state.

Such a model Hamiltonian can be obtained as the three-
body repulsive interaction, H3, imposing an energy penalty
to the closest-packed clusters of three electrons. Ultimately,
checking the validity of the MR Pfaffian state amounts to
computing the overlap between the exact ground states of the
Coulomb interaction and H3 [28–30]. In summary, the weakly
interacting CF state can be improved upon by considering the
exact ground state of the model Hamiltonian H3.

Inspired by this use of H3 generating the MR Pfaffian state,
here, we consider the projected BCS Hamiltonian, which can
play a role of the model Hamiltonian generating the improved
trial state beyond the RVB state.

B. Projected BCS Hamiltonian

The projected BCS Hamiltonian can be written as follows:

HPBCS = PG(Ht + H� + Hμ)PG, (9)

where

Ht = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.),

H� =
∑
〈i, j〉

�i j (c
†
i↑c†

j↓ − c†
i↓c†

j↑ + H.c.), (10)

Hμ = −μ
∑

i

ni,

where t is the hopping parameter, �i j is the pairing ampli-
tude, μ is the chemical potential, and σ denotes spin up, ↑,
and down, ↓, respectively. For the d-wave pairing symmetry,
�i j = ±� for the x and y directions, respectively. For the
s-wave pairing symmetry, �i j = � for both directions. The
particle number operator ni is given by ni = ∑

σ c†
iσ ciσ .

Meanwhile, the t-J Hamiltonian can be written as follows:

Ht-J = PG(Ht + HJ )PG, (11)

where Ht is the same as in Eq. (10), and

HJ = J
∑
〈i, j〉

(Si · S j − nin j/4), (12)

where J is the spin exchange coupling constant with J > 0
[31–33]. Note that, unless mentioned otherwise, all the energy
scales are measured in units of t throughout this work.

Similar to what is done for the 5/2 state problem, we would
like to compute the overlap between the exact ground states of
the t-J model and the projected BCS theory. To do so, there
are three important preliminary works.

First, it is important to check the symmetries of the t-J and
projected BCS Hamiltonians, which can crucially affect the
overlap. Details of the group theoretical analysis are provided
in Appendix B. Second, we confirm if there is any parameter
regime, where the two Hamiltonians are guaranteed to be
closely connected. To this end, it is proved in Sec. II C that
the two Hamiltonians are entirely equivalent at half filling.
Third, the overlap should be properly defined in the presence
of particle number fluctuations. The precise definition of the
proper overlap is provided in Sec. II D.

C. Equivalence at half filling

The equivalence between the t-J and projected BCS
Hamiltonians at half filling can be proved analytically. With
details of the proof presented in Appendix C, here, we provide
a brief summary.

We begin by decomposing the Schrödinger equation of the
projected BCS theory into a system of simultaneous equations
connecting between different particle number sectors. Then,
we take the limit of large μ to maximize the number of elec-
trons under the no-double-occupancy constraint, which leads
to half filling. In this limit, we carefully expand the weighting
amplitude of the energy eigenstate in each particle number
sector in orders of 1/μ. Finally, by keeping only the most
dominant terms, it is proved that the projected BCS theory
becomes entirely equivalent to the Heisenberg model, i.e., the
t-J model at half filling.

Several aspects of the proof are worthwhile to mention.
First, the equivalence is not just for the ground state, but rather
the entire energy eigenstates at half filling. Second, the proof
works regardless of the pairing symmetry or the lattice struc-
ture. As shown by explicit computations, the overlap is exactly
unity at half filling not only for the d-wave pairing symmetry,
but also for the s-wave pairing symmetry in the square lattice.
The same is true for the triangular lattice. Third, the equiv-
alence at half filling does not necessarily guarantee a high
overlap upon doping. The overlap at finite doping depends
crucially on the pairing symmetry and the lattice structure.
It is shown that, in the square lattice, the overlap can remain
high with finite � for the d-wave pairing symmetry, while not
for the s-wave counterpart. The overlap is generally quite low
at moderate doping in the triangular lattice regardless of the
pairing symmetry.

To explicitly compute the overlap between the exact
ground states of the t-J model and the projected BCS theory,
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FIG. 1. Map of the number-weighted overlap squared (NWOS) between the exact ground states of the t-J model and the projected BCS
theory with the d-wave pairing symmetry in the square lattice. Here, the spin exchange coupling constant of the t-J model is set to be J/t = 0.5.
Denoted in color with bright yellow being unity and black being zero, the NWOS is computed as a function of pairing amplitude � and chemical
potential μ. As one can see, the NWOS is exactly unity regardless of � at sufficiently large μ, proving that the Néel state is precisely captured
by the projected BCS theory at half filling. Note that the NWOS also becomes unity for sufficiently large negative μ, i.e., near the vacuum,
where both spin exchange and pairing terms play equally negligible roles. The number of sites is varied as Ns = 4, 8, 10, 16, 18, and 20.

below, we define the proper overlap valid in the presence of
particle number fluctuations.

D. Number-weighted overlap squared

The exact ground state of the projected BCS theory |ψPBCS〉
can be expanded in terms of its number-projected component
in each particle number sector |φPBCS

h 〉 as follows:

|ψPBCS〉 =
Ns∑

h=0

λh

∣∣φPBCS
h

〉
, (13)

where h is the number of holes, related with that of sites, Ns,
and that of electrons, Ne, via h = Ns − Ne. Note that the RVB
state can be also similarly expanded.

Meanwhile, any exact ground state of the t-J model has
a fixed number of particles. This means that each particle
number sector has its own exact ground state of the t-J model.
A pressing question is how to compute the overlap between
|ψPBCS〉 and the set of the exact ground states of the t-J model,
{|φt-J

h 〉}.
The traditional method is to project |ψPBCS〉 onto the spe-

cific desired particle number sector and compute its overlap
with |φt-J

h 〉 in that sector, i.e.,

O2
h = ∣∣〈φPBCS

h

∣∣φt-J
h

〉∣∣2
, (14)

which we call the number-projected overlap squared (NPOS).
As shown previously [13,14], the NPOS provides a reasonable
measure of the overlap. Unfortunately, however, there is a
rather large degree of arbitrariness in this method, causing
critical finite-size effects. That is, the particle number is fixed
by two separate processes: (i) projecting |ψPBCS〉 onto the
specific, desired particle number sector and (ii) choosing the
chemical potential in HPBCS. Applied simultaneously, these
two processes are often inconsistent with each other, not to
mention redundant.

We fix this problem by devising the proper overlap valid
in the presence of particle number fluctuations, which is de-
fined as the weighted NPOS over all possible particle number
sectors:

O2 =
∑

h

|λh|2O2
h, (15)

which we call the number-weighted overlap squared (NWOS).
Note that the weighting factor can be computed via |λh|2 =
〈ψPBCS|Ph|ψPBCS〉, where Ph is the number projection
operator.

To appreciate the actual implementation of the NWOS, it is
instructive to consider the 2×2 system, where the NWOS can
be computed analytically. See Appendix D for details. Below,
we present the numerical analysis of the NWOS via full-
fledged exact diagonalization in the 2×2 and larger systems.

