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Exact description of quantum stochastic models as quantum resistors
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We study the transport properties of generic out-of-equilibrium quantum systems connected to fermionic
reservoirs. We develop a perturbation scheme in the inverse system size, named 1/N expansion, to study a
large class of out of equilibrium diffusive/ohmic systems. The bare theory is described by a Gaussian action
corresponding to a set of independent two level systems at equilibrium. This allows a simple and compact
derivation of the diffusive current as a first-order pertubative term. In addition, we obtain exact solutions for
a large class of quantum stochastic Hamiltonians (QSHs) with time and space dependent noise, using a self-
consistent Born diagrammatic method in the Keldysh representation. We show that these QSHs exhibit diffusive
regimes, which are encoded in the Keldysh component of the single particle Green’s function. The exact solution
for these QSHs models confirms the validity of our system size expansion ansatz, and its efficiency in capturing
the transport properties. We consider in particular three fermionic models: (i) a model with local dephasing, (ii)
the quantum simple symmetric exclusion process model, and (iii) a model with long-range stochastic hopping.
For (i) and (ii) we compute the full temperature and dephasing dependence of the conductance of the system,
both for two- and four-points measurements. Our solution gives access to the regime of finite temperature of
the reservoirs, which could not be obtained by previous approaches. For (iii), we unveil a ballistic-to-diffusive
transition governed by the range and the nature (quantum or classical) of the hopping. As a byproduct, our
approach equally describes the mean behavior of quantum systems under continuous measurement.
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I. INTRODUCTION

Diffusion is the transport phenomenon most commonly
encountered in nature. It implies that globally conserved quan-
tities such as energy, charge, spin, or mass spread uniformly
all over the system according to Fick/Ohm’s law

J = −D∇n, (1)

where the diffusion constant D relates the current density J to
a superimposed density gradient ∇n.

Despite its ubiquity, understanding the emergence of
classical diffusive phenomena from underlying quantum me-
chanical principles is highly nontrivial. Early works based
on field theory and perturbative methods [1,2] pointed out
the possibility that interactions do not necessarily lead to
diffusion at finite temperature, a question addressed then more
rigorously by using the concepts of integrability [3]. These
questions have then fueled many exciting discoveries in low-
dimensional interacting systems [4]. A notable example is
the ballistic-to-diffusive transition in quantum integrable XXZ
spin chains [5–10], which also exhibit a superdiffusive point
in the Kardar-Parisi-Zhang universality class [9,11–14]. These
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discoveries have motivated the generalized hydrodynamical
descriptions of integrable systems [15,16], providing an el-
egant path to the question of diffusion at finite temperature
[17], and paving the way to the description of diffusive phe-
nomena based on perturbative approaches [18–23].

The out-of-equilibrium driving protocol illustrated in
Fig. 1, where a system is coupled to external dissipative baths,
has been crucial to unveil and characterize such exotic trans-
port phenomena [6,7,24,25]. It allows to study disordered
systems [26–28], uncover novel integrable structures [6,29],
and show diffusive transport [30–35]. These open quantum
systems [36–38], are described within the Lindblad formal-
ism [39,40], which is actively employed to investigate the
exotic dynamics induced by nontrivial interactions with ex-
ternal degrees of freedom, such as lattice vibrations, quantum
measurements [41–46], dephasing [47–52], losses [53–57],
coupling to a lightfield [58–60], and environmental engineer-
ing [61].

This research activity is also motivating ongoing exper-
iments, where recent progress in space- and time-resolved
techniques is applied to directly observe emergent diffusive
and exotic dynamics in various quantum systems, including
cold atoms [58,62–65], spin chains [66–71], and solid-
state [72–74]. In this context, theoretical predictions are
usually made case-by-case, with strong constraints on ge-
ometries and driving protocols [75]. Thus, devising versatile
tools to solve generic quantum models that show diffusion
becomes crucial to understand emerging classical Ohmic
transport.

2643-1564/2022/4(1)/013109(21) 013109-1 Published by the American Physical Society

https://orcid.org/0000-0002-2571-868X
https://orcid.org/0000-0003-1054-9518
https://orcid.org/0000-0003-1102-8335
https://orcid.org/0000-0001-7409-5071
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.013109&domain=pdf&date_stamp=2022-02-11
https://doi.org/10.1103/PhysRevResearch.4.013109
https://creativecommons.org/licenses/by/4.0/


JIN, FERREIRA, FILIPPONE, AND GIAMARCHI PHYSICAL REVIEW RESEARCH 4, 013109 (2022)

In this paper, we develop a novel approach to characterize
the bulk transport properties of quantum resistors, which we
show to be exact and systematic for a wide class of quantum
stochastic Hamiltonians (QSHs). Our starting point is the
Meir-Wingreen’s formula [76,77] (MW), which expresses the
current J of a system driven at its boundaries, see Fig. 1,
in terms of single-particle Green’s functions. We show that,
for Ohmic systems, the MW formula supports an expansion
of the current in terms of the inverse of the system size
N . We illustrate how to perform practically this 1/N expan-
sion, which reveals efficient to derive the diffusive current
and the diffusion constant: we assume that, in the N → ∞
limit, diffusive lattices admit a simple description in terms
of independently equilibrated sites and demonstrate that a
well-chosen perturbation theory over this trivial state leads to
the desired 1/N expansion.

We provide a comprehensive demonstration of the va-
lidity of our approach in the context of QSHs. Relying on
diagrammatic methods and out-of-equilibrium field theory
[78], we show that single-particle Green’s functions of QSHs
can be exactly and systematically derived relying on the
self-consistent Born approximation (SCBA)—a generaliza-
tion of previous results derived for a dephasing impurity in
a thermal bath [49]. Equipped with this exact solution, and
relying on MW formula, we explicitly derive the dissipative
current flowing in the system and show that the Keldysh
component of the single particle Green’s function encodes the
Ohmic suppression of the current. Then, we explicitly derive
the asymptotically equilibrated state by “coarse-graining” of
single-particle Green’s functions and validate our procedure
to perform the 1/N expansion.

We illustrate the effectiveness and versatility of our ap-
proach for three different QSHs of current interest: (i) the
dephasing model [29–31,79,80]; (ii) the quantum symmet-
ric simple exclusion process (QSSEP) [34,81–85]; and (iii)
models with stochastic long range hopping [45,86]. The case
studies (i) and (ii) illustrate the effectiveness of our ap-
proach, providing simple derivations of the current J and of
the diffusion constant D, in alternative to approaches rely-
ing on matrix-product state [30,31,79], integrability [29], or
other case-by-case solutions [32,34]. Additionally, we address
previously unexplored regimes, by exactly solving the out-
of-equilibrium problem with fermion reservoirs at arbitrary
temperatures and chemical potentials. Our approach also al-
lows to access two-times correlators in the stationary state,
which were not described by previous studies. For case (iii),
we show instead the ability of our approach to predict novel
and nontrivial transport phenomena, namely a displacement
of the ballistic-to-diffusive transition induced by coherent
nearest-neighbor tunneling in one-dimensional chains. A
byproduct of our analysis is that all the results presented
here apply also for system under continuous measurement,
which are currently attracting a lot of interest in the context
of measurement induced phase transition [41,43,45,86].

Our paper is structured as follows. Section II describes how
the MW formula is a good starting point to build a systematic
expansion of the current in terms of the inverse system size
N . Section III presents QSH and shows the exactitude of
SCBA for the computation of single-particle self-energies.
Section IV shows how our formalism allows to fully compute

FIG. 1. A stationary current J flows in a one-dimensional lattice
when connected to left (L) and right (R) fermionic reservoirs, de-
scribed by Fermi distributions f (ε) with different temperatures T or
chemical potentials μ. The wiggly lines denote dissipative degrees
of freedom acting on the system with rate γ . For a fixed difference
of chemical potential δμ = μL − μR, dissipative terms are normally
responsible for the Ohmic suppression of the current, J ∝ 1/N .

the transport properties of the dephasing model, the QSSEP,
and the long-range model. Section V is dedicated to our con-
clusions and the discussion of the future research perspectives
opened by our work.

II. RESISTIVE SCALING IN FINITE-SIZE BOUNDARY
DRIVEN SYSTEMS AND PERTURBATIVE APPROACH

In this section, we introduce generic tools aimed at study-
ing diffusive transport in boundary-driven setups like those
of Fig. 1. For these setups, the current is given by the MW
formula [76]. In the simplified (yet rather general) situation,
where the reservoirs have a constant density of states and the
tunnel exchange of particles does not depend on energy, the
MW formula reads (we assume e = h̄ = kB = 1):

J = i
∫

dω

2π
Tr

{
1

2

(
�L − �R

)
GK+

×
[(

fL − 1

2

)
�L −

(
fR − 1

2

)
�R

](
GR − GA)}, (2)

where fL(R)(ω) = [e(ω−μL(R) )/TL(R) + 1]−1 are the Fermi distri-
butions associated to the left and right reservoir with chemical
potentials μL(R) and temperatures TL(R). GR/A/K are the re-
tarded (R), advanced (A), and Keldysh (K) components of
the single-particle Green’s functions of the system. They
are defined in time representation as GR

j,k (t − t ′) = −iθ (t −
t ′)〈{c j (t ), c†

k (t ′)}〉, GA
j,k (t − t ′) = [GR

j,k (t ′ − t )]∗ and GK
j,k (t −

t ′) = −i〈[c j (t ), c†
k (t ′)]〉, where the (curly)square brackets in-

dicate (anti)commutation [87]. c j is the annihilation operator
of a spinless fermion at site j. The �L(R) matrices describe
system-reservoirs couplings.

Our aim is to establish a systematic procedure to com-
pute diffusive current for large systems. The starting point
will be the state of the system in the thermodynamic limit
(N → ∞). By identifying in the MW formula (2) the terms
leading to Fick’s law (1), we motivate the simple structure of
the problem for an infinite system size. In resistive systems,
a fixed difference of density 	n := n1 − nN at the edges of
the system enforces the 1/N suppression of the current (J ∝
∇n ∝ 	n/N). It is thus natural to perform a perturbative 1/N
expansion of the current on the N → ∞ state. We conjecture
a possible perturbation scheme and show its validity in the
context of QSHs.
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Without loss of generality, we focus on discrete 1D
lattice systems of size N [88]. In this case, the �L(R) ma-
trices in Eq. (2) acquire a simple form in position space:
[�L(R)] j,k = �δ j,1(N )δ j,k . We also express the local densities
in terms of Green’s functions, namely, 2nj = 2〈c†

j c j〉 = 1 −
i
∫

dω GK
j, j (ω)/(2π ), which also implies 2i	n = GK

1,1(t =
0) − GK

N,N (t = 0) = 	GK. The MW formula then acquires
the more compact form:

J = �

∫
dω[ fL(ω)AL(ω) − fR(ω)AR(ω)] − �	n, (3)

where we have introduced the local spectral densities
AL(R)(ω) = − 1

π
Im[GR

1,1(N,N )(ω)] and made use of the fact that∫
dωAL(R)(ω) = 1.
The local spectral densities AL(R)(ω) exponentially con-

verge in the thermodynamic limit N → ∞. This feature is
generally expected and is illustrated in Fig. 8 for different
classes of QSHs. This observation allows to establish that the
1/N scaling, proper to diffusive currents, must entirely arise
from 	n in (3). The possibility to ignore the size-dependence
of the first term of (3) imposes strong constraints on the 1/N
expansion of the difference of density 	n in diffusive systems.
If we write this expansion as

2i	n = 	GK = 	G(∞) + 1

N
	G′ + . . . , (4)

one notices immediately that the leading term 	G(∞) has to
compensate the first one in (3), implying

	G(∞)

2i
=
∫

dω[ fL(ω)A1,1(ω) − fR(ω)AN,N (ω)]. (5)

A sufficient but not necessary condition fulfilling this relation
is obtained by imposing at each boundary:∫

dω

2π
GK(∞)

L(R) (ω) = −i
∫

dω tanh

(
ω − μL(R)

2TL(R)

)
AL(R)(ω),

(6)
which will turn out to be satisfied for QSHs. These relations
have a simple and interesting interpretation. In the infinite
size limit, the flowing current is zero and thus the stationary
value of the densities at the boundary can be computed by
supposing that they fulfill a fluctuation-dissipation relation
or equivalently, that these sites are at equilibrium with the
neighboring reservoirs.

