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Quantum non-Hermitian topological sensors
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We investigate in the framework of quantum noise theory how the striking boundary sensitivity recently
discovered in the context of non-Hermitian (NH) topological phases may be harnessed to devise novel quantum
sensors. Specifically, we study a quantum-optical setting of coupled modes arranged in an array with broken
ring geometry that would realize a NH topological phase in the classical limit. Using methods from quantum-
information theory of Gaussian states, we show that a small coupling induced between the ends of the broken
ring may be detected with a precision that increases exponentially in the number of coupled modes, e.g., by
heterodyne detection of two output modes. While this robust effect only relies on reaching a NH topological
regime, we identify a resonance phenomenon without direct classical counterpart that provides an experimental
knob for drastically enhancing the aforementioned exponential growth. Our findings pave the way towards
designing quantum NH topological sensors that may observe with high precision any physical observable that
couples to the boundary conditions of the device.
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I. INTRODUCTION

The quest for novel sensors that push the fundamental
quantum-mechanical precision limits represents a promis-
ing direction towards widely applicable quantum technol-
ogy [1–3]. The basic physical mechanism underlying many
quantum sensors may be understood as a detectable energy-
level shift in response to an external perturbation [1]. In
closed systems described by a Hermitian Hamiltonian, such
energy shifts are always continuous towards perturbations,
which may limit the achievable sensitivity of a given setting.
By contrast, the spectra of non-Hermitian (NH) Hamilto-
nians effectively describing dissipative systems [4–6] may
exhibit nonanalytic [7–9] and asymptotically even discontinu-
ous behavior [10–15], which in principle enables an unlimited
spectral sensitivity. Based on these insights, various archi-
tectures for NH sensors have been proposed [16–25], some
of which have already been experimentally realized [17,18].
Interestingly, combining NH sensing with the notion of topo-
logical matter [26–29], an enhancement in sensitivity that
scales exponentially with system size is promoted to a stable
phenomenon independent of fine-tuning [23]. More specifi-
cally, such non-Hermitian topological sensors are based on the
energy shift of a topological edge mode in response to small
changes in the boundary conditions [11,12,15,23] of a chain
in broken ring geometry (cf. Fig. 1).
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Here, we develop a microscopic theory of quantum non-
Hermitian topological sensors (QUANTOSs) (see Fig. 1 for
an illustration) that generalizes the aforementioned classi-
cal devices [23] obtained in the limit of neglecting the
quantum-mechanically inevitable input noise [30,32] to a
fully quantum-mechanical setting in the framework of quan-
tum Langevin equations [21,30,33,34]. Quite remarkably, we
show that the classically derived exponential enhancement
of sensitivity carries over to the noise-limited precision of
a generic quantum-optical QUANTOS architecture. To this
end, we study the input-output relations associated with
concrete experimental observation schemes such as hetero-
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FIG. 1. Illustration of the quantum non-Hermitian topological
sensor (QUANTOS) setup. The device consists of an odd number of
bosonic modes (viewed as sites) arranged in an open ring geometry.
The observed quantity (measurand) affects the weak coupling �

between the ends. Observed input-output ports with coupling rates
κ are indicated in orange. Dissipative quantum channels inducing a
staggered pattern of gain (coupling ηg) and loss (ηl ) are exemplified
in black (see magnified inset). Formulas describe the underlying
system-bath coupling Hamiltonians [30,31] of all channels.
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dyne detection. There, the probability density p� (x) for
observing the output x parametrically depends on the all-
important boundary condition parameter � that couples to
the observable detected by the QUANTOS (see Fig. 1). The
uncertainty �� in assessing the value of � is then limited
by the Fisher information I[p�] [35] via the Cramér-Rao
bound [36–38]

�� � I− 1
2 = κ exp(−αN ). (1)

The latter equality [Eq. (1)], where N denotes the number of
modes (system size) of the QUANTOS and κ, α > 0, may be
seen as a quantum-mechanical counterpart of the exponen-
tially enhanced sensitivity reported in a classical context in
Ref. [23]. Given the fact that the Cramér-Rao bound, i.e., the
first relation in Eq. (1), can in principle be saturated [21,38],
our main finding is that the quantum noise-limited precision
of the QUANTOS is indeed exponentially enhanced with N in
a wide parameter range. Furthermore, we reveal a resonance
phenomenon that provides an experimental knob for tuning
the value of α [see Eq. (1)] so as to drastically increase the
exponential growth rate of the precision.