E. Overlap map

Figure 1 shows the map of the NWOS between the exact
ground states of the t-J model and the projected BCS theory
with the d-wave pairing symmetry in the square lattice. Here,
the NWOS is computed as a function of � and μ, both
of which are varied for all possible values. Note that Ns is
appropriately chosen for the proper tessellation of the square
lattice preserving the rotational symmetry. See Appendix E
for details.

There are several important features to be noted. First,
as expected from the equivalence at half filling, the NWOS
is unity regardless of � in the limit of large μ. This con-
firms that the long-range antiferromagnetic order is precisely
captured by the projected BCS theory. Note that, strictly
speaking, one should include a staggered magnetic field in
the projected BCS Hamiltonian to generate the true long-
range antiferromagnetic order. However, we do not need
to do so here since it is now a well-established fact that
the true long-range antiferromagnetic order emerges in the
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(a) (b) (c)

(f)(e)(d)

FIG. 2. Similar map of the NWOS to Fig. 1 with the abscissa converted to the hole concentration x. The chemical potential μ is related
with x via x = 1 − ∑

i〈ni〉/Ns. The optimal pairing amplitude producing the maximum NWOS, �max, is denoted by the green lines in [(d)–(f)]
as a function of x. Note that the NWOS is exactly unity regardless of � at x = 0, i.e., half filling, and x = 1, i.e., the vacuum. The white, or
vacant regions indicate that the exact ground state of the projected BCS theory is not available there.

antiferromagnetic Heisenberg model [34–39]. As proven nu-
merically here and analytically in Appendix C, the projected
BCS Hamiltonian is exactly identical to the antiferromagnetic
Heisenberg model at half filling.

Second, the NWOS also becomes unity along the line of
� = 0 for sufficiently large negative μ, indicating that there is
no pairing in the weakly correlated regime near the vacuum.
Here, the exact ground states of the t-J model and the pro-
jected BCS theory become identical since both spin exchange
and pairing terms play equally negligible roles. In this regime,
the ground state simply becomes the usual Fermi liquid.

Third, most importantly, the NWOS can remain quite
high (typically �80%–90%) along the well-defined curve of
nonzero � as a function of μ, especially prominent at Ns = 16
and 20. Note that, at Ns = 18, there is a large black dome
around μ = 0, masking the otherwise high NWOS region.
The high NWOS can be obtained in this region if the NWOS
is computed by using the first excited state of the projected
BCS theory, which is nearly degenerate with the exact ground
state.

Note that the spin exchange coupling constant of the t-J
model is set to be J/t = 0.5 in Fig. 1. It is shown in further
analyses of the NWOS that the optimal pairing amplitude
grows as J/t increases. See Appendix F for the detailed be-
havior of the NWOS with variation of J/t .

Actually, it is physically more meaningful to express the
overlap map as a function of hole concentration x rather
than μ. To this end, we convert μ to x by inverting the re-
lationship x = 1 − ∑

i〈ni〉/Ns, where 〈ni〉 depends implicitly
on μ.

Figure 2 shows the map of the NWOS between the exact
ground states of the t-J model and the projected BCS theory
as a function of x and �, from which one can determine
the optimal pairing amplitude, �max, producing the maximum
NWOS at each value of x. As one can see from the green lines
in (d)–(f) in Fig. 2, �max is clearly lifted from zero, indicating
that there is a well-defined pairing correlation up to x 
 0.5.

At this point, it is worthwhile to discuss the significance of
the overlap. To begin with, the NWOS is the weighted square
of overlap, and therefore its square root is a more appropriate
measure for the overlap than the NWOS itself. In this sense,
the overlap can be regarded as being more than 90% along
the lines of �max in (d)–(f) in Fig. 2. Given this value, the
significance of the overlap can be appreciated by comparing
it with those obtained in other well-established examples of
strongly correlated electron systems.

One example is the FQHE states at the Jain sequence,
which include not only the celebrated Laughlin state, but also
general CF states. In this case, the overlap is typically around
99% in finite-size systems with particle number ranging from
N = 6 to 12 [17], which is sufficiently high so that there is
little doubt for the validity of the Laughlin/CF states.

However, the situation is not always this clear. As previ-
ously mentioned, the even-denominator FQHE state at filling
factor ν = 5/2 is believed to be a paired quantum Hall state,
for which one of the most promising candidate trial states
is the MR Pfaffian state. The overlap between the exact 5/2
and MR Pfaffian states is typically less than 60%–80% in
finite-size systems with N = 10–12 for the pure Coulomb
interaction [28–30]. The situation is actually even worse since
the overlap can become completely zero, depending on ge-
ometric details of the finite-size system. This is due to the
fact that the pure Coulomb interaction is essentially the crit-
ical point dividing two different phases with one captured
by the MR Pfaffian state and the other by some unknown
state. Fortunately, the situation can be improved in favor of
the MR Pfaffian state if one tweaks the interaction by tuning
the Haldane pseudopotential or including the effect of finite
thickness, in which case the overlap can increase up to 90%
[28–30].

Another example is the factional Chern insulator (FCI)
occurring in the 1/3-filled Chern flat band, which is envi-
sioned as the lattice analog of the Laughlin state. A good trial
state for the 1/3-filled FCI can be constructed by importing
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the amplitudes of the Laughlin state and attaching them to
appropriately chosen basis states in the Chern flat band, called
the hybrid localized Wannier states [40]. It is shown that the
overlap between this trial state and the exact 1/3-filled FCI
state is scattered over a wide range from 80 to 99% in finite-
size systems with N = 6–8, depending on lattice structures of
the Chern flat band.

In summary, based on the comparison with these well-
established examples, the overlap of 90% in finite-size
systems with roughly ten particles can be taken as a solid piece
of evidence supporting the validity of the trial state.

It is emphasized again that �max is clearly lifted from zero
as shown in (d)–(f) in Fig. 2, which is strongly supportive of
the existence of superconductivity. Unfortunately, however,
the actual detailed shape of �max as a function of x suffers
from somewhat considerable finite-size effects. In the next
section, we show that finite-size effects can be significantly
alleviated by using the twisted boundary condition.

F. Twisted boundary condition

The twisted boundary condition is actually equivalent to
the periodic boundary condition under the appropriate gauge
transformation implementing a flux insertion. For simplicity,
let us consider the rectangular system with Nx×Ny sites, in
which case the appropriate gauge transformation is given as
follows:

c†
jσ → eiφ jσ c†

jσ , (16)
with

φ jσ = Aσ · r j, (17)

where Aσ is the vector potential implementing the flux in-
sertion, which can be in general spin-dependent. As shown
below, we consider the spin-dependent vector potential to
preserve the translational symmetry in the presence of the
pairing term.

Note that the pairing term in the projected BCS Hamilto-
nian explicitly breaks the gauge symmetry, and therefore the
flux cannot be inserted arbitrarily. In our current situation, a
usual implementation of the twisted boundary condition, i.e.,
assigning the same phase twist for different spins, results in
breaking the translational symmetry. To overcome this prob-
lem, one needs to assign opposite phase twists for different
spins. Specifically, we choose the following vector potential:

Aσ = sgn(σ )

(
θx

Nx
,

θy

Ny

)
, (18)

where sgn(σ ) = ±1 for σ = ↑ and ↓, respectively, and θx and
θy are the twist angles across the system boundary along the x
and y directions, respectively.