Reinjecting (4) in the MW formula gives the current

J = i
�

2N
	G′ (7)

and as expected, we get the 1/N diffusive scaling. This rela-
tion tells us that the information about the diffusion constant is
hidden in the 1/N correction to the density profile, which can
be in general a nontrivial quantity to compute. However, we
will see in the following that there is a shorter path to access
it via the use of an infinite system size perturbation theory.

The main idea of the 1/N perturbation is to find an effec-
tive simple theory that captures the relevant properties of the
system in the N → ∞ limit. From there, transport quantities
are computed perturbatively on top of this limit theory. To
determine this effective theory, we conjecture that there is a
typical length a beyond which two points of the systems can

FIG. 2. Cartoon picture of the coarse-graining procedure. On the
left, spacial correlations in the infinite size limit are depicted. These
decay exponentially as a function of the distance and are nonzero
only within a finite length a. By coarse-graining the theory over this
typical length, we obtain an effective theory (right) consisting of an
ensemble of uncoupled sites with a finite self-energy at equilibrium.

be considered to be statistically independent. Thus, by coarse-
graining the theory over cells of size a, each cell becomes
uncoupled and in local equilibrium, see Fig. 2.

The reasons motivating such factorization are twofold.
First, the current is suppressed as 1/N in the large system size
limit, so the infinite size theory should predict a null stationary
current. Second, factorization of stationary correlations has
actually been demonstrated for a certain number of diffusive
toy models, most notably in the context of large deviations and
macroscopic fluctuation theory [34,81,89,90]. For instance,
it is known that the nth connected correlation functions of
physical observables, such as density, generically behaves as
N−(n−1). Thus, it is natural to assume that for N → ∞, cor-
relations must be exponentially decaying over a length a. We
will show explicitly that in all of the examples studied, this
factorization in the coarse-grained theory will turn out to be
true and provide an analytic estimation for a in Appendix F.

We now put these assumptions on formal grounds. Let j̃
and k̃ be the spatial indices of the coarse-grained theory

GR/A/K
j̃,k̃

:= 1

a

a−1∑
m,n=0

GR/A/K
j̃a+m,k̃a+n

. (8)

The relation between the different components R, A, and K
of the single particle Green’s functions are assumed to de-
scribe uncoupled sites at equilibrium with a local self-energy

 j̃ [78]. These conditions require then local fluctuation-
dissipation relations of the form

GK(∞)
j̃,k̃

(ω) = δ j̃,k̃ tanh

(
ω − μ j̃

2Tj̃

)[
GR

j̃, j̃ (ω) − GA
j̃, j̃ (ω)

]
, (9)

with retarded and advanced Green’s functions, which are di-
agonal in the coarse-grained space representation

GR(A)
j̃,k̃

(ω) = δ j̃,k̃

ω − ω0
j̃
± 
 j̃ (ω)

. (10)

These relations fix entirely the stationary property of the sys-
tem in the infinite size limit. The specification of the free
parameters μ j̃, Tj̃, ω

0
j̃

and 
 j̃ have to be done accordingly to
the model under consideration. We will see that they take a
simple form for QSHs, namely the self-energy 
 j̃ is frequency
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independent and the μ j̃, Tj̃ 	 ω limit can be taken taken in
Eq. (9), as expected in the Markovian limit of the dissipative
process [77].

To get the current, one needs to go one step further and
understand which terms have to be expanded. The thermo-
dynamic equilibrated theory does not exhibit transport, thus
should be left invariant by the part of the Hamiltonian that
commutes with the conserved quantity, for us the local particle
density. It is then natural to conjecture that the perturbative
term for the current is given by the dynamical part of the
theory, that is, the part of the Hamiltonian Ĥdyn, which does
not commute with the local density. Thus, we conjecture that,
at order 1/N , the current is given by

J = 〈ĴĤdyn〉∞, (11)

where the 〈〉∞ means the expectation value must be taken with
respect to the infinite system size theory. This formula has
the remarkable advantage that its computational complexity
is very low since the coarse-grained theory is Gaussian. We
remark that the 1/N expansion presented here is not a standard
expansion in the hopping amplitude τ , since the latter has an
exponentially large degenerate manifold of states at τ = 0.

In Sec. IV, we show explicitly how these ideas unfold for
QSHs, by comparing computations done from the 1/N theory
with the one obtained from the exact solution that we present
in the following Section Sec. III. Understanding to which
extent and under which conditions Eqs. (9,10) and (11) can
be applied is one of the very challenging direction of study,
in particular in the context of interacting quantum systems
without bulk dissipative terms.

III. VALIDITY OF THE SELF-CONSISTENT BORN
APPROXIMATION FOR QUANTUM

STOCHASTIC HAMILTONIANS

In this section, we present a class of quantum stochastic
models and associated Liouvillians (12), that describe either
stochastic local dephasing or stochastic jumps of fermionic
particles on a graph. The random processes are defined by a
quantum Markov equation also known as a Lindblad equation.
We will show explicitly two ways, exemplified by Eqs. (15)
and (A1), to associate an underlying quantum stochastic
model to such Lindblad equation, a process known as un-
raveling or dilatation [91–93]. Of particular interest for us is
the description in terms of quantum stochastic Hamiltonians
(QSHs) (15). It provides a way to resum exactly the perturba-
tive series associated to the stochastic noise, which coincides
with the self-consistent Born approximation (SCBA) for sin-
gle particle Green’s functions. This method was originally
devised for the particular case of a single-site dephaser in
Ref. [49] and we extend it here to more general situations. We
will show in Section IV that, relying on SCBA, we can derive
the diffusive transport properties of these models and show the
validity of the assumptions underpinning the perturbative 1/N
expansion presented in Sec. II.

Consider a graph made of discrete points, each correspond-
ing to a site. To such graph we associate a Markovian process
where spinless fermions on a given site can jump to any other
site only if the target site is empty, see Fig. 3. We define
γi j � 0 as the probability rate associated to the process of a

FIG. 3. Schematic representation of our random process. The
orange box represents the Lindblad equation (12), which describes
random quantum jumps between sites connected by an arrow. An ar-
row leaving and arriving at the same site represents a local dephasing.
To a given Lindblad equation, we can associate multiple stochastic
process (blue and green boxes), a process called unraveling (orange
dashed lines). The Lindblad equation is recovered by averaging over
the noisy degrees of freedom (full blue lines). We show that the
unraveling in terms of quantum stochastic Hamiltonian (QSH) is
particularly useful for the diagrammatic expansion of the theory.

fermion jumping from i to j and γ ji = γi j the reverse process.
The generator of such process is given by the Liouvillian,
which acts on the density matrix ρ of the system:

L(ρ) =
∑
i, j

γi, j (2c†
j ciρc†

i c j − {c†
i c jc

†
j ci, ρ}). (12)

The total evolution of the density matrix ρ is in general given
by

d

dt
ρ = L0(ρ) + L(ρ), (13)

where L0 generates what we call the free evolution, in the
sense that L0 is quadratic in the fermion operators ci and the
related spectrum and propagators can be efficiently computed
with Wick’s theorem [94,95]. Such Liouvillians can generally
describe single-particle Hamiltonians or dissipative processes
(coherent hopping, losses,...). We will consider L(ρ) as a
perturbation on top of this theory.

There exists a general procedure to see L(ρ) as the
emergent averaged dynamics of an underlying microscopic
stochastic, yet Hamiltonian, process. Lifting L(ρ) to this
stochastic process is known as unraveling and there is not a
unique way of doing so, see Fig. 3. The stochastic Hamilto-
nian can be treated as a perturbation in field theory, which
requires the summation of an infinite series. Our strategy is
to pick the relevant stochastic theory for which there exists
a simple way to reorganize the summation and then take the
average in order to get the mean evolution.

We now proceed to present the unraveled theory. Let dHt

be the stochastic Hamiltonian increment, generating the evo-
lution, which is defined by

|ψt+dt 〉 = e−idHt |ψt 〉. (14)
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We work in the Itō prescription and consider stochastic Hamil-
tonians of the form

dHt =
∑
i, j

√
2γi, jc

†
j cidW i, j

t . (15)

W i, j
t describes a complex noise and we adopt the convention

that W i j∗
t = W j,i

t . The corresponding Itō rules are summed up
by

dW i, j
t dW k,l

t = δi,lδk, jdt . (16)

Using the Itō rules to average over the noise degrees of free-
dom one recovers the Liouvillian (12).

Finally, an other point we would like to emphasize con-
cerns the connection to systems evolving under continuous
measurements. Indeed, another way to unravel (12) is to see
it as the average evolution with respect to the measurement
outcomes of a system for which the variables c†

j ci + c†
i c j and

i(c†
i c j − c†

j ci ) are continuously monitored and independently
measured with rate γi, j [91]. Although the physics is radically
different at the level of a single realisation of the noise, on
average it gives the same result than the prescription (15).
Hence, all the results that will be presented for the mean
behavior of our class of stochastic Hamiltonians also describe
the mean behavior of systems subject to continuous measure-
ments. The unraveling procedure corresponding to continuous
measurements is described in detail in Appendix A.

A. Self-energy

We show now that the perturbation theory in the stochastic
Hamiltonian (15) can be fully resummed, leading to exact
results for single particle Green’s functions. To perform this
task, we rely on the Keldysh path-integral formalism [78],
which describes the dynamics of the system through its action
S. The presence of dissipative effects can be naturally included
in S using Lindblad formalism [96]. The action gives the
Keldysh partition function Z = tr(ρt )

Z =
∫

D[ψ±, ψ̄±]eiS[ψ±,ψ̄±]. (17)

where ψ = (ψ+, ψ−) are Grassmann variables defined re-
spectively on the positive and negative Keldysh time contours
C±. We follow the Larkin-Ovchinnikov’s convention [97],
in which the Keldysh action S0 corresponding to the free-
evolution L0 is expressed in terms of the inverse Green’s
function G−1. namely,

S0 =
∑
i, j

∫
dω

2π
(ψ̄1, ψ̄2)i[G

−1]i, j

(
ψ1

ψ2

)
j

. (18)

All variables in the integral (18) are implicitly assumed to
depend on a single frequency ω, which coincides with the
assumption of stationary behavior, valid for our class of prob-
lems. The inverse Green’s function G−1 is itself expressed in
terms of the retarded, advanced and Keldysh green functions
GR/A/K , defined in Sec. II:

[G−1] =
(

GR GK

0 GA

)−1

(19)

FIG. 4. Diagrammatic representation of the retarded (R), ad-
vanced (A) and Keldysh (K) Green’s function. Time flows from right
to left.

and whose diagrammatic representations in the time domain
are given in Fig. 4. The causality structure of the Keldysh
Green functions is enforced by the suppression of correlators
〈ψ2ψ̄1〉 = 0. This means that a retarded propagator can never
become advanced, which pictorially translates into the fact
that a solid line cannot switch to a dashed one.