II. NON-HERMITIAN TOPOLOGY BY QUANTUM
DISSIPATION

We now set up a dissipative quantum-optical framework of
coupled modes which yields a NH topological tight-binding
model in the classical limit of neglecting the input noise.
To this end, we consider a vector a = (a1(t ), . . . , aN (t ))T

of bosonic modes oscillating with an optical frequency ω0,
the weakly coupled (as compared with ω0) [39] dynamics of
which is governed by the quantum Langevin equation [21,30]
(see also Appendix C) (h̄ = 1)

i∂t a = (H0 + iη) a + iF = H̃ a + iF, (2)

where H0 is the Hermitian part describing the coherent cou-
pling between the modes in a rotating frame with respect
to ω0, which, together with the anti-Hermitian overall gain
(η j > 0) or loss (η j < 0) rates η = diag(η1, . . . , ηN ), forms
the classical NH Hamiltonian H̃ [40]. The input noise term
F = (F1(t ), . . . , FN (t )) accounts for quantum fluctuations due
to the coupling of the system to various dissipative chan-
nels detailed in the following. Specifically, we consider two
different levels of dissipation: first, observed channels that
are assumed to be controlled by an observer probing the
input-output relations of the QUANTOS device; and second,
unobserved channels that introduce optical loss and gain, re-
spectively. This leads to the decomposition [cf. Eq. (2)]

η j = −κ j − ηl
j + η

g
j,

Fj = √
2κ jO j,in +

√
2ηl

jL j,in −
√

2η
g
jG

†
j,in, (3)

where the coupling rates κ j � 0 and input noise operators
Oj,in(t ) model an observed channel for mode aj . Similarly,
ηl

j � 0 along with Lj,in corresponds to unobserved loss chan-

nels, and η
g
j � 0 along with G†

j,in corresponds to unobserved
gain channels.

To model a basic QUANTOS device, we aim at bringing H̃
[see Eq. (2)] into a NH topological phase. To this end, we con-

sider a staggered gain-loss pattern with ηl
2n−1 = η

g
2n = γ and

zero couplings otherwise. This structure suggests the defini-
tion of a unit cell (indexed by n) that consists of the two modes
a2n−1 and a2n and suggests that we consider the NH Bloch
band structure of a system that is translation invariant with
respect to this unit cell. In this language, our gain-loss pattern
results in a term −iγ σz in H̃, where σ j, j = x, y, z denote the
standard Pauli matrices acting within the two-mode unit cell.
Regarding the Hermitian part H0, we consider a mode cou-
pling between nearest-neighbor unit cells that gives rise to the
Bloch Hamiltonian H0(k) = (t1 + t2 cos(k))σx + t2 sin(k)σz.
Overall, the effective NH Bloch Hamiltonian then reads as

H̃ (k) = (t1 + t2 cos(k))σx + (t2 sin(k) − iγ )σz. (4)

The NH topological phase of H is determined by
the integer-quantized spectral winding number ν =

1
2π i

∮ 2π

0 dk{∂k ln[det(H̃ (k))]} [11,29]. As for their classical
counterparts, the precision of the QUANTOS device is found
to crucially rely on a nonzero value of ν, i.e., on reaching
a topologically nontrivial NH phase [see Fig. 2(b) for the
topological phase diagram of the NH Hamiltonian (4)].
Note that H̃ fulfills a local parity-time (PT ) symmetry
that is known to entail possible inconsistencies [41,42]
when considering PT -symmetric quantum mechanics as a
fundamental theory [43]. However, here this symmetry is
only present due to the simplifying parameter choice of
balanced gain and loss. Breaking this coincidental symmetry
by slightly unbalancing gain and loss has no substantial effect
on the exponential enhancement [cf. Eq. (1) and Appendix E].