To confirm that this choice of the spin-dependent vector
potential preserves the translational symmetry, let us see what
happens to the BCS Hamiltonian after the above gauge trans-
formation:

Ht = − t
∑

〈 j,k〉,σ
[ei(φ jσ −φkσ )c†

jσ ckσ + H.c.],

H� =
∑
〈 j,k〉

� jk[ei(φ j↑+φk↓ )c†
j↑c†

k↓ − ei(φ j↓+φk↑ )c†
j↓c†

k↑ + H.c.],

(19)

while Hμ remains the same as before. Note that the ac-
quired phase in the hopping term depends only on the
relative distance, i.e., φ jσ − φkσ = Aσ · (r j − rk ). This means
that the hopping term preserves the translational symmetry.
Meanwhile, the pairing term can preserve the translational
symmetry if the phase twist is opposite for different spins, i.e.,
φ j↑ + φk↓ = −(φ j↓ + φk↑) = A↑ · (r j − rk ).

Actually, one should also check how HJ is gauge-
transformed. To this end, it is convenient to rewrite HJ in terms
of electron creation and annihilation operators as follows:

HJ = J

2

∑
〈 j,k〉

[c†
j↑c†

k↓c j↑ck↓ + c†
j↓c†

k↑c j↓ck↑

− c†
j↑c†

k↓c j↓ck↑ − c†
j↓c†

k↑c j↑ck↓], (20)

where the first and last two terms constitute the direct and
exchange parts of HJ , respectively. While the direct part is
simply invariant under the gauge transformation, the exchange
part is gauge-transformed as follows:

H ex
J = − J

2

∑
〈 j,k〉

[ei(φ j↑+φk↓−φ j↓−φk↑ )c†
j↑c†

k↓c j↓ck↑

+ ei(φ j↓+φk↑−φ j↑−φk↓ )c†
j↓c†

k↑c j↑ck↓], (21)

which can preserve the translational symmetry since, as be-
fore, the acquired phase depends only on the relative distance,
i.e., φ j↑ + φk↓ − φ j↓ − φk↑ = 2A↑ · (r j − rk ).

In addition to the translational symmetry, one can also pre-
serve the reflection symmetry by appropriately coordinating
θx and θy. Specifically, for the square system with Nx = Ny,
the reflection symmetry can be preserved if one sets θx and
θy to be the same, say θ . In this work, we focus on the
Ns = 16 system with Nx = Ny = 4, where the NWOS can be
computed for various different values of θ within a reasonable
computing time.

Figure 3(a) shows the map of the NWOS under the twisted
boundary condition as a function of θ = θn = 2πn/Ngrid with
n = 0, . . . , Ngrid/2 and Ngrid = 10. Note that the NWOS has
a mirror symmetry with respect to θ inverted across π . As
one can see, the NWOS map remains overall similar regard-
less of θ , while detailed features are somewhat different.
Interestingly, some maps of the NWOS under the twisted
boundary condition at Ns = 16 resemble those under the pe-
riodic boundary condition at larger system sizes, Ns = 18
and 20. To be specific, the NWOS maps at θ = π and 3π/5
resemble those of the Ns = 18 [Fig. 2(e)] and 20 [Fig. 2(f)]
system, respectively. This suggests a possibility that finite-size
effects can be alleviated by taking an average of the NWOS
over twist angles.

Figure 3(b) shows the map of the averaged NWOS over
twist angles of θ = θn:

O2
avg = 1

Ngrid

Ngrid−1∑
n=0

O2(θn), (22)

where O2(θn) is the NWOS at θn. Note that the averaged
NWOS can be in principle computed for each individual point
in the x-� phase space. Unfortunately, however, there are
white regions in the phase space, where the NWOS is not
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FIG. 3. Map of the NWOS under the twisted boundary condition. (a) Map of the NWOS as a function of the twist angle, θ = π

5 n, with
n = 0, . . . , 5 between the exact ground states of the t-J model and the projected BCS theory with the d-wave pairing symmetry in the square
lattice with Ns = 16. (b) Map of the averaged NWOS over twist angles of θ = π

5 n with n = 0, . . . , 9. Note that the NWOS is periodic as a
function of θ with the period of 2π , while having the mirror symmetry with respect to θ inverted across π .

available at some twist angles. Such missing twist angles are
skipped in the averaging process.

The map of the averaged NWOS shows a rather well-
converged pattern, which is quite resemblant of the NWOS
map in Fig. 2(f) for the Ns = 20 system under the periodic
boundary condition. This demonstrates that finite-size effects
can be indeed significantly alleviated by using the twisted
boundary condition.

Now, one may wonder if the existence of nonzero �max ac-
tually means true superconductivity. To answer this question,
below, we perform the direct computation of superconducting
order parameters in the projected BCS theory with �max used
as an input parameter for the bare pairing amplitude.

G. Superconducting order parameter

One of the greatest advantages of the projected BCS theory
is that, by utilizing the intrinsic nature of the supercon-
ducting ground state containing particle number fluctuations,
one can directly compute the superconducting order param-
eter, 〈ci↑c j↓〉, instead of taking the large-distance limit of
the off-diagonal long-range order (ODLRO), 〈ci↑c j↓c†

k↓c†
l↑〉.

Note that i (k) and j (l ) denote the coordinates of nearest-
neighboring sites with i and k largely separated.

Specifically, the superconducting order parameter can be
computed as follows. First, �max is determined by tracing the
maximum NWOS as a function of x as shown in Fig. 4(a).
Then, we compute 〈ci↑c j↓〉 by simply taking the expectation
value of ci↑c j↓ for the exact ground states of the projected
BCS theory with �max used as an input parameter for the
pairing amplitude. Figure 4(b) shows the resulting super-
conducting order parameter. It is important to note that the
superconducting order parameter vanishes as x decreases,
while �max remains finite. This split between the pairing
amplitude and the superconducting order parameter is due to
the strong correlation between Cooper pairs.

To elucidate the role of the strong correlation more clearly,
we compare 〈ci↑c j↓〉 with the “bare” superconducting order
parameter 〈ci↑c j↓〉0, which would be the superconducting or-

der parameter if there were no Gutzwiller projection:

〈ci↑c j↓〉0 =
∑

k

�0,k

2E0,k
cos kx, (23)

where E0,k =
√

ξ 2
0,k + �2

0,k with �0,k = 2�max(cos kx −
cos ky) and ξ0,k = −2t (cos kx + cos ky) − μ0. Note that μ0 is
determined from the condition that the “bare” hole concen-
tration is the same as x: 1

Ns

∑
k ξ0,k/E0,k = x. As shown in

Fig. 4(b), the bare superconducting order parameter does not
vanish at low doping similar to �max.