The action corresponding to the Liouvillian term (12) reads
[96]

SL := −
∫

dt
∑
i, j

γi, j
(
ψ̄1

j,tψ
1
i,t ψ̄

2
i,tψ

2
j,t + ψ̄1

i,tψ
1
j,t ψ̄

2
j,tψ

2
i,t

)
.

(20)

which is a quartic action in the Grassmann fields. At the
level of single particle Green’s functions, the action SL is
incorporated through the self-energy �, defined as the sum of
all one-particle irreducible diagrams. As in equilibrium field
theory, the Dyson equation relates the full propagator to the
bare propagator and the self-energies �:

G = [G−1
0 − �

]−1
. (21)

To compute the diffusive current from MW formula, � must
be know to any order; an a priori difficult task given the quar-
tic nature of the action (20). Instead, rewriting the action at
the stochastic level allows us to exactly derive the self-energy
� and solve this problem. In the field-theory language, the
unraveling procedure exemplified by Eq. (15) leads to the
equivalent action

Ssto = −
∑
i, j

∫ √
2γi, j
(
ψ̄1

j,tψ
1
i,t + ψ̄2

j,tψ
2
i,t

)
dW i, j

t , (22)

where Ssto is related to SL by the average E[] over the noise
degrees of freedom:

E[eiSsto ] = eiSL . (23)

In formal terms, this transformation is reminiscent of a
Hubbard-Stratonovich transformation where the action be-
comes quadratic in terms of the Grassmann variables. Note
that the complexity encoded in Eq. (20) is preserved by
the consequent introduction of the space and time depen-
dent noise dW i, j

t . However, the noise correlations imposed
by Itō’s rules (16) allow a dramatic simplification of the di-
agrammatic expansion in γi, j of the Green functions within
the stochastic formulation. Such simplified structure does
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FIG. 5. Perturbative series in the Keldysh formalism for our class
of stochastic models. Average quantities are obtained by contracting
pairs of wiggly lines together. Here a wiggly line represents either
dW i, j

t or its complex conjugated pair for simplicity. The formulation
of the theory in terms of QSH allows for a simple writing of the
perturbative expansion.

not manifestly appear when working with the Lindbladian
(averaged) formulation of the problem (20) (see Fig. 14 in
Appendix B).

The resummation works as follows. In Fig. 5, we show
the diagrammatic expansion of (21) up to second order in the
stochastic noise γi, j . The wiggly lines represent dW i, j

t . Since
we are interested in the mean behavior, we have to take the
average over the noise degrees of freedom. This amounts to
contract wiggly lines pair by pair. From the Itō rules (16), we
see that upon contraction, a wiggly line forces the two vertices
it connects to have the same time and position, as illustrated
in Fig. 5.

The important consequence is that all the diagrams, which
present a crossing of the wiggly lines vanish because of the
causal structure of the Keldysh’s Green function, namely that
GR(t, t ′) is nonzero only for t > t ′ and conversely for GA.
For a detailed proof of this statement, see Appendix B. In
particular, the constraints of avoided wiggly lines establishes
the validity of the self-consistent Born approximation (SCBA)
for the self-energy of single particle Green’s function and
generalize the approach presented in Ref. [49]. SCBA allows
a simple and compact derivation of all components as exem-
plified by the diagrammatic representation in Fig. 6. Namely,
we have that in position space

�i, j (t, t ′) = δi, jδ(t, t ′)
∑

k

γi,kGk,k (t, t ). (24)

For the retarded and advanced components, this relation
takes a particularly simple form since GR(A)

j,k (t, t ) = ∓ i
2δ j,k

FIG. 6. (a) Noncrossing rule for the contraction of wiggly lines.
(b) Self-energies for the different Keldysh components.

in position space. Note that this simple expression is only
valid when the two time indices are taken to be equal and
comes entirely from the causal structure of the Green’s func-
tions in the Keldysh formalism. One way to see this is to
evaluate the step function θ (t − t ′) for the retarded and ad-
vanced Green’s functions from the discrete version of the
path integral presented in 9.2 of [80]. To get the Keldysh
component GK, one has to solve the self-consistent Dyson
equation:

GK = −GR([G−1
0

]K − �K)GA, (25)

which is a problem whose complexity only scales polynomi-
ally with the number of degrees of freedom in the system
(such as the system size N of the setup in Fig. 1). This
solves the problem entirely at the level of single-particle
correlation functions. Remark that this applies to any model
as long as the bare theory respects a Wick’s theorem and
its propagators are known. It allows a systematic study of
quantum systems in the presence of external noisy degrees of
freedom.

This ability to calculate the Keldysh Green’s function is
crucial to give an exact description of out-of-equilibrium
transport in dissipative systems, as we are going to show in
the next section.

IV. APPLICATIONS

We now proceed to employ the self-consistent approach to
showcase our 1/N expansion, presented in Sec. II, against a
large class of QSHs that display diffusive transport.

The action describing the out-of-equilibrium setting repre-
sented in Fig. 1 has the form

S = SBd + S0 + Ssto. (26)

The first term in the action, SBd, describes the exchange
coupling with gapless noninteracting fermionic reservoirs of
chemical potential μL,R and temperature TL,R. The corre-
sponding action, under the assumptions discussed in Sec. II,
was derived for instance in Ref. [77]:

SBd = i�
∑

a=L,R

∫
dω

2π
ψ̄a

[
1 2 tanh

(
ω−μa

2Ta

)
0 −1

]
ψa, (27)

where ψa is a shorthand notation for (ψ1
a , ψ2

a ), L designates
site 1 and R designates site N . The action S0 is the quadratic
action related to the intrinsic dynamics of the system, which
can describe various situations from coherent dynamics to
single-particle dissipative gains and losses [77]. In this paper,
we will focus on one-dimensional nearest-neighbour coherent
bulk hopping, which is described by the standard Hamilto-
nian,

Hτ := τ

N−1∑
j=1

(c†
j c j+1 + c†

j+1c j ), (28)

with τ the hopping amplitude. The corresponding action reads

S0 = −iτ
∑

j

∫
dω

2π

(
ψ̄1

j ψ
1
j+1 + ψ̄2

j ψ
2
j+1 + c.c

)
. (29)
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The free propagators are directly derived from the previous
expressions of the action and read[

G−1
0

]R(A)

j,k
(ω) = δ j,k[ω ± i�(δ j,1 + δ j,N )]

+ τ (δ j,k+1 + δ j,k−1), (30)

[
G−1

0

]K
j,k (ω) = 2i�δ j,k

∑
a=L,R

δ j,a tanh
(ω − μa

2Ta

)
. (31)

Notice that the reservoirs act, through the hybridization con-
stant �, as natural regulators of the imaginary components of
the noninteracting problem [78].

Finally Ssto is the action corresponding to the QSH (22).
As explained in the previous section, the demonstrated va-
lidity of SCBA for the Dyson equation (25) allows to derive
exact expressions for the self-energies (24), and thus for the
propagators of the full theory. Such solution allows to fully
determine the transport properties of the system through MW
formula (3). As shown in Sec. III, Eq. (24) implies a particu-
larly simple form for the advanced and retarded components
of the self-energy:



R(A)
i, j = ∓iδi, jδ(t, t ′)

∑
l

γi,l

2
. (32)

Importantly, in the geometry of Fig. 1, we can derive a com-
pact and explicit expression of (25) for the diagonal terms
GK(t, t )

�GK = (I − M )−1 · �V (33)

where we introduced the N-dimensional vectors

�GK
j = GK

j, j (t, t ), (34)

�Vj = 2�

i

∑
a∈{L,R}

∫
dω

2π
GR

j,aGA
a, j tanh

(ω − μa

2Ta

)
, (35)

and M is an N × N matrix with elements

Mj,k =
∑

l

γk,l

∫
dω

2π
GR

j,l G
A
l, j . (36)

Notice that only GK carries information about the biased
reservoirs, as can be seen from (35). The first term in (3)
depends exclusively on spectral functions, which are readily
derived from Eqs. (30) and (32), while Eq. (33) sets, through
Eq. (4), the expression of the density differences at the edges
	n.

Note that our analysis shows that the matrix M (36) is
the key object encoding information about diffusion and
it appears exclusively in the Keldysh component of the
single-particle Green’s function (33). A convenient way to
understand this is to consider systems with single-particle
gains and losses that do not display Ohmic 1/N suppres-
sion of the current. It was shown in Ref. [77] that, while
(32) remains valid in those systems, the matrix M in (33)
becomes 0 for these systems and the current saturates to
a size-independent value. Thus, having a finite-lifetime in
the retarded and advanced Green’s function is not sufficient
to get diffusive transport. The imaginary contribution to the
retarded/advanced self-energy, such as the one in (32), has
the interpretation of a lifetime for the free single-particle

FIG. 7. Particular 1D discrete cases that will be of interest. Only
the noise contribution is presented in this figure. In the dephasing
model, all the sites are paired with themselves. For the QSSEP, the
pairs are between nearest neighbours. In the long-range model, a
given point is linked to all the rest of the lattice with a coupling
decaying as power law.

excitations of the system, yet it is the Keldysh component of
the self-energy that describes the consequences of dissipative
scattering on the transport properties of the system. When
M 
= 0, Eq. (36) gives us a linear profile for the density profile,
which eventually leads to a 1/N diffusive contribution for the
current as discussed in the Sec. II.

These considerations are those underpinning our general
discussion about diffusive transport in Sec. II. We now turn to
the case-by-case study of the specific QSHs depicted in Fig. 7.
As said in Sec. I, we will focus on three one-dimensional
models: the dephasing model, the quantum symmetric sim-
ple exclusion process (QSSEP), and models with stochastic
long-range hopping. For the dephasing model, every single
point on the lattice is coupled with itself by the noise. For the
QSSEP, the noise couples each point with its neighbours. For
the long-range, a given point is paired to all the rest of the
lattice with a power-law decay as a function of the distance.
These processes are illustrated for all three models in Fig. 7
and we will give more details about their physical motivations
in the related sections.