Regarding the observed channels probing the output of
the system, we generally consider κ1 = κN = γ > 0 and κ j =
0, j �= 1, N , in the following (see orange channels in Fig. 1).
This choice is motivated by the aforementioned crucial role
that the level shift of the topological edge mode plays in the
working principle of the QUANTOS, i.e., the input-output
ports of the device should have a significant overlap with
that boundary mode. Regarding the unobserved channels,
we assume vacuum input fields corresponding to vanish-
ing expectation values 〈Lj,in〉 = 〈G†

j,in〉 = 0 of the reservoir
field operators. Furthermore, all channels are assumed to
be mutually independent and Markovian (local white-noise
limit) [39]. Finally, the number of sites N is chosen to be odd
so as to stabilize a single zero-energy edge mode in the case
of open boundary conditions (� = 0) [12,23]. The coupling
� between the ends of the ring that is modulated by the mea-
surand (see Fig. 1) is modeled by the term �(a†

N a1 + a†
1aN )

entering H0, which may be thought of as a generic tunnel
coupling between the ends.

III. INPUT-OUTPUT THEORY OF THE QUANTOS

The observed channels satisfy the standard input-output
relation (cf. Ref. [30])

Oj,out = Oj,in − √
2κ ja j . (5)

Our goal is to express the system operators aj in terms of
the input operators Oj,in by means of the Green’s function
G = (∂t + iH̃)−1 that accounts for the (dissipative) prop-
agation of the input signal through the system. To this
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FIG. 2. (a) Scaling with system size N of the Fisher information
I corresponding to a heterodyne detection scheme for several values
of � (see plot legends). The exponential law corresponding to Eq. (1)
with 2α = 0.430 11 is shown as a guide to the eye. (b) Topological
phase diagram (defined by integer invariant ν) of the model (4) as a
function of parameters t1 > 0 and t2 > 0. Other parameter regimes
are readily inferred using the symmetries ν(−t1, t2) = −ν(t1, t2) and
ν(t1, −t2) = ν(t1, t2). Parameter points used in the three other panels
as well as in Fig. 3 are indicated. (c) I(N ) for another parameter set
in the topological region (ν = 1) confirms qualitative similarity to
(a). (d) I(N ) for a parameter set in the topologically trivial phase
(ν = 0) does not exhibit the exponential increase with N that is
characteristic of the QUANTOS. Other model parameters are γ =
0.7, ω = 0 in all plots.

end, it is convenient to transform the quantum Langevin
equation (2) into frequency space and to introduce the
quadrature operators q = a + a† as well as p = i(a† − a) for
the system modes, and similarly Q, P for the observed, and
Q′, P′ for the unobserved input operators. Then, the quantum
Langevin equation (2) becomes an algebraic equation which is
solved in terms of the Green’s function so as to eliminate the
occurrence of the system operators a j from the input-output
relation (5). Explicitly, we obtain [21]

(
Qout[ω]
Pout[ω]

)
= S[ω]

(
Qin[ω]
Pin[ω]

)
+ L[ω]

⎛
⎜⎜⎝

Q′
in[ω]

Q′
in[−ω]
P′

in[ω]
P′

in[−ω]

⎞
⎟⎟⎠, (6)

where we have defined the scattering matrix S[ω] = 1 −
KT

o G̃[ω]Ko as well as the noise matrix L = −KT
o G̃[ω]Ku using

the frequency space Green’s function G̃[ω] in the quadra-
ture basis. In our framework, the coupling matrix of the
observed channels Ko is a diagonal 2N × 2N matrix with
nonvanishing elements K j j

o = K (N+ j) (N+ j)
o = √

2γ only for
the observed sites j = 1, N . Similarly, the coupling matrix
Ku of the unobserved channels is a 2N × 4N matrix with
K j j

u = K (N+ j) (2N+ j)
u = √

2γ if j is a site with loss (odd j
in our setting), while K j (N+ j)

u = −K (2N+ j) (3N+ j)
u = −√

2γ if
site j exhibits gain (even j in our setting). Using Eq. (6), we
may compute the response of the system to an arbitrary input.