While important to quantify the strength of superconduc-
tivity, the superconducting order parameter is not a physical
observable by itself. In this context, a relevant physical
observable is the expectation value of the pairing energy,
�max〈ci↑c j↓〉. Figure 4(c) shows that, similar to the real versus
bare superconducting order parameter, �max〈ci↑c j↓〉 vanishes
at low doping while its bare counterpart, �max〈ci↑c j↓〉0, does
not. It is interesting to mention that the similar split between
the bare pairing amplitude and the real superconducting order
parameter was previously observed [5,7].

H. Comparison with the RVB state

To put the results of the projected BCS theory into prospec-
tive, we also perform the numerical analysis of the NWOS for
the RVB state.

To this end, it is necessary to construct the RVB state tailor-
made for each specific finite system. Such a construction can
be accomplished by finding the amplitude of the RVB state for
a given basis state with spin up and down electrons located in
the specific configuration, {r↑, r↓}, while satisfying the no-
double-occupancy condition:

ψRVB({r↑, r↓}) = det (g̃i j ), (24)

where g̃i j = g̃(ri − r j ) is the Fourier transform of gk =
�k/(ξk + Ek ) with Ek =

√
ξ 2

k + �2
k , �k = 2�(cos kx −

cos ky) + δ, and ξk = −2t (cos kx + cos ky) − μ. The indices
i and j run though the coordinates of all spin up and down
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FIG. 4. Optimal pairing amplitude �max and superconducting
order parameter 〈cc〉 for the projected BCS theory with the d-wave
pairing symmetry in the square lattice. (a) �max is plotted as solid
circles denoting the locations of the maximum NWOS as a function
of x. (b) The superconducting order parameter 〈cc〉 is computed by
using the exact ground states of the projected BCS theory with �max

used as an input parameter for the pairing amplitude. 〈cc〉 is the
abbreviation of the superconducting order parameter 〈ci↑c j↓〉 with
i and j denoting the coordinates of nearest-neighboring sites. Note
that the sign of 〈ci↑c j↓〉 depends on whether j is the nearest neighbor
of i along the x or y direction, as required by the d-wave pairing
symmetry. Similarly abbreviated, 〈cc〉0 indicates the “bare” super-
conducting order parameter. (c) �max〈cc〉 provides the expectation
value of the pairing energy with �max〈cc〉0 being its bare counterpart.
These results are obtained at Ns = 20.

electrons in {r↑, r↓}, respectively. Note that a small constant
δ is added to the pairing term �k for technical convenience.
See Appendix A for the detailed derivation of Eq. (24).

Figure 5 shows the map of the NWOS between the exact
ground state of the t-J model and the RVB state with the
d-wave pairing symmetry in the square lattice. Due to its
inability to capture the long-range antiferromagnetic order at
half filling, the RVB state has zero NWOS with the exact
ground state of the t-J model at sufficiently large μ for Ns =
4, 10, 16, and 20. For Ns = 8 and 18, the RVB state is not
even available beyond certain large μ, where the Gutzwiller
projection completely annihilate the BCS state, making the
RVB state the null state.

Similar to what is done for the projected BCS theory, the
NWOS of the RVB state can be also plotted as a function of

x as shown in Fig. 6. Again, the RVB state has zero NWOS
with the exact ground state of the t-J model at half filling.
Away from half filling, overall, the NWOS of the RVB state
shows highly irregular behaviors, strongly depending on Ns

with broad vacant regions. Even when the NWOS of the RVB
state behaves reasonably well at Ns = 10 and 20, the optimal
pairing amplitude of the RVB state exhibits quite a different
behavior from that of the projected BCS theory at low doping.
That is, the optimal pairing amplitude of the RVB state van-
ishes as x approaches zero, while that of the projected BCS
theory remains finite. As explained before, the nonvanishing
behavior of the pairing amplitude at low doping is crucial to
explain the pseudogap phenomenon.

To make an objective assessment of the correct behavior of
the pairing amplitude, we check which state between (i) the
exact ground state of the projected BCS theory and (ii) the
RVB state has higher overlaps with the exact ground state of
the t-J model as a function of x. Figure 7 shows the maximum
NWOS, O2

max, of the projected BCS theory in comparison
with that of the RVB state as a function of x. As one can see,
O2

max of the projected BCS theory is pinned to be exactly
unity at half filling, while that of the RVB state approaches a
seemingly random, smaller value as x → 0 and drops discon-
tinuously to zero exactly at x = 0. More importantly, O2

max

of the projected BCS theory is reduced somewhat upon initial
doping but bounces back to high values as x increases. Mean-
while, O2

max of the RVB state is generally lower than that of
the projected BCS theory except for a narrow range of x at
low doping, where the spin liquid phase might occur.

Actually, a close comparison between Figs. 2(f) and 6(f)
reveals that the parameter regime, where the RVB state has
higher O2

max than the exact ground state of the projected
BCS theory, falls right into one of the white regions in the
overlap map at low doping, where the exact ground states
of the projected BCS theory are not available. We believe
that, in these regions, the RVB state competes closely against
the exact ground state of the projected BCS theory. In other
words, there can be two competing states at low to moderate
doping with one from the projected BCS theory capturing
the pseudogap phase and the other from to the RVB state
capturing the spin liquid phase.

In summary, the exact ground states of the projected BCS
theory generally provide better trial states for the exact ground
states of the t-J model than the RVB state, shedding important
light on the pseudogap phenomenon. There is, however, a
parameter regime at low to moderate doping, where the exact
ground states of the projected BCS theory are not available,
while the RVB state provides good overlaps with the exact
ground state of the t-J model. Considering that the RVB state
can be interpreted as an approximation to the exact ground
state of the projected BCS theory, it would be interesting to
investigate how the spin liquid phase occurring at this param-
eter regime can be treated in the grand scheme of the projected
BCS theory.

I. S-wave pairing symmetry

Now, we investigate what happens for the projected BCS
theory with the s-wave pairing symmetry in the square lattice.

013116-8



PROJECTED BCS THEORY FOR THE UNIFICATION OF … PHYSICAL REVIEW RESEARCH 4, 013116 (2022)

FIG. 5. Map of the NWOS between the exact ground state of the t-J model and the RVB state with the d-wave pairing symmetry in
the square lattice. Similar to Fig. 1, the spin exchange coupling constant of the t-J model is set to be J/t = 0.5. The white regions indicate
that the RVB state is not available there. Note that the NWOS is entirely zero regardless of � at sufficiently large μ as expected from the fact
that the RVB state cannot capture the Néel state at half filling.

Figure 8 shows that, in this case, the NWOS is always
maximized along the line of � = 0 for all finite μ, indicating
that the s-wave pairing actually cannot be formed at any finite
doping. It is important to note that the maximum NWOS
obtained along the line of � = 0 is always lower than that
of the d-wave pairing symmetry along the optimal curve of
finite � in Fig. 1 since both s- and d-wave pairing symmetries
generate the same Hamiltonian at � = 0. In conclusion, the
s-wave pairing is highly improbable for the t-J model in the
square lattice.

J. Geometrical frustration: Triangular lattice

Now, we investigate the role of the geometrical frustration
in the context of the projected BCS theory. Specifically, we

perform the NWOS analysis for the projected BCS theory in
the triangular lattice.