Without loss of generality, in the oncoming analysis of
the current J , we focus on a linear response regime in the
chemical potential bias. We set an identical temperature for
both reservoirs TL = TR = T and μL → μ + δμ, μR →
μ − δμ. We expand Eq. (3) in δμ. One thus obtains, to linear
order in δμ:

J = �
δμ

2T

∫
dω

1

cosh2
(

ω−μ

2T

)[A(ω) − �

2π
	K(ω)

]
. (37)

where A(ω) is the edge spectral function, which coincides
with AL/R(ω), because of the mirror symmetry of the class of
QSHs that we will consider. The second term can be expressed
in the form

	K(ω) =
[

1

I − M
· �W (ω)

]
1

−
[

1

I − M
· �W (ω)

]
N

, (38)

in which �W is an N dimensional vector whose components are
given by �Wj (ω) = GR

j,1(ω)GA
1, j (ω) − GR

j,N (ω)GA
N, j (ω).
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A. Dephasing model

The dephasing model describes fermions hopping on a 1D
lattice while subject to a random on-site dephasing coming
from dissipative interactions with external degrees of free-
dom. In the language of Sec. III, this model corresponds to
the case where all the points are paired with themselves, which
results in substituting the rates

γi, j → γDphδi, j, (39)

in Eqs. (12) and (15) (see also Fig. 7). There are various
limits in which this model can be derived. For instance,
it can be thought as describing the effective dynamics of
fermions interacting weakly with external bosonic degrees
of freedom within the Born-Markov approximation [37]. In
Refs. [30,31,79] it was shown, relying on matrix product op-
erator techniques, that the dephasing model exhibits diffusive
transport. Two-times correlators in the XXZ under dephasing
was also studied in [51] and were shown to exhibit a complex
relaxation scheme. For bosonic interacting systems, it was
shown that the addition of an external dephasing could lead
to anomalous transport [98,99]. Additionally, as discussed in
Sec. III, the mean dynamics of this model coincides with the
one where the occupation numbers of fermions on each site
are independently and continuously monitored [44,100]. For
this reason, the dephasing model has recently attracted a lot
of interest as a prototypical model exhibiting a measurement
rate-induced transition in the entanglement dynamics [42,43].
Finally, we note that in Ref. [29] a mapping between the de-
phasing model and the Fermi-Hubbard model was established.
Although we will not discuss this mapping here, we stress
that it implies that our method also provides the computation
of exact quantities valid for equivalent systems governed by
Hubbard Hamiltonians.

The stochastic Hamiltonian for the dephasing model is
readily obtained from the substitution (39), namely

dHt = √2γDph

∑
j

n̂ jdB j
t , (40)

where Bt denotes a real Brownian motion with Itō rule
dB j

t dBk
t = δ j,kdt . The retarded and advanced self-energies are

obtained from Eq. (32) and read



R(A)
j,k (t, t ′) = ∓ i

2
γDphδ j,kδ(t − t ′). (41)

while GR,A are obtained by inversion of Eq. (30) with inclu-
sion of the self-energy (41). These functions are symmetric
and given by, for i � j [77,101]:

GR/A
i, j (ω) = (−1)i+ jτ j−iBR/A

i−1 BR/A
N− j[

ω ± i
(
� + γDph

2

)]
BR/A

N−1 − τ 2BR/A
N−2

, (42)

where BR/A
i = [(r+ ± i�)ri

+ − (r− ± i�)ri
−]/(r+ − r−) and

r± = (ω ± i γ

2 +
√

(ω ± i γDph

2 )2 − 4τ 2)/2.
The related spectral functions at the system edges A(ω) =

A11(ω) = ANN (ω) is represented in Fig. 8 for different sys-
tem sizes N . It displays N peaks corresponding to the
eigenspectrum of the system without dissipation. The width
of the peaks is controlled nontrivially by the hybridization
constant � and the bulk dissipation rate γDph. Plots for closely

FIG. 8. Edge spectral function A(ω) for the dephasing model
(40) in the configuration of Fig. 1 for difference systems sizes
N . Darker blue-solid lines correspond to larger systems sizes N =
11, 21, 51, 101, 201, 501, 1001. We consider only odd values of N ,
as they ensure the presence of a resonance at ω = 0. The inset shows
the exponential convergence of the spectral function at a fixed (odd)
system size AN = A(ω = 0) towards its asymptotic value A∞(ω),
obtained from Eq. (43) and corresponding to the dashed-black line in
the main plot [for N � 100 and the parameters reported in the plot,
numerical curves overlap with A∞(ω)].

related quantities in the γDph → 0 limit can be found in
Ref. [77]. In this nondissipative limit, the height of the peaks
does not decay with the system size N . On the contrary,
for γDph > 0, the peaks vanish in the N → ∞ limit, and the
spectral function converges exponentially towards a smooth
function A∞(ω) as shown in the inset of Fig. 8. One can
analytically derive A∞(ω), as the retarded Green function
(42) at the edges GR

1,1 = GR
N,N converges to

lim
N→∞

GR
1,1(ω) = 1

ω + i
(
� + γDph

2

)− τ 2

rsgn(ω)

. (43)

The exponential convergence of the edge spectral function
is reproduced by all the other QSHs discussed below and
verifies one of the preliminary assumptions exposed in Sec. II,
identifying the density difference 	n as the term entirely
responsible for the 1/N suppression of the dissipative current
in (3).

Our approach provides an efficient way to compute the
second term in (37), through an explicit derivation of the
matrix M:

Mj,k = γDph

∫
dω

2π
GR

j,kGA
k, j . (44)

As we detail in Appendix D, the expressions (38), (42),
and (44) allow the efficient derivation of the current (37) up to
system sizes N � 103−4. As a consequence, we can systemati-
cally study the expected crossover from a ballistic-to-diffusive
regime expected at length scales N∗ � γ −1

Dph [30]. See also
Appendix E for additional details.

Two main technical advances of our approach
compared to previous studies [25,30,31,79,95,102,103]
consist in its ability to naturally address
reservoirs with finite temperatures T < ∞,
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FIG. 9. Fitted parameters (α, δ, ν ) of the rescaled conductance
of the dephasing model as defined in Eq. (45). These values define
different regions in the temperature - dephasing plane with different
behaviors for the conductance, see Eq. (46). The dashed lines are
a guide for the eyes to delimit the regions. The bottom right plot
summarizes the characteristic values of each region.

accessing transport regimes left unexplored by previous
studies and to access two-times correlators in the stationary
state. An important consequence of our analysis is that
the rescaled conductance of the system, that we define as
G = NJ/δμ, has a nontrivial dependence on the temperature
T and the dephasing rate γDph, namely,

G = lim
N→∞

JN

δμ
= ητα+δ

T αγ δ
Dph

. (45)

In Fig. 9, we plot the coefficients (α, δ, η) across the pa-
rameter space (T, γDph). From the plot, we identify three
main diffusive transport regimes Rτ,T,γ , in which these coef-
ficients are different. Note that the regions are not connected
by sharp phase transitions but instead by crossovers, which
appear sharp in logarithmic scale. Deep in the three regions,
the rescaled conductance takes the approximate values

G =

⎧⎪⎪⎨
⎪⎪⎩

τ 2

T γDph
T 	 γDph, τ

2.6τ 2

γ 2
Dph

γDph 	 T, τ

1.3τ
γDph

τ 	 γDph, T

. (46)

In previous studies carried in the T → ∞ limit for the
reservoirs, where they can be described as Lindblad injectors
[77], the conductance G is assumed to be proportional to the
bulk diffusion constant D [4,20]. The density profiles in the
system (see Appendix E) clearly show that such interpretation
cannot be extended to lower temperatures. The emergence of
coherent effects between the system and its baths leads to
finite-sized boundary effects, which do not allow the deter-
mination of the bulk diffusion constant through Eq. (46). To

obtain the bulk diffusion constant we can use our approach
to derive the density profiles inside the system and far away
from its boundaries. We numerically verify Fick’s law (1) in
the bulk and find the diffusion constant to be

D = 2τ 2

γDph
, (47)

which is double the conductance in the T 	 γDph limit, as
expected. At variance with the rescaled conductances (46),
this quantity is not affected by any boundary effect and it is
in agreement with previous analytical ansatzes, valid in the
infinite temperature limit [30]. The independence of the dif-
fusion constant (47) from the temperature at the boundaries is
a consequence of the stochastic dephasing (40), which locally
brings the system back to an infinite temperature equilibrium
state regardless of boundary conditions. We thus see on this
example that our approach allows to compute both the two-
and four-points measurements of the resistance. Even for dif-
fusive systems, the distinction between the two processes can
be important.

To conclude our analysis of the transport in the dephasing
model, we note that the different transport regimes in (46) ex-
plicitly depend on the stationary bias n1 − nN , which suffers
from boundary effects in some regions of the (T, γDph) pa-
rameter space. We confirm with our exact numerical solution
that this is indeed the case. This interesting bias dependence
is beyond the scope of the present paper and left for future
studies.

1. 1/N expansion

Let us now show how the diffusion constant (47), that we
obtained from our exact solution, can also be easily derived
from the novel 1/N perturbative theory we introduced in
Sec. II.

The first step is to fix the action of the infinite size the-
ory S∞ with the aid of the coarse graining procedure. We
start by disposing the elements of GR/A/K

i, j as a matrix and
subdivide it in square cells of width a. We take the average
over all the terms in the cell to obtain the effective Green
function GR/A/K

ĩ, j̃
, describing the correlations between the ĩ

and j̃th cell. This procedure is illustrated in Fig. 10-(right) for
the retarded Green’s function and increasing cell size (a = 1
corresponds to no coarse graining). As the cell size increases,
GR/A/K

ĩ, j̃
becomes a diagonal matrix with the off-diagonal

terms vanishing as 1/a and exponentially suppressed with the
distance |ĩ − j̃|.

This explicit calculation confirms the diagonal structure of
GR/A/K and the reduction of the action to a sum of local com-
muting terms S∞ =∑ j̃ S j̃ , where S j̃ is the action associated
to the j̃th cell. To simplify the notations, we drop the tilde
indices from now on and implicitly assume that the calcu-
lations are done in the effective coarse-grained theory. The
diagonal terms of GR(ω = 0) are depicted in Fig. 10-(left)
as function of frequency with GK shown in the inset. As a
increases, the symmetry center of the functions changes to
ω = −2τ converging to the black curves depicting Eqs. (9)
and (10). As mentioned before, the only free parameters that
need to be fixed in the local theory are μ j, Tj , and 
 j (ω).
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FIG. 10. Coarse-graining procedure in the dephasing model, γDph = 1 for increasing size of the cell, a. Left: Real and imaginary part of
the diagonal terms of GR(ω) for increasing cell size, a = 1, 2, 3, 4, 5, 7, 12, 20, 40, 50, respectively from light to dark. Inset: GK component
measured at one-third of the chain and T = 0.1. Black lines depict the 1/N predictions obtained by inverting the matrix in Eq. (48). The
symmetry around ω = 0 is broken as a increases. Right: Color plot of the absolute value of GR(ω = 0) for the first 20 × 20 coarse grained
cells of a system with N = 2000 sites, darker colors represent higher values.

For the dephasing model, we find that the self-energy is
simply given by iγDph/2. For a single site such an imaginary
term was shown [77] to coincide with the effective action
of a reservoir within the limit μ j, Tj → ∞ while keeping
the ratio μ j/Tj fixed. Let n j be the local density at site
j, n j = 1

2 (1 − iGK (t, t )). Using [G−1]K = −GR−1GKGA−1

and GK(ω) = − tanh μ j

Tj
(GR(ω) − GA(ω)). Interestingly, at

leading order in 1/N , this relation turns out to be verified
even at the microscopic level, i.e., for a = 1. This tells us
that the local equilibration condition of the infinite size theory
is always true in our case. We furthermore suppose that in
the coarse-grained theory, the expression of the retarded and
advanced components will be given by a single-site two-level
system, i.e., we suppose the following expression for S j̃ :

S j̃ =
∫

dω

2π
(ψ̄1

j , ψ̄
2
j )

(
ω + i γDph

2 −i(2n j − 1)γDph

0 ω − i γDph

2

)(
ψ1

j

ψ2
j

)
.