Accounting for the linear structure of our model system,
it is natural to consider Gaussian input states which are fully
described in the quadrature basis by their amplitude vector μ

and their covariance matrix V , respectively [44]. In this frame-
work, basically any observable or correlation function may
be readily computed in a numerically exact fashion, noting
that the Gaussian character of the input states is preserved by
the considered scattering dynamics. Specifically, the relevant
input-output relations then read as [cf. Eq. (6)]

μout = Sμin, Vout = SVinST + LV ′
inLT . (7)

IV. FISHER INFORMATION AND CRAMÉR-RAO BOUND

Equipped with a constructive recipe for computing the
exact input-output relations of the QUANTOS, we now turn to
assessing the precision of the device. This amounts to system-
atically estimating the quantum noise-limited precision with
which the boundary condition parameter � (see Fig. 1) can
be determined. Generally speaking, the quantum-mechanical
probability for observing a measurement outcome x in a given
experimental setting will follow a probability distribution
p� (x) that may parametrically depend on �. The sensitivity
of this distribution to small changes in � is quantified by the
Fisher information I = ∫

dx{∂� ln[p� (x)]}2 [35,38]. Via the
Cramér-Rao bound �� � 1√

I [cf. Eq. (1)], the Fisher infor-
mation is directly linked to the uncertainty (or variance) ��,
with which � may be estimated using the given experimental
scheme. In this context, it is important to note that the Cramér-
Rao bound can, at least in principle, be saturated [21,38]
so as to achieve the optimal precision �� = 1√

I . We note
that, beyond our present context of Cramér-Rao bounds, the
(quantum) Fisher information has found wide applications in
physics including the derivation of quantum speed limits [45],
where it has recently been connected to the presence of geo-
metric phases [46].

In our present context of multivariate Gaussian distribu-
tions, where both the mean vector μ and the covariance matrix
V depend on the parameter �, the Fisher information is given
by [38,47]

I = 1

2
tr

[
V −1 ∂V

∂�
V −1 ∂V

∂�

]
+

(
∂μ

∂�

)T

V −1

(
∂μ

∂�

)
. (8)

For concreteness, we illustrate our results in the following
for a heterodyne detection scheme. If we measure all observed
channels, the heterodyne detection yields a multivariate Gaus-
sian probability density where the mean vector is equal to
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the amplitude vector μout and the covariance matrix is equal
to Vout + 1 [cf. Eq. (7)]. This amounts to inserting μ = μout

and V = Vout + 1 into Eq. (8), where the added noise in the
covariance matrix stems from the simultaneous detection of
the canonically conjugated Q and P quadratures that is char-
acteristic of heterodyne detection.

V. EXPONENTIALLY ENHANCED PRECISION

In Fig. 2, we present numerical data on the Fisher infor-
mation I [cf. Eq. (8)] as a function of system size N . For
parameter values in the topologically nontrivial QUANTOS
region hallmarked by a nonvanishing value of the spec-
tral winding number ν [see topological phase diagram in
Fig. 2(b)], i.e., in Figs. 2(a) and 2(c), we find that I grows
exponentially with N [cf. Eq. (1)] until it saturates towards
a value that increases with decreasing �. By contrast, in
the topologically trivial parameter regime [see Fig. 2(d)], no
systematic exponential growth of I (N ) is observed. Thus,
while the precise value of α [cf. Eq. (1)] is parameter de-
pendent, a finite positive α only exists for nonzero ν. In
this sense, the observed enhanced sensitivity itself is a topo-
logically stable phenomenon. We identify this behavior and
its dependence on the spectral winding number ν as the
quantum-physical counterpart of the exponential energy-level
shift �E0 ∼ � exp(αcN ) that the edge state of the NH Hamil-
tonian H̃ has been found to exhibit in the classical limit [23].
Via the Cramér-Rao bound [cf. Eq. (1)], this previously ob-
served spectral sensitivity of H̃ is thus found to generally carry
over to an exponentially enhanced precision �� in quantum
noise-limited measurements.