Historically, the existence of a pairing correlation in the
triangular-lattice antiferromagnet has been an important issue
ever since the first proposal of the RVB state for high-
temperature superconductivity [1]. In fact, the RVB state
was proposed by P. W. Anderson as the ground state of the
triangular-lattice antiferromagnet prior to the discovery of
high-temperature superconductivity [41]. The rationale be-
hind this proposal is that the RVB state can emerge once the
long-range antiferromagnetic order is destroyed by the geo-
metrical frustration. Unfortunately, however, the true ground
state of the triangular-lattice antiferromagnet turns out to be
long-range ordered with the 120◦ spin pattern. Despite this

FIG. 6. Similar map of the NWOS to Fig. 5 with the abscissa converted to the hole concentration x. As in Fig. 2, �max is denoted by the
green lines in (d)–(f) as a function of x. The white regions indicate that the RVB state is not available there. Note that the NWOS is entirely
zero exactly at half filling.
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that of the RVB state as a function of x. Note that these results are
obtained at Ns = 20.

negative result, there might be a possibility that some pairing
correlation still emerges with help of the intricate interplay
between the geometrical frustration and mobile holes. Here,
we check if this is true.

Similar to the square lattice, we consider both s- or d-wave
pairing symmetries in the triangular lattice. Note that, while
simply a constant for the s-wave pairing, the pairing ampli-
tude is given as �i j = �e2iθi j for the d-wave pairing with θi j

being the angle between the x axis and the nearest-neighbor-
connecting vector ri j = ri − r j .

Figure 9 shows that, at moderate doping, the projected
BCS theory provides poor trial states for the t-J model in
the triangular lattice regardless of the pairing symmetry. In
conclusion, the geometrical frustration, at least, in the form of
the triangular lattice seems to be detrimental to the formation
of superconductivity in contrast to the above-mentioned ratio-
nale behind the RVB state. This result is consistent with the
experimental observation that high-temperature superconduc-

FIG. 9. Map of the NWOS between the exact ground states of
the t-J model and the projected BCS theory in the triangular lattice.
The pairing symmetries are chosen to be s- and d-wave in (a) and
(b), respectively. Note that this result is obtained in the Ns = 12
system, which is the only triangular-lattice system accessible via
exact diagonalization, satisfying correct symmetries.

tivity occurs almost always in tandem with the Néel state at
half filling.

III. DISCUSSION

In this work, it is shown that, with the d-wave pairing
symmetry, the projected BCS theory can provide excellent

FIG. 8. Similar map of the NWOS to Fig. 1 with the pairing symmetry changed to s-wave. As one can see, the NWOS is always maximized
along the line of � = 0 for all finite μ with a seeming exception at Ns = 18, where the otherwise maximized NWOS is simply masked by the
black dome around μ = 0. Note that the NWOS is still unity regardless of � in both limits of μ = ∞ and −∞, corresponding to half filling
and the vacuum, respectively.

013116-10



PROJECTED BCS THEORY FOR THE UNIFICATION OF … PHYSICAL REVIEW RESEARCH 4, 013116 (2022)

trial states for the exact ground states of the t-J model in the
square lattice for a wide range of hole concentration. As a
result, capturing both AF at half filling and SCSC at moderate
doping, a unified theory is obtained by computing the number-
weighted overlap squared between the exact ground states of
the t-J model and the projected BCS theory with the d-wave
pairing symmetry.

An important advantage of the projected BCS theory is that
it allows direct computation of the superconducting order pa-
rameter by utilizing the intrinsic property of superconducting
states containing particle number fluctuations. As a result, it is
shown that the bare and real superconducting order parameters
become split at low doping, which can in principle explain the
pseudogap phenomenon.

For future work, it would be interesting to study the spec-
tral properties of the projected BCS theory by computing
both normal and anomalous Green’s functions. This study
is expected to provide an important clue to another great
mystery in high-temperature superconductivity, the strange
metal behavior. Finally, considering that the RVB state can
be interpreted as an approximate ground state of the projected
BCS theory, it would be interesting to investigate how the spin
liquid/glass phase described by the RVB state can be treated
in the grand scheme of the projected BCS theory.
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APPENDIX A: CONSTRUCTION OF THE RVB STATE

We begin by writing the usual form of the BCS state given
in the momentum space as follows:

|ψBCS〉 =
∏

k

(uk + vkc†
k↑c†

−k↓)|0〉

= N
∏

k

(1 + gkc†
k↑c†

−k↓)|0〉

= N e
∑

k gkc†
k↑c†

−k↓ |0〉
= N e

∑
i, j g̃i j c

†
i↑c†

j↓ |0〉

= N
∑

n

1

n!

(∑
i, j

g̃i jc
†
i↑c†

j↓

)n

|0〉, (A1)

where u2
k = 1

2 (1 + ξk/Ek ) and v2
k = 1

2 (1 − ξk/Ek ) with ξk =
εk − μ and Ek =

√
ξ 2

k + �2
k . g̃i j = g̃(ri − r j ) is the Fourier

transform of gk = vk/uk, and N is the normalization constant.
Note that the second line is obtained under the condition that
uk �= 0 for all k. Later, we will come back and address what
happens if this condition is violated.

The RVB state can be obtained by applying the Gutzwiller
projection operator to the BCS state given in the last line of
Eq. (A1):

|ψRVB〉 = PG|ψBCS〉 = N
∑

n

1

n!
PG

(∑
i, j

g̃i jc
†
i↑c†

j↓

)n

|0〉,

(A2)

which, unfortunately, is quite complicated since the
Gutzwiller projection annihilates the vast majority of
terms except for a very few selective ones satisfying the
no-double-occupancy condition.

In this situation, instead of specifying each individual sur-
viving term, it is much more convenient to find the amplitude
of the RVB state for a given basis state already satisfying the
no-double-occupancy condition. For example, consider the
basis state, where spin up and down electrons are located in
the specific configuration {r↑, r↓}, where any two coordinates
of spin up and down spins are arranged to be different. Then,
ignoring the overall normalization constant, the amplitude of
the RVB state for this configuration is given as follows:

ψRVB({r↑, r↓}) = det (g̃i j ), (A3)

where i and j run though the coordinates of all spin up and
down electrons in {r↑, r↓}, respectively [3]. Note that the
above equation is identical to Eq. (4) since g̃i j = ϕ(ri − r j ).

Now, let us go back and address what happens if uk = 0 at
some momenta, which can be the case for the d-wave pairing
symmetry. In this situation, Eq. (A3) is no longer valid. As
shown below, special care must be taken for the momentum
states with uk = 0.

Specifically, imagine that uk = 0 at k = k. If so, the mo-
mentum states at k and −k are fully occupied by spin up and
down electrons, respectively, which are completely decoupled
from the rest of electrons forming Cooper pairs. For conve-
nience, let us call these states the “preoccupied” momentum
states.

Then, after some algebra, one can show that the amplitude
of the RVB state is given as follows:

ψRVB({r↑, r↓}) =
∑

∀ comb.