(48)

Where we absorbed the −2τ shift of frequencies in the inte-
gral. Expression (48) is valid in the bulk, independently from
any value of μ, T at the boundaries. We check explicitly that
the coarse-grained theory indeed converges towards S j̃ as a is
increased as shown in Fig. 10.

In the path integral formalism, the 1/N corrections to the
current (11) is given by

J = i〈Ĵ j[ψ̄
+, ψ+]Sdyn〉∞ (49)

where Ĵ is the current operator, Ĵ[ψ̄+, ψ+] is the evaluation of
this operator in the fermionic coherent basis on the + Keldysh
contour, 〈•〉∞ := ∫ D[ψ±, ψ̄±]eiS∞• and Sdyn is the Keldysh
action (29) associated to the contour integral of Ĥdyn defined in
(11). Here we have explicitly that Ĥdyn = τ

∑
j c†

j c j+1 + H.c.
The current operator is in this case :

Ĵ j = iτ (c†
j+1c j − c†

j c j+1). (50)

A straightforward calculation reported in Appendix C then
leads to an explicit derivation of Fick’s law:

J = − 2τ 2

γDph
∇n j . (51)

where ∇ is the discrete gradient ∇n j = n j+1 − n j . Equation
(51), derived from the 1/N expansion, coincides with the exact
result (47) in the whole parameter space. Such agreement
validates the 1/N expansion as a systematic and efficient
procedure to compute diffusion constants. From the compu-
tational point-of-view, note that the 1/N expansion did not
resort to any numerical schemes and provided an exact expres-
sion of the diffusive constant, which could not be extracted
explicitly from the Dyson equation (25).

B. QSSEP

In this section, we illustrate how our method can also be
applied to the study of the quantum symmetric simple exclu-
sion process (QSSEP) [34].

The QSSEP is a model of fermionic particles that hop on
the lattice with random amplitudes, which can be thought
as the quantum generalization of classical exclusion pro-
cesses [90]. Classical exclusion processes have attracted a
widespread interest over the last decades as they consti-
tute statistical models with simple rules but a rich behavior
that is thought to be representative of generic properties
of non-equilibrium transport. It has been particularly im-
pactful in the formulation of the macroscopic fluctuation
theory (MFT) [89], which aims at understanding in a generic,
thermodynamic sense, macroscopic systems driven far from
equilibrium. It is hoped that the QSSEP will play a similar
role in a quantum version of MFT, which is for now largely
unknown.

We are interested in a model of QSSEP plus the coherent
jump Hamiltonian (28) that was first studied in Ref. [32]. The
case of pure QSSEP can be retrieved in the limit τ → 0. As
for the dephasing model discussed in Sec. IV A, we will see
that the 1/N expansion formalism again offers a simple route
to derive the diffusive current.

As pictured in Fig. 7, the QSSEP couples nearest neighbor
sites. It is derived from Eqs. (12) and (15) by taking the
prescription

γi, j = γQS
δi, j+1 + δi, j−1

2
. (52)
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FIG. 11. Diffusion constant of the QSSEP model as a function
of the noise strength γ for different hopping amplitudes τ and tem-
peratures T . The results are independent of the latter. The dots are
obtained from the MW formula (3) while dashed lines depict the
results of the 1/N expansion (56).

The associated QSH is

dHt = √
γQS

∑
j

[
c†

j c j+1dW j+1, j
t + c†

j+1c jdW j, j+1
t

]
. (53)

From Eq. (24), we get the advanced and retarded components
of the self-energies:



R(A)
j,k (t, t ′) = ∓ i

2
γQSδ j,kδ(t, t ′)

[
1 − δ1, j + δ j,N

2

]
. (54)

The retarded and advanced Green functions are given by in-
serting the bare propagators (30) and the self-energy (54) into
the Dyson equation (25). These propagators can be directly
derived from the ones of the dephasing model by making the
substitutions γDph → γQS and � → � − γQS/2. As a conse-
quence, all the considerations made for the spectral function
and Fig. 8, in the dephasing model, equally apply to the
QSSEP.

This is not the case for the Keldysh component, where the
M matrix has the different expression [104]

Mj,k = γQS

2

∫
dω

2π

(
GR

j,k−1GA
k−1, j + GR

j,k+1GA
k+1, j

)
. (55)

Combining the above equation with (33) allows to obtain GK

and allows to compute the current from (3), or its linearized
version (37). For all values of the parameter space (T, γQS)
the current follows the relation (see Fig. 11)

Jj = −
(

γQS

2
+ 2τ 2

γQS

)
∇n j . (56)

which tells us that the diffusion constant is γQS

2 + 2τ 2

γQS
in

agreement with the result presented in [32]. For τ = 0,
this generalizes the result from [34], which was restricted to
boundaries with infinite temperature and chemical potential.

1. 1/N expansion

The expression (56) for the current can also be obtained
easily in the 1/N perturbative approach illustrated in Sec. II.
The action in the infinite size limit is again of the form (48).
From (54) we see that the expression of the self-energy is
similar to the one of the dephasing model by simply replacing
γDph by γQS up to differences that tend to 0 in the infinite size
limit. The current operator from site j to j + 1 in the bulk is
given here by

Ĵ j = γQS

2
(n̂ j − n̂ j+1) + iτ (c†

j+1c j − c†
j c j+1). (57)

The first part is easily evaluated to be −γQS∇n j/2 to first order
in 1/N in the diffusive limit. For the second part, we simply
need to redo the previous derivation by replacing γDph by γQS.
The term iτ (c†

j+1c j − c†
j c j+1) then becomes − 2τ 2

γQS
(n j+1 − n j ),

which yields (56).

C. Long-range Hopping

Finally we turn to the model with long-range hopping from
the noise (see Fig. 7). In this model each particle can jump to
any unoccupied site with a probability rate that decays with
the distance as a power law of exponent α. Power laws appear
naturally for instance in quantum simulation with Rydberg
atoms [105–107] where they emerge because of the dipole-
dipole interactions. Depending on the order of the interactions
between atoms, different power laws can be reached. In the
limit α → ∞, we get an “all-to-all” model, i.e there are ran-
dom quantum jumps between all sites. These types of models
have recently attracted interest as toy models to understand the
interplay between quantum chaos and quantum information
notably in the context of random unitary circuits [86,108].

For the long-range QSH we have

γi, j = (1 − δi, j )
γLR

Nα| j − k|α (58)

and the corresponding Hamiltonian is

dHt =
∑
j 
=k

√
2γLR

Nα| j − k|α c†
j ckdW k, j

t . (59)

where Nα = 2
∑N/2

k=1 k−α is a suitable normalization condition
such that N∞ = 2 and N0 = N . The limiting cases of this
model are the QSSEP and “all-to-all” model, respectively
α = 0 and α → ∞.

For the long-range hopping the expression of the re-
tarded(advanced) self-energy is



R(A)
j,k (t, t ′) = ∓δ j,kδ(t − t ′)

i

2

∑
l 
= j

γLR

Nα| j − l|α . (60)

As before, injecting the bare propagators (30), (31), and (60)
in (25) yields GR(A). As illustrated in Fig. 15 in Appendix
C 3, this form of the self-energy is equivalent to the one
derived for the dephasing model (41), with the only difference
that the effective dephasing rate γ becomes site-dependent
because of the presence of boundaries connected to reservoirs.
We verified that the exponential convergence of the spectral
function illustrated in Fig. 8, equally applies, as expected, for
this model as well.
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FIG. 12. Scaling of the linear response current as a function
of the system size N , for varying power-law coefficients α in the
long-range hopping Hamiltonian (59). The saturation of JLRH to finite
values, for α � 1, signals a ballistic regime of transport, which
contrasts with the diffusive regime observed for α 	 1, where JLRH

vanishes as N−1, as highlighted by the black-dashed line.

The M matrix is

Mj,k =
∑
l 
=k

∫
dω

2π
GR

j,l (ω)GA
l, j (ω)

γLR

Nα|k − l|α , (61)

which combined to (33) yields GK .
In the absence of coherent hopping, there is a simple

argument to conjecture a phase transition in the transport
properties of the system at α = 3. If one considers the stochas-
tic process (59) alone, its average has a simple interpretation
as a classical Markov process, where the probability for a
fermion at site 0 to jump to site j during a timestep 	t , given
that the target site j is empty, is p j := γLR

Nα | j|α 	t . For a single
particle, this defines a random walk whose variance is given
by v :=∑ j p j j2, which is related to the diffusion constant via
D = v/	t . This diverges at least logarithmically for α � 3.
However, note that there is no simple reasoning to understand
what happens if one were to study the model with the coherent
hopping term as, a priori, a purely classical analysis does not
hold anymore.

For the numerical computations, we fix γLR = 1 and T =
1000 but the results are independent of the latter. In Fig. 12,
we show the dependence of the linear response current with
the system size for different values of α. When α is small, the
current saturates in the N → ∞ limit, while for large values
of α it decays as N−1, as depicted in dashed gray line. This a
signature of a ballistic-to-diffusive transition that occurs at a
finite value of α.

To characterize this transition further, we look at the order
parameter D−1 = − limN→∞ ∇n/J . For diffusive systems,
D−1 is the inverse of the diffusion constant and should be zero
for ballistic systems. In Appendix E, we discuss the numer-
ical fitting required to obtain D−1 from a finite-size scaling
analysis. D−1 undergoes a second-order phase transition at a
critical power αc ≈ 2.87 (see the dark-blue dots in Fig. 13).
When approaching the transition from the diffusive region,
the diffusion constant diverges as D ∼ (α − αc)1.21 (see the

FIG. 13. Second-order phase transition in the long-range hop-
ping of D−1 = − limN→∞ ∇n/JLRH as a function of α and γLR = 1.
Dots represent the numerical solution of (37) while full lines depict
the 1/N expansion’s predictions; both results overlap. The N → ∞
limit is obtained via the fitting procedure detailed in Appendix E. The
gray-dashed line highlights the divergence of the diffusion constant
as D ∼ (α − αc )1.21.

gray-dashed line in Fig. 13). It is quite remarkable and coun-
terintuitive that setting τ 
= 0 pushes the diffusive regime to
values of α < 3 instead of the opposite. A naive reasoning
would suggest that the addition of a coherent hopping term
would push the ballistic phase to values of α larger than
the classical estimate (α = 3), as a finite τ would favor the
coherent propagation of single particles across the system. We
observe that the opposite is surprisingly true, and we leave the
exploration of this effect to future investigations.

1. 1/N expansion

For α > αc, the 1/N expansion is valid and we can com-
pute D−1 in the limit of infinite temperature. The action in the
infinite system size is again of the form (48) and the lifetime
is fixed by (60).

Unlike the previous models, there is no simple analytic ex-
pression for the diffusion constant since its derivation depends
on the system size. We provide a detailed derivation of the
diffusive current in Appendix C. In Fig. 13, we depict the
results of the 1/N expansion for various system sizes (full
lines) and overlap them with the numeric solution of (37)
(dots). Both methods agree up to machine precision, which
may be an indication that the 1/N perturbative approach is
surprisingly exact even in the ballistic regime, α < αc.