In addition to the qualitative dependence of I on the
NH topological phase, we observe a striking resonance phe-
nomenon within the ν = 1 QUANTOS regime that provides
a knob for drastically increasing the exponential growth rate
α [see Eq. (1)] and that has no direct classical counterpart.
Numerical data on this intriguing behavior are presented in
Fig. 3. Specifically, in Fig. 3(a), we show the dependence of
α on the hopping rate t1. We find evidence for a divergence
(within the considered finite parameter values and numerical
precision) of α at the parameter line t1 = γ for frequency
ω = 0 in our rotating frame, i.e., at the free mode frequency
ω0 in the laboratory frame. For finite frequency detuning, this
sharp divergence is cut off at a finite α. Quite remarkably, t1 =
γ is precisely the parameter line where the individual unit
cells of our model, independently described at t2 = 0 by the
local NH matrix h̃L = t1σx − iγ σz [cf. Eq. (4)], would exhibit
exceptional points. Yet, the aforementioned classical growth
rate αc of the energy-level shift �E0 [23] stays bounded at
this special parameter set [see inset of Fig. 3(a)]. In Fig. 3(b),
we illustrate how tuning towards the sweet spot t1 = γ allows
for a faster and faster exponential growth of I, and thus for
designing a high-precision QUANTOS with a fairly small
number of coupled modes N . Finally, in Fig. 3(c), we study
the frequency dependence of I for various choices of N in
a regime where the exponential growth with respect to N is
saturating. That way, on top of the aforementioned behavior
at fixed frequency, we observe a sharp resonance with respect
to ω, implying that I overshoots its saturated value by several
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FIG. 3. (a) Dependence of the exponential growth rate α [cf.
Eq. (1)] as a function of t1 at t2 = 0.5 for several values of frequency
ω (relative to the free mode frequency ω0). A sharp resonance around
γ = t1 is visible at ω = 0 that is pinched off at a finite maximum
value of α for finite frequency shifts. Inset: Corresponding exponen-
tial growth rate αc of the energy-level shift known from the classical
NH Hamiltonian theory. (b) Steepening of the exponential growth
of I(N ) when approaching the resonance at γ = t1 = 0.7, ω = 0 by
varying t1. (c) Frequency dependence of I at various system sizes N
at t1 = 0.69, t2 = 0.5, exhibiting a striking N-dependent frequency-
shifted resonance. Other parameters are γ = 0.7, � = 10−11 in all
plots.

orders of magnitude, if the probe signal of the QUANTOS is
tuned towards the optimal value of ω.

VI. CONCLUDING DISCUSSION

Inspired by the classical analysis of Ref. [23], we have
presented a quantum theory for a quantum non-Hermitian
topological sensor (QUANTOS), the precision of which grows
exponentially in system size N in a wide parameter range,
provided that the underlying coupled mode model is brought
into a NH topological phase (cf. Fig. 2). The generic operating
principle of this class of sensors naturally assumes an “off
state” in which the coupling � between the ends of a broken
ring geometry (cf. Fig. 1) are nearly uncoupled � � 0. In this
regime, a weak link (finite change in �) induced by a measur-
and can be detected with high precision �� [cf. Eq. (1)]. This
principle allows for a wide range of applications regarding
the concrete choice of physical observables to be detected
by QUANTOS devices, i.e., basically any entity that modifies
the tunnel coupling � between the end modes qualifies as a
measurand. Complementary to our present approach of using
an energy-level shift of a topological edge mode, in Ref. [24]
a local coupling between two nonreciprocal NH chains of
opposite chirality, which are realized as conjugate quadra-
tures of bosonic modes, has been proposed as a candidate for
exponentially enhanced quantum sensing. Different from our
setting, active amplification by optical gain is not a necessary
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ingredient of that architecture, whereas a possible trade-off
lies in a certain susceptibility with respect to an undesirable
local coupling between the quadratures.