(−1)p det (g̃i j )

× det (eikl ·rm↑ ) det (e−ikl ·rn↓ ), (A4)

where kl is the lth preoccupied momentum, and rm↑ and rn↓
are the coordinates of the m-th spin-up and nth spin-down
electrons, respectively, belonging to the preoccupied momen-
tum states. Note that the number of preoccupied momenta
is the same as that of spin up/down electrons belonging to
the preoccupied momentum states. The sum is taken over all
possible combinations of choosing {r↑, r↓} out of {r↑, r↓}. p
is the permutation parity required for the rearrangement of all
creation operators in a predetermined convention.

Unfortunately, however, computing Eq. (A4) turns out to
be quite time-consuming due to the large number of different
combinations. To reduce the computing time, we employ the
trick of adding a very small constant to the pairing amplitude,
i.e., �k → �k + δ, which nominally eliminates the preoccu-
pied momentum states. As a matter of principle, this trick
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should generate the correct RVB state with the d-wave pairing
symmetry in the limit of vanishing δ. We have explicitly con-
firmed that the above trick works well for sufficiently small δ.
In Figs. 5 and 6, we take δ/t = 0.0001.

APPENDIX B: POINT GROUP SYMMETRY

The group theoretical analysis can facilitate exact diago-
nalization of the Hamiltonian by categorizing the basis states
into appropriate symmetry sectors block-diagonalizing the
Hamiltonian.

Our specific goal is to understand the point group sym-
metries of the t-J and projected BCS Hamiltonians in the
square or triangular lattice. Here, we focus only on the point
group symmetries since we are interested in the sub-Hilbert
space with zero total momentum. Also, being a local opera-
tor, the Gutzwiller projection commutes with all point group
operators. Thus we do not need to consider the effect of
the Gutzwiller projection in our analysis of the point group
symmetries.

Let us first discuss the point group symmetries in the square
lattice. The basic point group in the square lattice is given by
C4v = {e,C4,C2,C3

4 , σx, σy, σ
+
d , σ−

d }, where e is the identity
operator, Cn the rotation operator about the z axis by the angle
of 2π/n, σx/y the reflection operator with respect to the x/y
axis, and σ

+/−
d the reflection operator with respect to the y =

±x line. With spin degrees of freedom, the point group should
be enlarged to include the magnetic (or color) group. In other
words, the spin-flip operator f should be considered as a part
of the point group.

Specifically, the point group of the t-J model in the square
lattice is determined by considering that both Ht and HJ

commute with all the symmetry operators in C4v as well as
the spin-flip operator f . In other words, the t-J model has
CII

4v ≡ {e, f } ⊗
C4v as its point group in the square lattice.

Meanwhile, the point group of the projected BCS Hamil-
tonian depends on the pairing symmetry. To understand this,
it is important to note that H� does not commute with some
of the symmetry operators in CII

4v, while both Ht and Hμ do
so with all of them. Specifically, f H� f −1 = −H� for both s-
and d-wave pairing symmetries, while C4H�C−1

4 = −H� for
the d-wave pairing symmetry in the square lattice.

Consequently, in the square lattice, the point group of the
projected BCS Hamiltonian with the s-wave pairing symmetry
is simply given by CI

4v ≡ C4v, excluding the spin-flip operator.
For the d-wave pairing symmetry, however, the spin-flip op-
erator can be combined with some of the symmetry operators
in C4v. As a result, it can be shown that the point group of the
projected BCS Hamiltonian with the d-wave pairing symme-
try is given by CIII

4v ≡ {e,C2, σx, σy, f C4, f C3
4 , f σ+

d , f σ−
d } in

the square lattice.
Now, it is important to note that the point group of the

projected BCS Hamiltonian (CI
4v and CIII

4v for the s- and d-wave
pairing symmetries, respectively) is only the subgroup of that
of the t-J Hamiltonian (CII

4v). In general, if any two Hamil-
tonians have different point group symmetries, the overlap
between their ground states would be greatly suppressed.

Fortunately, however, both effects of f and C4 on H�

amounts to simply changing the sign of the pairing amplitude
�. Note that such a sign change affects only the relative

phase between the number-projected components of the BCS
state belonging to different particle number sectors, while
leaving the overall structure intact. This means that the overlap
between the exact ground states of the t-J model and the pro-
jected BCS theory can become substantial despite the nominal
difference in their point group symmetries.

Finally, let us consider the point group symmetries in the
triangular lattice. The basis point group in the triangular lattice
is given by C6v. Since f still works as a symmetry element
for the t-J model, the point group of the t-J model is given
by CII

6v ≡ {e, f } ⊗
C6v. Similar to the square lattice, the point

group of the projected BCS Hamiltonian with the s-wave pair-
ing symmetry is given by CI

6v ≡ C6v in the triangular lattice,
excluding the spin-flip symmetry. Meanwhile, the projected
BCS Hamiltonian with the d-wave pairing symmetry has only
C2 as its point group in the triangular lattice.

APPENDIX C: PROOF OF THE EQUIVALENCE
AT HALF FILLING

Any energy eigenstate of the projected BCS theory can be
expanded in terms of its number-projected component in each
particle number sector:

|ψ〉 =
Ns∑

h=0

λh|φh〉, (C1)

where h is the number of holes, related with that of sites, Ns,
and that of electrons, Ne, via h = Ns − Ne. λh is the weighting
amplitude in each particle number sector. Note that h is always
an even number since we are interested in the paired state.

We begin by writing the Schrödinger equation for the pro-
jected BCS theory:

HPBCS|ψ〉 = E |ψ〉, (C2)

where the projected BCS Hamiltonian is decomposed as
follows:

HPBCS = Ht + Hc + Ha − μN, (C3)

where Ht,c,a = PGHt,c,aPG with Ht given in Eq. (10) and Hc

and Ha being the creation and annihilation parts of H� given in
Eq. (10), respectively. The particle number operator is defined
as N = ∑

i ni.
Now, let us rewrite the Schrödinger equation component

by component as follows: (i) for h = 0,

λ2Hc|φ2〉 = λ0(E + Nsμ)|φ0〉; (C4)

(ii) for 2 � h � Ns − 2,

λhHt |φh〉 + λh+2Hc|φh+2〉 + λh−2Ha|φh−2〉
= λh(E + μ(Ns − h))|φh〉; (C5)

and (iii) for h = Ns,

λNs−2Ha|φNs−2〉 = λNs E |φNs〉. (C6)

To begin with, it is important to note that half filling can
be achieved by taking the limit of large chemical potential,
μ → ∞. In this limit, Eq. (C4) requires the energy eigenvalue
E to scale as E = −Nsμ + O(1/μα ) with α � 0. This scaling
behavior is obtained due to the fact that λ0 and λ2, for that
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matter, any λh cannot diverge since they are the coefficients of
the normalized wave function.

Meanwhile, combined with the above scaling behavior of
E , Eq. (C6) dictates O(λNs−2) = O(EλNs ) = O(μλNs ). As-
suming that λh decays as a power-law function of μ, i.e., λh =
O(1/μνh ) in the limit of μ → ∞, the two decay exponents,
νNs and νNs−2, are related via νNs = νNs−2 + 1. Similarly, the
simultaneous satisfaction of both Eqs. (C5) and (C6) requires
νh = νh−2 + 1 for all h � 2.