As already highlighted above, the interplay between trans-
port and coherence gives rise to a rich physics in the
long-range hopping model, but understanding it in depth is
beyond the goals of this paper and will be addressed in a
subsequent work.

V. CONCLUSION

In this paper, we provided a comprehensive analysis of
the large system size properties of diffusive quantum sys-
tems driven out-of-equilibrium by boundary reservoirs. In
particular, we showed that diffusive quantum systems can be
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described by an effective and simple equilibrated Gaussian
theory, which allows a systematic way to compute their dif-
fusive transport properties via an expansion in the inverse
system size. We illustrated the correctness of our 1/N ex-
pansion by comparing to exact results we obtained, using
a self-consistent Born method, for a large class of quantum
stochastic Hamiltonians, which show diffusive behavior. In
particular, the self-consistent approach allowed us to explic-
itly derive the structure of the effective Gaussian theory, which
consists of decoupled sites with a finite lifetime and where the
effective equilibration and diffusivity is entirely encoded in
the Keldysh component of local correlations.

As an illustration of the effectiveness of our approach,
we computed the current in three models that have been
of interest in the recent literature: the dephasing model, the
QSSEP, and a model with stochastic long-range hopping.
For the dephasing model and the QSSEP, we illustrated the
ability of our approach to extend the study of transport to
situations with boundaries at finite temperatures and arbitrary
chemical potentials. This allowed us to show how dissipative
processes restore effective infinite temperature behavior in
the bulk and explicitly derive the effective Gaussian theory
via a coarse-graining procedure. For the long-range hopping
model, our analysis unveiled that coherent hopping processes
trigger diffusive behavior in regimes where transport would
be ballistic in the exclusive presence of stochastic long-range
hopping. This counter-intuitive phenomenon is a remarkable
example of the nontrivial interplay between coherent and dis-
sipative dynamics in open quantum systems, which could be
efficiently addressed based on the self-consistent approach.

The validity of the self-consistent Born approximation for
our class of stochastic Hamiltonians provides in principle the
solution to the noisy version of any model whose bare action is
Gaussian. Our proof is not limited by stationary behavior or by
the one-dimensional geometry of the problems addressed in
this paper, but can be extended to time-dependent and higher
dimensional problems as well. This possibility opens interest-
ing perspectives for the investigation of phenomena in a large
class of problems. Extension of our approach could be devised
to study quantum asymmetric exclusion processes [109–111],
spin and heat transport, the dynamics after a quench, fluc-
tuations on top and relaxation to stationary states and their
extensions to ladder geometries or with nontrivial topological
structure. These settings have been for the moment largely
untractable, or were solved by case by case methods, for
which we provided here an unified framework.

An important issue raised by our work consists in showing
whether our description equally holds and provides technical
advantage for studying the emergence of resistive behavior
triggered by intrinsic many-body interactions with unitary dy-
namics, where the breaking of integrability leads to diffusive
transport [1–4,18–23]. A priori, the arguments presented in
Section II apply for any quantum systems, which follows a
local Fick’s law and, as such, they have the potential for very
broad applications. Additionally, it is commonly accepted that
the phenomenology of diffusion is associated with integrabil-
ity breaking and subsequent approach to thermal equilibrium
[112–116]. Understanding if and how our approach can help
make this link clearer is an exciting open question. In this
respect, we also note that, because of the existing mapping

between the Fermi-Hubbard and the dephasing model [29],
the self-consistent Born approximation allows to compute
exact quantities in the Fermi-Hubbard model. As far as we
know, exact solutions for this model were only obtained in
the framework of the Bethe ansatz and it is thus interesting
that a seemingly unrelated approach allows to obtain exact
quantities as well. Whether a connection exists between the
two approaches and whether the exact summation allows to
compute quantities out of reach of the Bethe ansatz are inter-
esting open questions.

Note added. We also thank X. Turkeshi and M. Schir for
making us aware of their work [103] before publication, where
a study of the dephasing model from the point of view of
Green’s function has also been performed.

ACKNOWLEDGMENTS

We thank L. Mazza for useful suggestions during the
writing of the manuscript. This work has been supported
by the Swiss National Science Foundation under Division
II. J.S.F. and M.F. acknowledge support from the FNS/SNF
Ambizione Grant No. PZ00P2_174038.

APPENDIX A: UNRAVELING TO CONTINUOUS
MEASUREMENT

In this Appendix, we discuss the unraveling of Eq. (12) to
a quantum stochastic differential equation describing a sys-
tem under continuous monitoring. In the Itō prescription the
stochastic equation of motion of a quantum system subject to
continuous measurement of an observable O + O† at rate γ is
given by [93]

dρ = L0(ρ) + γ

2
LO(ρ) +

√
γ

2
DO(ρ)dBt (A1)

where L0 describes the dynamics in absence of measure-
ment, LO(ρ) = (OρO† − 1

2 (O†Oρ + ρO†O)) and DO(ρ) =
Oρ + ρO† − ρtr(Oρ + ρO†). If we assume that at each link
we have two independent measurement processes 1 and 2
with the same rate 2γi, j and O1,i, j := c†

j ci and O2,i, j := ic†
j ci.

The corresponding measured observables are O1,i, j + O†
1,i, j =

c†
j ci + c†

i c j and O2,i, j + O†
2,i, j = i(c†

j ci − c†
i c j ), namely the

so-called bond density and the current. It is straightforward
to see that averaging out (A1), we get (12) again.

APPENDIX B: PROOF OF THE NONCROSSING RULE

We want to prove that for all stochastic Hamiltonians of
the form given by (15), the only nonvanishing diagrams in
the averaged perturbative expansion of the retarded, advanced
and Keldysh Green functions are those for which there is no
crossing.

This statement only relies on the causality structure of the
retarded and advanced Green functions, i.e.,

GR(t, t ′) = 0 if t < t ′, (B1)

GA(t, t ′) = 0ift > t′. (B2)

Let 〈•〉0 denote the average with respect to a quadratic theory.
First, we remark that the causality structure of a given propa-
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FIG. 14. All possible crossings for the Keldysh component of
the Green’s function with the contracted versions on the right. The
red lines highlight the part of the diagram violating the causality
structure and are responsible for making the diagram vanish.

gator depends only on its incoming edge and outgoing edge,
and thus

G(t, t ′) := 〈ψ1(t ) f [ψ1, ψ̄1, ψ2, ψ̄2]ψ̄1(t ′)〉0 = 0 for t < t ′,
(B3)

G′(t, t ′) := 〈ψ2(t ) f [ψ1, ψ̄1, ψ2, ψ̄2]ψ̄2(t ′)〉0 = 0 for t > t ′.
(B4)

where f [ψ1, ψ̄1, ψ2, ψ̄2] is an arbitrary polynomial in the
Grassman variables coming from the expansion of the
stochastic action. This is straightforward to show starting from
the action (22): starting from an incoming full (dashed) line,
one cannot switch at any point to a dashed (full) line. Hence,
the causality structure is preserved for each line and thus for
the whole propagator. Direct inspection of these diagrams
show that there cannot be any crossing when contracting
the noise terms, as it would lead to a contradiction in the
time-orderings. There is only a single one particle irreducible
diagram made of a single loop. This establishes the noncross-
ing result for the retarded and advanced components.

For the Keldysh components, a case by case examination
of all possible crossings that are depicted on Fig. 14 where the
labels A, B,C, D denote generic product of free propagators is
needed. For each one of these diagrams, there is always a sub-
part that shows an incompatibility (shown in red in Fig. 14) in
the time orderings causing the whole diagram to vanish. This
establishes the noncrossing result for the Keldysh propagator.

APPENDIX C: COMPUTATION OF THE CURRENT IN THE
1/N EXPANSION

In this Appendix, we compute the current in the dephasing,
QSSEP, and long-range model using the perturbative theory in
inverse system size presented in Sec. II.

1. Dephasing model

For the dephasing model, the definition of the current in the
bulk from site j to j + 1 is given by

Ĵ j = iτ (c†
j+1c j − c†

j c j+1). (C1)

The expectation value of Ĵ j in the stationary state is given by

Jj (t ) := tr(Ĵ jρt ) = iτ 〈ψ̄+
j+1(t )ψ+

j (t ) − ψ̄+
j (t )ψ+

j+1(t )〉
= i

τ

2

〈(
ψ1

j+1ψ̄
1
j + ψ1

j+1ψ̄
2
j + ψ2

j+1ψ̄
2
j

− (ψ1
j ψ̄

1
j+1 + ψ1

j ψ̄
2
j+1 + ψ2

j ψ̄
2
j+1

))
t

〉
(C2)

where we used the Larkin rotation and removed the terms
ψ2ψ̄1 as they are always 0 for causality reasons.

Using the action associated to the coherent jump Sτ

Sτ = − τ

∫
dt ′∑

j

(
ψ̄1

j ψ
1
j+1 + ψ̄2

j ψ
2
j+1

+ ψ̄1
j+1ψ

1
j + ψ̄2

j+1ψ
2
j

)
t ′ (C3)

we get, from (49), to leading order in 1
N :

Jj (t ) = τ 2

2

∫
dt ′〈(ψ1

j+1ψ̄
1
j + ψ1

j+1ψ̄
2
j + ψ2

j+1ψ̄
2
j

− (ψ1
j ψ̄

1
j+1 + ψ1

j ψ̄
2
j+1 + ψ2

j ψ̄
2
j+1)
)

t

× (ψ̄1
j ψ

1
j+1 + ψ̄2

j ψ
2
j+1 + ψ̄1

j+1ψ
1
j + ψ̄2

j+1ψ
2
j

)
t ′
〉
∞
(C4)

where 〈〉∞ means the average with respect to the bare action
in the infinite size limit, where all the sites are uncorrelated.

Using Wick’s theorem and that 〈ψa
j ψ̄

b
j+1〉∞ = 0, the previ-

ous equation greatly simplifies:

Jj = − τ 2

2

∫
dω

2π

(
GR

j+1, j+1(ω)GK
j, j (ω)

+ GA
j, j (ω)GK

j+1, j+1(ω)

− GR
j, j (ω)GK

j+1, j+1(ω) − GA
j+1, j+1(ω)GK

j, j (ω)
)

(C5)

We can now use the bare action of individual sites (in presence
of the dephasing noise):

S j =
∫

dω

2π
(ψ̄1

j , ψ̄
2
j )

(
ω + i γDph

2 −i(2n j − 1)γDph

0 ω − i γDph

2

)(
ψ1

j

ψ2
j

)
(C6)

to obtain the explicit expression of the current

Jj = τ 2
∫

dω

2π

(
γDph

(ω2 + ( γDph

2 )2)2

)
iγDph

2
(2i(n j+1 − n j ))

= − 2τ 2

γDph
∇n j (C7)

from which we immediately read the diffusion constant D =
2τ 2

γDph
.

2. QSSEP

For the QSSEP, the self-energy for an individual site is

 j (ω) = γQS − γQS

2 (δ j,1 + δ j,N ). The current in the bulk is
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FIG. 15. Dependence on the site index j of the self-energy in
the long-range model for a chain of N = 100 sites and different
values of the exponent α of the noise, see (C13). The α → ∞ limit
corresponds to the QSSEP.

given by

Ĵ j = γQS

2
(n̂ j − n̂ j+1) + iτ (c†

j c j+1 − c†
j+1c j ) (C8)

The first part of the current already scales like 1/N at order 0
in the Sτ expansion. The second term is evaluated in the same
fashion as for the dephasing model. This leads to

Jj = −
(

γQS

2
+ 2τ 2

γQS

)
∇n j + O

(
1

N2

)
(C9)

and D = γQS

2 + 2τ 2

γQS
.