While the relation between NH topological boundary
modes and the occurrence of an exponential sensitivity has a
classical counterpart [23], here we have not only generalized
this intriguing effect to a fully quantum-mechanical level but
also identified experimental possibilities for optimizing the
precision of the QUANTOS by exploiting resonance phenom-
ena (cf. Fig. 3) that do not have a direct counterpart in the
classical limit. Based on the generic theoretical modeling and
analysis presented in this paper, exploring the experimental
implementation of QUANTOS devices by microscopically
describing the coupling � to a desired measurand is an in-
teresting subject for future work.
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APPENDIX A: DAMPING IN A SINGLE-MODE SYSTEM

We start by considering a single mode a which is coupled
to a bath with modes b
. The total system is described by the
Hamiltonian

H = Hsystem + Hbath + Hinteraction, (A1)

Hsystem = ω0a†a, (A2)

Hbath =
∫ ∞

0
d

b†


b
, (A3)

Hinteraction =
∫ ∞

0
d
 f (
)(a + a†)(b
 + b†


), (A4)

which can be simplified in terms of the rotating wave approx-
imation. Here, we neglect the rapidly oscillating terms b†


a†

and b
a. Furthermore, we expand the integration range to
(−∞, +∞) and argue that the “added terms” are far from
resonance and thus negligible. Finally, Eqs. (A3) and (A4) are
replaced by

Hbath =
∫ +∞

−∞
d

b†


b
, (A5)

Hinteraction =
∫ +∞

−∞
d
 f (
)(b†


a + a†b
). (A6)

From the Hamiltonian we can derive the equations of mo-
tion

ȧ = i[H, a] = −iω0a − i
∫ +∞

−∞
d
 f (
)b
, (A7)

ḃ
 = i[H, b
] = −i
b
 − i f (
)a. (A8)

Formally integrating the equation of the bath modes gives

b
(t ) = b
(0)e−i
t − i f (
)
∫ t

0
dt ′ a(t ′)e−i
(t−t ′ ). (A9)

Inserting this into the equation of motion of the system mode,
we get an integro-differential equation

ȧ(t ) = −iω0a(t ) − i
∫ +∞

−∞
d
 f (
)b
(0)e−i
t

−
∫ +∞

−∞
d
 f (
)2

∫ t

0
dt ′ a(t ′)e−i
(t−t ′ ). (A10)

At this point we apply the Born-Markov approximations.
These approximations are used to describe systems with weak
system-bath coupling (Born approximation) in the limit of
vanishing bath memory (Markov approximation). They state
that only frequencies which are close to ω0 have an influ-
ence and terms that are further away are negligible. Thus we
can approximate the coupling constant with its value at the
mode frequency ω0, i.e., f (
) ≈ f (ω0) =

√
ηl/π . Inserting

this into Eq. (A10) allows us to simplify the third term by

−
∫ +∞

−∞
d
 f (
)2

∫ t

0
dt ′ a(t ′)e−i
(t−t ′ ) (A11)

≈ −
∫ +∞

−∞
d


ηl

π

∫ t

0
dt ′ a(t ′)e−i
(t−t ′ ) (A12)

= −ηl a(t ). (A13)

Furthermore, we define

Lin(t ) = − i√
2ηl

∫ +∞

−∞
d
 f (
)b
(0)e−i
t (A14)

= − i√
2π

∫ +∞

−∞
d
 b
(0)e−i
t . (A15)

Inserting Eqs. (A13) and (A15) into Eq. (A10) gives the quan-
tum Langevin equation

ȧ = −iω0a(t ) − ηl a(t ) +
√

2ηlLin(t ). (A16)

Note that if the modes b
 are in a vacuum state, i.e.,
〈0|b
|0〉 = 0, we have 〈0|Lin(t )|0〉 = 0. Furthermore, evalu-
ation of the correlations shows that the input noise is delta
normalized, i.e., 〈0|Lin(t )L†

in(t ′)|0〉 = δ(t − t ′). Thus the so-
called white-noise limit is fulfilled.