This recursive relation for the decay exponents can be
solved by noting that the zeroth decay exponent is actually
zero, i.e., ν0 = 0. That is, h0 = O(1) in the limit of μ → ∞,
maintaining the normalization of the wave function. Then,
according to the recursive relation, νh = h/2. This means that
λh has the following scaling behavior:

λh = O
(

1

μh/2

)
, (C7)

which, in turn, sets α = 1 in the scaling behavior of E , when
plugged into Eq. (C4). Consequently, E has the following
scaling behavior:

E = −Nsμ + ξ/μ + O(1/μβ ), (C8)

where ξ is a constant, which is yet to be determined, and β is
another decay exponent, which is larger than unity.

Now, by using the scaling behaviors of λh and E , we can
rewrite the component-by-component equations for h = 0 and
2 by keeping only the most dominant terms:

λ2Hc|φ2〉 = λ0
ξ

μ
|φ0〉, (C9)

λ0Ha|φ0〉 = −2λ2μ|φ2〉, (C10)

which can be then combined to generate the Schrödinger
equation solely at h = 0:

HcHa|φ0〉 = −2ξ |φ0〉. (C11)

Finally, under the no-double occupancy constraint, it can
be shown that

HcHa|φ0〉 = �2
∑
〈i, j〉

(c†
i↑c†

j↓ − c†
i↓c†

j↑)(c j↓ci↑ − c j↑ci↓)|φ0〉

= −2�2
∑
〈i, j〉

(Si · S j − nin j/4)|φ0〉, (C12)

where the second line is obtained by examining the ma-
trix elements for all possible spin configurations in the
(i, j) sites, i.e., |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉. Consequently, the fi-
nal Schrödinger equation at half filling becomes as follows:

�2
∑
〈i, j〉

(Si · S j − nin j/4)|φ0〉 = ξ |φ0〉, (C13)

which is nothing but the Hamiltonian of the Heisenberg
model.

Note that one of the authors have previously used a dif-
ferent analytical approach to prove the equivalence between
the t-J and projected BCS Hamiltonians at half filling. In
this approach [14], the projected BCS Hamiltonian is replaced
by the BCS Hamiltonian with finite on-site repulsive interac-
tion U , dubbed as the BCS + U Hamiltonian. Eventually, the

equivalence is proved by taking the limit of large U . Also, it
is worthwhile to mention that, inspired by this approach, an
alternative proof of the equivalence has been also put forward
by using the path integral formalism [42].

APPENDIX D: EXPLICIT ANALYSIS
OF THE 2×2 SYSTEM

Focusing on zero momentum (i.e., translationally invari-
ant) and zero z component of the total spin (i.e., spin-flip
invariant), the entire Hilbert space of the 2×2 system can be
expanded by the following seven basis states: (i) three states
in the half-filled sector,

|e1〉 = 1√
2

(∣∣∣∣↑ ↓
↓ ↑

〉
+

∣∣∣∣↓ ↑
↑ ↓

〉)
,

|e2〉 = 1

2

(∣∣∣∣↑ ↑
↓ ↓

〉
+

∣∣∣∣↓ ↓
↑ ↑

〉
+

∣∣∣∣↓ ↑
↓ ↑

〉
+

∣∣∣∣↑ ↓
↑ ↓

〉)
,

|e3〉 = 1

2

(∣∣∣∣↑ ↑
↓ ↓

〉
+

∣∣∣∣↓ ↓
↑ ↑

〉
−

∣∣∣∣↓ ↑
↓ ↑

〉
−

∣∣∣∣↑ ↓
↑ ↓

〉)
;

(D1)

(ii) three states in the two-hole sector,

|e4〉 = 1

2

(∣∣∣∣0 ↑
↓ 0

〉
+

∣∣∣∣↑ 0
0 ↓

〉
−

∣∣∣∣↓ 0
0 ↑

〉
−

∣∣∣∣0 ↓
↑ 0

〉)
,

|e5〉 = 1√
8

(∣∣∣∣0 0
↓ ↑

〉
−

∣∣∣∣0 0
↑ ↓

〉
+

∣∣∣∣↓ ↑
0 0

〉
−

∣∣∣∣↑ ↓
0 0

〉
+

∣∣∣∣↑ 0
↓ 0

〉
−

∣∣∣∣↓ 0
↑ 0

〉
+

∣∣∣∣0 ↑
0 ↓

〉
−

∣∣∣∣0 ↓
0 ↑

〉)
,

|e6〉 = 1√
8

(∣∣∣∣0 0
↓ ↑

〉
−

∣∣∣∣0 0
↑ ↓

〉
+

∣∣∣∣↓ ↑
0 0

〉
−

∣∣∣∣↑ ↓
0 0

〉
−

∣∣∣∣↑ 0
↓ 0

〉
+

∣∣∣∣↓ 0
↑ 0

〉
−

∣∣∣∣0 ↑
0 ↓

〉
+

∣∣∣∣0 ↓
0 ↑

〉)
; (D2)

and finally (iii) one state in the vacuum sector,

|e7〉 =
∣∣∣0 0
0 0

〉
. (D3)

In terms of the ordered basis set {|e1〉, |e2〉, |e3〉}, the t-J
Hamiltonian can be written in the half-filled sector as follows:

Ht-J = 2J

⎛⎜⎝−2
√

2 0√
2 −1 0

0 0 −1

⎞⎟⎠, (D4)

generating the following ground state:

∣∣φt-J
0

〉 = N0

(
|e1〉 − 1√

2
|e2〉

)
, (D5)

where N0 = √
2/3 is the normalization constant. Note that

|e3〉 couples with neither |e1〉 nor |e2〉 since they have different
point group symmetries.
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Similarly, in terms of the ordered basis set {|e4〉, |e5〉, |e6〉},
the t-J Hamiltonian can be written in the two-hole sector as
follows:

Ht-J = −2

⎛⎜⎝ 0 2
√

2t 0

2
√

2t J 0

0 0 J

⎞⎟⎠, (D6)

generating the following ground state:∣∣φt-J
2

〉 = N2(α|e4〉 + β|e5〉), (D7)

where α = √
J2 + 32t2 − J , β = 4

√
2t , and N2 =

1/
√

|α|2 + |β|2. Similar to half filling, |e6〉 couples with
neither |e4〉 nor |e5〉.

Meanwhile, the projected BCS Hamiltonian with the
d-wave pairing symmetry can be written as the follow-
ing block diagonal form in terms of the ordered basis set
{|e1〉, |e2〉, |e4〉, |e5〉, |e3〉, |e6〉, |e7〉}:

HPBCS =

⎛⎜⎜⎜⎜⎝
−4μ 0 0 4�

0 −4μ 0 −2
√

2�

0 −0 −2μ −4
√

2t

4� −2
√

2� −4
√

2t −2μ

⎞⎟⎟⎟⎟⎠

⊕

⎛⎜⎝ −4μ 2
√

2� 0

2
√

2� −2μ −4
√

2�

0 −4
√

2� 0

⎞⎟⎠. (D8)

The characteristic polynomial of each block matrix is given as
follows:

C−(ε) = (ε + 4μ)[(ε + 4μ)3 − 4μ(ε + 4μ)2

+ 4(μ2 − 6�2 − 8t2)(ε + 4μ) + 48�2μ],

C+(ε) = (ε + 4μ)3 − 6μ(ε + 4μ)2

+ 8(μ2 − 5�2)(ε + 4μ) + 32�2μ, (D9)

where the subscript −/+ indicates the parity associated with
the π/2 rotation followed by the spin flip.