3. Long-range hopping

For the long-range hopping model, the local current is
defined from the local conservation equation of the particle
number :

d

dt
n̂ j := Ĵ inc

j − Ĵout
j (C10)

with

Ĵ inc
j =

∑
k< j

γLR

Nα|k − j|α (n̂k − n̂ j ) + iτ (c†
j−1c j − c†

j c j−1),

(C11)

FIG. 17. Diffusion constant of the dephasing model at different
(T, γ ) values. In general, the diffusion constant decays with the
inverse system size, which we exploit to extract the N → ∞ limit
from a nonlinear fit, dashed lines.

Ĵout
j =

∑
k> j

γLR

Nα|k − j|α (n̂ j − n̂k ) + iτ (c†
j c j+1 − c†

j+1c j ).

(C12)

Recall the expression of the self-energy at site j (60):


 j = γLR

2Nα

∑
k 
= j

1

|k − j|α . (C13)

which is depicted in Fig. 15.
To get the current with the 1/N expansion, we take, as for

the previous model, the 0th order term in the first term in the
expression of the current and the first-order term in the second
part. We obtain

J inc
j =

∑
k< j

γLR

Nα|k − j|α (nk − n j )

+ 2τ 2


 j−1 + 
 j
(n j−1 − n j ) for j ∈ [2, N], (C14)

Ĵout
j =

∑
k> j

γLR

Nα|k − j|α (n j − nk )

+ iτ (n j − n j+1) for j ∈ [1, N − 1]. (C15)

For simplicity, we give in this paper only the expressions
for the infinite temperature and chemical potential boundary

FIG. 16. Scaling of the current as a function of the system size in the dephasing model. From left to right: γ = 10−3, 10−1, 101, 103. As
the dephasing increases, diffusion sets in at smaller system sizes. The vanishing dependence of J with the temperature indicates the crossover
into the Rγ region (46).
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conditions, which amount to take Lindblad injecting and ex-
tracting terms (see [77]). The current at the boundaries is then
given by

J in
1 = αL(1 − n1) − βLn1, (C16)

Jout
N = −αR(1 − nN ) + βRnN . (C17)

In the stationary state we have that ∀ j ∈ [1, N], J in
j = Jout

j ,
which leads to the following system of linear equation to solve
in order to get the density profile:

M.�n = �v (C18)

where �n and �v are N-dimensional vectors with elements nj

and M is an N × N matrix such that

M j,k = γLR

Nα|k − j|α (1 − δ j,k )

+ 2τ 2


 j + 
 j+1
(δk, j+1 − δ j,k (1 − δ j,N ))

+ 2τ 2


 j + 
 j−1
(δk, j−1 − δ j,k (1 − δ j,1))

− δ j,k

⎛
⎝∑

k 
= j

γLR

Nα|k − j|α

⎞
⎠

− δ j,kδ j,1(αL + βL ) − δ j,kδ j,N (αR + βR) (C19)

and

v j = −δ j,1αL − δ j,NαR. (C20)

APPENDIX D: NUMERICAL IMPLEMENTATION

In this Appendix, we present some important elements
of the numerical implementation. The first step to compute
any presented result is to stabilize and efficiently evaluate
GR(A)(ω) at any ω. For the case of a uniform stochastic
noise (e.g., free system, dephasing), a naive use of (42)
would require evaluating the ratio of two polynomials of order
O(N ), a notoriously difficult task for large N using floating
point arithmetics. A possible solution would be to resort to
arbitrary-precision arithmetic but this would entail a heavy
speed cost.

We used for the results of the present paper the fact that
GR(A)(ω) can be written as a ratio of polynomials and there-
fore, decomposed into a product of monomials GR(ω) ∼∏

j (ω − z j )/
∏

i(ω − pi ). To efficiently find the zeros and
poles of GR [117], we note that the inverse of GR is a simple
tridiagonal matrix with a generic form

T −1(ω) =

⎛
⎜⎜⎜⎝

ω + a1 b1 0 0

b∗
1 ω + a2

. . . 0

0 . . .
. . . bN−1

0 0 b∗
N−1 ω + aN

⎞
⎟⎟⎟⎠ (D1)

whose inverse is given by [118]

Ti, j (ω) =
⎧⎨
⎩

(−1)i+ jbi...b j−1θi−1φ j+1/θL i < j
θi−1φ j+1/θL i = j
(−1)i+ jb∗

j ...b
∗
i−1θ j−1φi+1/θL i > j

(D2)

where θi = (ω + ai )θi−1 − |bi−1|2θi−2 and φi = (ω +
ai )φi+1 − |bi|2φi+2. Therefore, computing the poles and
zeros of GR requires computing all the zeros of the sequences
{φi, θi}L+1

i=0 , a task that can be done efficiently. If the matrix
is invariant under a reflection along the anti-diagonal, it is
enough to compute a single sequence instead, φi = θL+1−i.
This is always the case in the models studied in the present
paper. Since ai does not depend on ω, φi is a polynomial
of degree i with the initial conditions defined as φ0 = 1 and
φ1 = ω + a1. One can efficiently find all the roots {zk}i

k=1 of
φi using a Weierstrass-like recursive method [119,120], see
Eqs. (D3) and (D4) for a second and fourth-order scheme

z(2)
k = zk − Wk∏

k 
= j (zk − z j )
= zk − C(2)

k (D3)

z(4)
k = zk − Wk

1 −∑k 
= j
Wj

zk−Wk−z j

= zk − C(4)
k

Wk = φi(zk ) (D4)

where Wk is the Weierstrass weight. We chose these
derivative-free schemes to avoid computing explicit deriva-
tives that would slow down the computation. Choosing the
correct initial condition is critical to the success of the scheme.
To find the roots of φi, we initialize the scheme with the
roots of φi−1 plus an extra root. We empirically found that
the extra root should have a random position close to the
middle root (after sorting by the real part) to guarantee the
best convergence. This initial choice can still fail when some
roots are located very far way from the others, which oc-
curs for example for the model QSSEP. This happens when,
at some step in the iteration, two roots coalesce and C(i)

k
diverges strongly. In order to stabilize this divergence, we
introduce a damping factor κ that suppresses large corrections
z(k)

i = zi − C(k)
i e− max |C(k)

i |/κ . κ is a purely empirically value,
which we typically take as κ = max(|b|). The role of κ is to
slow down the algorithm and allow the coalescing roots to
separate. Our root-searching algorithm has thus two parts: a
quick search using a second-order damped scheme, followed
by a fourth-order damped scheme to precisely locate the roots.
Once all the roots are recovered, we generate the new matrix
T̃ obtained from the estimates of the roots. We consider that T̃
is a good estimate only when max |T −1(0) · T̃ −1(0)| < 10−10.
With the exception of the QSSEP, we find a typical value
max |T −1(0) · T̃ −1(0)| ∼ 10−13 for any system size.

Once the poles and zeros of GR(A)(ω) are computed, we
proceed to compute GK using (33). To evaluate the M matrix,
we resort to the residue theorem. If the poles of GR(A) are sim-
ple poles, the sum over residues can be computed in parallel
only requiring the evaluation of the monomials {(ω − zk )}. We
note that while each monomial (ω − zk ) is of order unity, a se-
quential multiplication can lead to overflown errors in the limit
of large N . To avoid this problem, we multiply the monomials
at random. If the algorithm fails to, within machine precision,
separate two roots, the residue is computed from the contour
integral instead.

The last step to compute GK and the current J , is to perform
the frequency integral convoluted with cosh−2( ω−μ

2T ). This is
done by evaluating the integral using a discrete integration
scheme instead of residue theorem. Since the thermal de-
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FIG. 18. Density profiles of a chain of size N = 2000 in the
diffusive regime for the different regions Rτ,γ ,T shown in Fig. 9. The
breaking of Fick’s law is limited to a nonextensive number of sites
near the edge.

pendence is only encoded in the cosh−2( ω−μ

2T ), discretizing
the integral allows us deal with different (T, μ) values at
no significant cost. We carefully verify that the mesh is fine
enough to guarantee convergence of the integral at any (T, μ).

APPENDIX E: FINITE-SIZE SCALING

In this section, we detail the finite-size scaling analysis
necessary to plot Figs. 9, 11, 13.

The presence of a dephasing term is not enough to ensure
that the system behaves diffusely at any system size. Signa-
tures of diffusive transport such as J ∼ 1/N , only emerge at a
characteristic dephasing length, N∗ ∼ 1/γ . At short system
sizes, or short time-scales, the system behaves as if it was
ballistic. In Fig. 16 we highlight this ballistic-to-diffusive tran-
sition for different values of the dephasing and temperature
in the baths. At small dephasing values, one cannot reliably
extract the diffusion constant by fitting a a straight line to
Fig. 16. Instead, to extract the relevant information in the
N → ∞, we use the fact that the diffusion constant has itself a
1/N scaling [20] when measured in the middle of the chain. In
the QSSEP and dephasing model, we use this result to perform
nonlinear fits to D as shown in Fig. 17.

In this figure we plot the diffusion constant of the de-
phasing model as measured in the middle of the chain for
increasing system sizes and different (T, μ) values. The
dashed lines depict the nonlinear fit of the function a +
b/(N + c) with a, b, c fitting parameters. We find that most
observables in these models exhibit 1/N corrections as dis-
cussed in [20]. The speed of convergence however depends on
the point in the phase space (T, μ), with region Rτ (see Fig. 9)
showing the slowest convergence. This is a consequence of
the effects of the bath discussed in the main text. Deep in the
τ -dominated regime, we observe the breaking of Fick’s law
near the edges as shown in Fig. 18.

Since this effect only occurs in a finite portion of the system
close to the edges, the convergence is only slowed down. We
thus evaluate D in the middle of the chain to mitigate its effects
and get a better accuracy.

For the long-range model, one needs a different approach
to obtain the N → ∞ limit correctly, especially when close

FIG. 19. Inverse of the diffusion constant in the long-range
model for different powers of α. Dashed lines are fits to D−1 =
(aH (α−b+1)

N+|c| )−1. The results of the fitting are depicted in the inset.

to the ballistic-diffusive transition described in the main text.
A tentative form for the finite size extrapolation is provided
by the solution of the diffusion equation for single parti-
cle under a random walk with long-range hopping discussed
in Sec. IV C, which gives a diffusion constant D = H (α−2)

L ,
where H (r)

x is the generalized Harmonic number. We find that
a fit D−1 = (aH (α−b+1)

N+|c| )−1, correctly captures the finite-size
dependence of D−1 for all α values. The fitting parameters
a, b, c respectively describe the amplitude, critical exponent
and possible finite-size corrections. In Fig. 19, we depict D−1

against the result of the fit, respectively dots and dashed lines.
The best fitting parameters are plotted in the inset. The quality
of the fit allows us to conjecture that, at the transition point, the
diffusion constant diverges logarithmically DLR(α = αc) ∼
H (1)

N → log(N ).