If we are interested in measuring the mode (observed chan-
nels), we repeat this calculation but integrate from t → ∞
instead of 0 → t . In order to distinguish observed and unob-
served channels, we rename the noise operators L → O. The
calculation gives a similar result:

ȧ = −iω0a(t ) + ηl a(t ) +
√

2ηlOout(t ). (A17)

Subtracting the two differential equations of the input and
output noise from each other gives the input-output relation

Oout(t ) = Oin(t ) −
√

2ηl a(t ), (A18)

which can be used to model the measurement of mode a(t )
(cf. Ref. [30]).
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APPENDIX B: AMPLIFICATION OF A SINGLE-MODE
SYSTEM

In order to model gain of a single-mode system, we once
again couple the mode a to a bath consisting of modes h
.
Here, the modes h
 describe an inverted oscillator heat bath.
After the use of the rotating wave approximation and the
transformation h
 → b†


, the interaction Hamiltonian consists
of two-mode squeezing terms [21,31]

Hinteraction =
∫ +∞

−∞
d
 f (
)(b†


a† + ab
). (B1)

Thus the equations of motion are

ȧ = −iω0a(t ) − i
∫ +∞

−∞
d
 f (
)b†


, (B2)

ḃ†

 = i
b†


 + i f (
)a. (B3)

Formally integrating the equations of motion for the bath
modes b†


 leads to

b†

(t ) = b†


(0)ei
t + i f (
)
∫ t

0
dt ′ a(t ′)ei
(t−t ′ ), (B4)

which can be inserted into the equation of motion for a
and then be approximated within the aforementioned Born-
Markov approximations by

ȧ = −iω0a(t ) − i
∫ +∞

−∞
d
 f (
)b†


(0)ei
t

+
∫ +∞

−∞
d
 f (
)2

∫ t

0
dt ′ a(t ′)ei
(t−t ′ ) (B5)

≈ −iω0a(t ) − 1√
2ηg

G†
in(t ) + ηga(t ). (B6)

Note that if the modes b
 are assumed to be in
a vacuum state, i.e., 〈0|b
|0〉 = 〈0|b†


|0〉 = 0, we obtain
〈0|G†

in(t )|0〉 = 0. Further evaluation of the correlations gives
〈0|Gin(t )G†

in(t ′)|0〉 ≈ δ(t − t ′).

APPENDIX C: DISSIPATION IN A MULTIMODE SYSTEM

Next, we generalize our discussion to a multimode sys-
tem described by N modes ai, i = 1, . . . , N . According to
Ref. [39], if we are in a weak-coupling regime (weak as
compared with the mode frequency ω0), a local description
of the system-environment interaction is valid. That means
that we may couple each mode ai locally to its individual
bath

∑

 b†


b
. Thus we get a quantum Langevin equation as
derived above for every mode ai. In addition, the weak coher-
ent coupling between the modes is described by a Hermitian
Hamiltonian H0. With these ingredients, we can construct a
quantum theory corresponding to any given non-Hermitian
Hamiltonian of the form H = ∑

i j ā†
i Hi j ā j . To this end, we

apply the following general procedure.
(1) Split the non-Hermitian Hamiltonian matrix H into the

Hermitian H̄0 and the anti-Hermitian HAH parts:

H = H̄0 + HAH. (C1)

The anti-Hermitian part can be diagonalized with purely
imaginary eigenvalues iη j ∈ iR.

(2) Switch to the basis in which the anti-Hermitian part is
diagonal, i.e., ā → a, by the unitary transformation

H̃ = U †HU = U †H̄0U + idiag(η j ). (C2)

(3) Calculate the transformed equations of motion:

i∂t a = H̃a = H0a + idiag(η j )a. (C3)

(4) Model the diagonal part with local dissipation (ob-
served, κ j ; not observed, ηl

j) and amplification (ηg
j), which

introduces quantum noise:

i∂t a = H0a + idiag(η j )a + iF = H̃a + iF, (C4)

η j = −κ j − ηl
j + η

g
j, (C5)

Fj = √
2κ jO j,in +

√
2ηl

jL j,in −
√

2η
g
jG

†
j,in, (C6)

with κ j, η
l
j, η

g
j � 0. For the observed channels, the input-

output relation is then given by

Oj,out = Oj,in − √
2κ ja j . (C7)

The resulting equations describe a weakly interacting mul-
timode system in a fully quantum-mechanical setting which
reproduces up to a unitary basis transformation the non-
Hermitian Hamiltonian H in the classical limit of neglecting
the input noise F .