After a careful examination, one can show that the ground
state occurs in the negative parity sector if μ gets sufficiently
large. In this situation, it is convenient to observe that there is
an easy solution of C−(ε), whose eigenvalue is −4μ with the
corresponding eigenstate given by |e1〉 + √

2|e2〉. The other
three eigenstates in the negative parity sector, including the
ground state, should be orthogonal to this eigenstate. As a re-
sult, the ground state at sufficiently large μ takes the following
form:

|ψPBCS〉 = N
(

|e1〉 − 1√
2
|e2〉 + f |e4〉 + g|e5〉

)
, (D10)

where N = 1/
√

3/2 + | f |2 + |g|2 is the normalization con-
stant, and f and g are some appropriate functions of �/t
and μ/t , whose details are not provided here except that
| f |, |g| � 1 for sufficiently large μ. It is important to note that
the half-filled component of |ψPBCS〉, |e1〉 − 1√

2
|e2〉, coincides

exactly with the ground state of t-J model in the same sector,

|φt-J
0 〉, as expected from the proof of the equivalence at half

filling.
Actually, it is interesting to perform the similar analysis for

the projected BCS theory with the s-wave pairing symmetry,
whose ground state also coincides exactly with the ground
state of t-J model at half filling for basically the same reason
mentioned above. Thus there is a certain degree of robustness
in the equivalence between the t-J model and the projected
BCS theory at half filling.

Now, an important question is if |ψPBCS〉 can still accu-
rately capture the ground state of t-J model as μ is reduced. In
other words, how accurately f and g in Eq. (D10) can capture
α and β in Eq. (D7) as a function of μ? This question can be
answered by computing the NWOS:

O2 = N 2

(
3

2
+ | f ∗α + g∗β|2

|α|2 + |β|2
)

. (D11)

As one can see from Fig. 1(a) at Ns = 4, the NWOS remains
high upon doping. Note that there is a phase transition along
the certain critical line of μ and �, beyond which the ground
state of the projected BCS theory is no longer given by
Eq. (D10).

While providing various successful small-system checks,
the 2×2 system is way too small to judge if the optimal pairing
amplitude can form a well-defined nonzero curve as a function
of doping. To this end, one has to analyze larger systems via
full-fledged exact diagonalization.

APPENDIX E: TESSELLATION OF THE LATTICE

We begin with the tessellation of the square lattice, which
can be tiled with tilted square unit cells. It is important to note
that we focus only on the tilted square unit cells since they
preserve the rotational symmetry of the square lattice.

Without loss of generality, the distance between any two
adjacent tilted square unit cells can be written as dsq =√

n2 + m2 (in units of lattice constant) for any non-negative
integers n and m, which is also the side length of the titled
square unit cell. This means that the number of sites en-
closed by the tilted square unit cell is Ns = d2

sq = n2 + m2.
Since we are interested in the systems with even number of
particles with zero z component of the total spin, both m
and n should be either even or odd integers, which means
Ns = 2, 4, 8, 10, 16, 18, 20, 26, 32, 34, 36, . . .

For illustration, some of the tilted square unit cells are de-
picted in Fig. 10. Note that, if either n or m is zero (e.g., Ns = 4
and 16), or n = m (e.g., Ns = 8 and 18), the tessellation with
tilted square unit cells has additional reflection symmetries;
one for the horizontal axis, one for the vertical axis, and two
for the diagonal axes. That is, the point groups become C4v for
Ns = 4, 8, 16, and 18.

Due to the exponential growth of the Hilbert space, we
are able to perform exact diagonalization only up to Ns = 20
in this work. Figure 11 shows the number of basis states in
the common logarithm scale, log Nb, as a function of hole
concentration x = 1 − Ne/Ns. Note that, here, the number of
basis states is computed within the restricted Hilbert space,
where both total momentum and z-component of the total spin
are zero without using any other point group symmetries. As
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FIG. 10. Tessellation of the square lattice via tilted square unit
cells. The point groups for Ns = 4, 8, 16, 18 and 10, 20 are C4v and
C4, respectively.

one can see, the total number of basis states is more than
10 millions for Ns = 20. Roughly speaking, the total number
of states increases by one order of magnitude as the number
of sites increases by two. This means that the next available
system at Ns = 26 would have more than 10 billion basis
states, which are beyond the current computing capacity.

Now, let us switch gears to the tessellation of the triangular
lattice. Similar to the square lattice, without loss of general-
ity, the distance between any two adjacent tilted hexagonal
unit cells can be written as dtr = √

n2 + nm + m2 (in units
of lattice constant) for any non-negative integers n and m.
After a moment of deliberation, one can show that the number
of sites enclosed by the tilted hexagonal unit cell is also
given by Ns = d2

tr = n2 + nm + m2. Both m and n should be
even integers for Ns to be an integer number, which means
Ns = 4, 12, 16, 28, 36, . . . Meanwhile, the 120◦ spin order
can exist only when m = n (mod 3). Combined all together,

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

lo
g
N
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x

Ns = 20
Ns = 18
Ns = 16
Ns = 10
Ns = 8
Ns = 4

FIG. 11. Number of basis states for various tilted square unit
cells as a function of hole concentration. Note that the ordinate is the
number of basis states in the common logarithm scale, log Nb. Here,
the hole concentration is defined only discretely as x = 1 − Ne/Ns

with Ne and Ns being the numbers of electrons and sites, respectively.

this means that the only accessible system in this work via
exact diagonalization is that with Ns = 12.

APPENDIX F: VARIATION OF J/t

Figure 12 shows how the NWOS between the exact ground
states of the t-J model and the projected BCS theory with
the d-wave pairing symmetry evolves with the variation of
J/t in the square lattice. As one can see from Fig. 12(a),
the NWOS is maximized along the line of � = 0 for small
J/t , meaning that there is no pairing at this parameter
regime.

The optimal pairing amplitude producing the maximum
NWOS gets lifted from zero if J/t becomes larger than a
critical value, say 0.3. As J/t increases further, the optimal
pairing amplitude also gets higher, expanding the regime of
superconductivity.

Too large values of J/t may not be physically meaningful
in the single-band model, where the t-J model is obtained
as the large-U expansion of the Hubbard model with J/t
being proportional to t/U [31,32]. It is, however, worthwhile

FIG. 12. Maps of the NWOS between the exact ground states of
the t-J model and the projected BCS theory with the d-wave pairing
symmetry for various values of J/t in the square lattice. The spin
exchange coupling constant is varied as J/t = 0.1, 0.3, 0.5, and 1.0
from (a) to (d). This result is obtained at Ns = 16.
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to note that the spin exchange coupling can be also generated
in the three-band model via the d-p hybridization mech-

anism, where J/t does not follow the simple t/U scaling
[33].
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