APPENDIX D: QUANTOS MODEL

Finally, we design our coupled mode system such that
the corresponding non-Hermitian Hamiltonian H enters a NH
topological phase, as classically studied in Ref. [23]. Con-
cretely, our setup is described by the non-Hermitian Bloch
Hamiltonian

H̃ (k) = (t1 + t2 cos k, 0, t2 sin k − iγ ) · σ, (D1)

where two neighboring modes form a unit cell of a lattice
translation-invariant system and the vector of standard Pauli
matrices σ acts within the two-mode system formed by each
unit cell. The NH topological phase of this model is charac-
terized by the spectral winding number

ν = 1

2π i

∮ 2π

0
dk{∂k ln[det (H̃ (k))]}, (D2)

which acquires a nonvanishing value if ||t1| − |t2|| < |γ | <

||t1| + |t2||.
Switching to a real-space description of a system with

N = 2p − 1 modes in a broken ring geometry, where the ends
are weakly coupled with a parameter �, the NH Hamiltonian
matrix reads as

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iγ t1
it2
2

t2
2 0 · · · �

t1 iγ t2
2

−it2
2 0 · · · 0

−it2
2

t2
2 −iγ t1

it2
2 · · · 0

t2
2

it2
2 t1 iγ . . .

. . . 0

0 0 −it2
2

. . .
. . . t1

it2
2

...
...

...
. . . t1 iγ t2

2

� 0 0 · · · −it2
2

t2
2 −iγ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D3)
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The Hermitian part corresponds to a coherent mode
coupling between nearest-neighboring unit cells. The anti-
Hermitian part is already diagonal in the mode basis, which
corresponds to the above local dissipation assumption:

HAH = iγ diag(−1, 1,−1, . . . , 1,−1), (D4)

and thus we can easily translate this into our generic quantum
theoretical setting outlined above. Concretely, the modes with
+iγ are coupled to gain channels (ηg

j), and the modes with
−iγ are coupled to loss channels (ηl

j). Furthermore, the first
mode and the last mode are assumed to be observed. That way,
we arrive at the QUANTOS model described in the main text.

APPENDIX E: ROBUSTNESS AGAINST IMBALANCE
OF GAIN AND LOSS

The balanced gain and loss in our model system may re-
mind the reader of local PT symmetry, which naturally raises
the question as to whether our findings, in particular, the ex-
ponential amplification of the Fisher information with system
size, rely on the presence of such a symmetry. To this end, we
study an unbalanced QUANTOS model which is described by
the non-Hermitian Bloch Hamiltonian [cf. Eq. (D1)]

H̃S(k) = H̃ (k) − iεγ σ0, (E1)

with ε � 0, which gives [cf. Eq. (D4)]

HS
AH = iγ diag[−(1 + ε), 1 − ε,−(1 + ε), . . .]. (E2)

FIG. 4. Scaling with the system size N of the Fisher information
I for several values of � of the unbalanced QUANTOS model [cf.
Eq. (E1)]. In comparison to Fig. 2(a) we can see that the exponential
growth rate α is smaller and thus more sites N are needed until the
Fisher information I reaches saturation. The following parameters
were chosen: t1 = t2 = 1, γ = 0.7, and ε = 0.1.

We found that breaking the symmetry by unbalancing gain
and loss does not destroy the exponential enhancement (cf.
Fig. 4) as long as the gain exceeds the additional loss (i.e.,
0 � ε < 1) but only alters the exponential growth rate α [see
Eq. (1)]. Particularly, α decreases with larger value of ε until
ε = 1, where gain and additional loss become equal, which
results in α = 0. Thus more sites N are needed in order to
reach the saturation value. With this, we can conclude that the
PT symmetry is not necessary for the working principle of the
sensor.
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