APPENDIX F: COARSE-GRAIN LENGTH a

In this section, we analytically estimate the coarse-grain
length a from the correlation length of the dephasing model.
Due to Eq. (9), it is enough to estimate a from a single Green
function, in this case the retarded component. The starting
point is the analytic expression of the elements GR

i, j in the
bulk of the chain. For large systems, the boundaries become
irrelevant and the good basis of the problem is the momenta
basis. In k space, the self-energy takes a diagonal form


R
k,k′ =

(
− iγ

2

)
δk,k′ . (F1)

For the QSSEP, there are cross-diagonal terms in momentum
that vanish as 1/L and can be safely ignored. Since both self-
energy and Hamiltonian are diagonal in the momenta basis,
one has

GR
k,k′ = δk,k′

1

ω − εk − 
k,k′
, (F2)

where εk = 2τ cos(k) is the eigenenergy of the bulk Hamilto-
nian. To find the retarded function in position space, we take
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the Fourier transform with the continuum limit for k

GR
r,r′ =

∫
dk

2π

e−ik(r−r′ )

ω − 2τ cos k + iγ /2
. (F3)

The integral can be solved using the residue theorem and,
after some lengthy yet simple manipulations, we find a com-
pact formula

GR
r,r′ = i|r−r′|−1

2τ cos y
eiy|r−r′ |, (F4)

where y = arcsin ω+iγ /2
2τ

is a complex variable with
Im(y(ω)) > 0. Therefore, in the dephasing model an estimate
for the correlation length is given by

ξ = 1

min
(
Im
(

arcsin ω+iγ /2
2τ

)) = 1

arcsinh γ

4τ

, (F5)

In the limit of small dephasing γ , we have ξ = 4τ/γ , which
serves as an estimate for the coarse-grain length a ∼ τ/γ . As
expected, a should be of the order of the dephasing length
N∗ ∼ 1/γ .
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[31] M. Žnidarič, Dephasing-induced diffusive transport in the
anisotropic Heisenberg model, New J. Phys. 12, 043001
(2010).

[32] V. Eisler, Crossover between ballistic and diffusive transport:
The quantum exclusion process, J. Stat. Mech.: Theory Exp.
(2011) 06007.

[33] M. Bauer, D. Bernard, and T. Jin, Stochastic dissipative
quantum spin chains (I) : Quantum fluctuating discrete hydro-
dynamics, SciPost Phys. 3, 033 (2017).

[34] D. Bernard and T. Jin, Open Quantum Symmetric Simple
Exclusion Process, Phys. Rev. Lett. 123, 080601 (2019).

[35] A. Bastianello, J. De Nardis, and A. De Luca, General-
ized hydrodynamics with dephasing noise, Phys. Rev. B 102,
161110(R) (2020).

[36] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics, Springer Series in Syn-
ergetics (Springer, New York, 2000).

[37] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[38] H. Wichterich, M. J. Henrich, H.-P. Breuer, J. Gemmer, and M.
Michel, Modeling heat transport through completely positive
maps, Phys. Rev. E 76, 031115 (2007).

[39] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Com-
pletely positive dynamical semigroups of N-level systems, J.
Math. Phys. 17, 821 (1976).

[40] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[41] B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced
Phase Transitions in the Dynamics of Entanglement, Phys.
Rev. X 9, 031009 (2019).

[42] O. Alberton, M. Buchhold, and S. Diehl, Entanglement
Transition in a Monitored Free-Fermion Chain: From Ex-
tended Criticality to Area Law, Phys. Rev. Lett. 126, 170602
(2021).

[43] M. Buchhold, Y. Minoguchi, A. Altland, and S. Diehl, Effec-
tive Theory for the Measurement-Induced Phase Transition of
Dirac Fermions, Phys. Rev. X 11, 041004 (2021).

[44] X. Cao, A. Tilloy, and A. De Luca, Entanglement in a fermion
chain under continuous monitoring, SciPost Phys. 7, 024
(2019).

[45] T. Müller, S. Diehl, and M. Buchhold, Measurement-induced
dark state phase transitions in long-ranged fermion systems,
arXiv:2105.08076.

[46] P. Zhang, C. Liu, S.-K. Jian, and X. Chen, Universal entangle-
ment transitions of free fermions with long-range non-unitary
dynamics, arXiv:2105.08895.

[47] F. Tonielli, R. Fazio, S. Diehl, and J. Marino, Orthogonal-
ity Catastrophe in Dissipative Quantum Many-Body Systems,
Phys. Rev. Lett. 122, 040604 (2019).

[48] M. T. Mitchison, T. Fogarty, G. Guarnieri, S. Campbell, T.
Busch, and J. Goold, In Situ Thermometry of a Cold Fermi
Gas via Dephasing Impurities, Phys. Rev. Lett. 125, 080402
(2020).

[49] P. E. Dolgirev, J. Marino, D. Sels, and E. Demler, Non-
Gaussian correlations imprinted by local dephasing in
fermionic wires, Phys. Rev. B 102, 100301(R) (2020).

[50] V. Alba, Unbounded entanglement production via a dissipative
impurity, SciPost Phys. 12, 011 (2022).

[51] S. Wolff, J.-S. Bernier, D. Poletti, A. Sheikhan, and C. Kollath,

Evolution of two-time correlations in dissipative quantum spin
systems: Aging and hierarchical dynamics, Phys. Rev. B 100,
165144 (2019).

[52] A. M. Lacerda, J. Goold, and G. T. Landi, Dephasing enhanced
transport in boundary-driven quasiperiodic chains, Phys. Rev.
B 104, 174203 (2021).

[53] D. Roberts and A. A. Clerk, Driven-Dissipative Quantum Kerr
Resonators: New Exact Solutions, Photon Blockade and Quan-
tum Bistability, Phys. Rev. X 10, 021022 (2020).

[54] H. Fröml, A. Chiocchetta, C. Kollath, and S. Diehl,
Fluctuation-Induced Quantum Zeno Effect, Phys. Rev. Lett.
122, 040402 (2019).

[55] D. Rossini, A. Ghermaoui, M. B. Aguilera, R. Vatré, R.
Bouganne, J. Beugnon, F. Gerbier, and L. Mazza, Strong cor-
relations in lossy one-dimensional quantum gases: From the
quantum zeno effect to the generalized Gibbs ensemble, Phys.
Rev. A 103, L060201 (2021).

[56] K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M.
Ueda, and N. Kawakami, Theory of Non-Hermitian Fermionic
Superfluidity with a Complex-Valued Interaction, Phys. Rev.
Lett. 123, 123601 (2019).

[57] T. Müller, M. Gievers, H. Fröml, S. Diehl, and A. Chiocchetta,
Shape effects of localized losses in quantum wires: Dissipative
resonances and nonequilibrium universality, Phys. Rev. B 104,
155431 (2021).

[58] N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner,
and T. Esslinger, Dissipation-induced structural instability
and chiral dynamics in a quantum gas, Science 366, 1496
(2019).

[59] H. Pichler, A. J. Daley, and P. Zoller, Nonequilibrium dy-
namics of bosonic atoms in optical lattices: Decoherence of
many-body states due to spontaneous emission, Phys. Rev. A
82, 063605 (2010).

[60] C.-M. Halati, A. Sheikhan, H. Ritsch, and C. Kollath, Numer-
ically Exact Treatment of Many-Body Self-Organization in a
Cavity, Phys. Rev. Lett. 125, 093604 (2020).

[61] F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum computa-
tion and quantum-state engineering driven by dissipation, Nat.
Phys. 5, 633 (2009).

[62] A. Sommer, M. Ku, G. Roati, and M. W. Zwierlein, Univer-
sal spin transport in a strongly interacting Fermi gas, Nature
(London) 472, 201 (2011).

[63] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E.
Demler, and W. Ketterle, Spin transport in a tunable Heisen-
berg model realized with ultracold atoms, Nature (London)
588, 403 (2020).

[64] P. N. Jepsen, W. W. Ho, J. Amato-Grill, I. Dimitrova, E.
Demler, and W. Ketterle, Transverse spin dynamics in the
anisotropic Heisenberg model realized with ultracold atoms,
Phys. Rev. X 11, 041054 (2021).

[65] R. Bouganne, M. B. Aguilera, A. Ghermaoui, J. Beugnon, and
F. Gerbier, Anomalous decay of coherence in a dissipative
many-body system, Nat. Phys. 16, 21 (2020).

[66] M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida,
Dynamics in the S=1/2 One-Dimensional Antiferromagnet
Sr2 CuO3 via 63Cu NMR, Phys. Rev. Lett. 76, 4612 (1996).

[67] K. R. Thurber, A. W. Hunt, T. Imai, and F. C. Chou, 17O NMR
Study of q = 0 Spin Excitations in a Nearly Ideal S = 1/2
1D Heisenberg Antiferromagnet, Sr2CuO3, up to 800 K, Phys.
Rev. Lett. 87, 247202 (2001).

013109-19

https://doi.org/10.1088/1367-2630/12/4/043001
https://doi.org/10.1088/1742-5468/2011/06/P06007
https://doi.org/10.21468/SciPostPhys.3.5.033
https://doi.org/10.1103/PhysRevLett.123.080601
https://doi.org/10.1103/PhysRevB.102.161110
https://doi.org/10.1103/PhysRevE.76.031115
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevLett.126.170602
https://doi.org/10.1103/PhysRevX.11.041004
https://doi.org/10.21468/SciPostPhys.7.2.024
http://arxiv.org/abs/arXiv:2105.08076
http://arxiv.org/abs/arXiv:2105.08895
https://doi.org/10.1103/PhysRevLett.122.040604
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.1103/PhysRevB.102.100301
https://doi.org/10.21468/SciPostPhys.12.1.011
https://doi.org/10.1103/PhysRevB.100.165144
https://doi.org/10.1103/PhysRevB.104.174203
https://doi.org/10.1103/PhysRevX.10.021022
https://doi.org/10.1103/PhysRevLett.122.040402
https://doi.org/10.1103/PhysRevA.103.L060201
https://doi.org/10.1103/PhysRevLett.123.123601
https://doi.org/10.1103/PhysRevB.104.155431
https://doi.org/10.1126/science.aaw4465
https://doi.org/10.1103/PhysRevA.82.063605
https://doi.org/10.1103/PhysRevLett.125.093604
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nature09989
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/PhysRevX.11.041054
https://doi.org/10.1038/s41567-019-0678-2
https://doi.org/10.1103/PhysRevLett.76.4612
https://doi.org/10.1103/PhysRevLett.87.247202


JIN, FERREIRA, FILIPPONE, AND GIAMARCHI PHYSICAL REVIEW RESEARCH 4, 013109 (2022)

[68] F. L. Pratt, S. J. Blundell, T. Lancaster, C. Baines, and S.
Takagi, Low-Temperature Spin Diffusion in a Highly Ideal
S = 1/2 Heisenberg Antiferromagnetic Chain Studied by
Muon Spin Relaxation, Phys. Rev. Lett. 96, 247203 (2006).

[69] H. Maeter, A. A. Zvyagin, H. Luetkens, G. Pascua, Z.
Shermadini, R. Saint-Martin, A. Revcolevschi, C. Hess, B.
Büchner, and H.-H. Klauss, Low temperature ballistic spin
transport in the S= 1/2 antiferromagnetic Heisenberg chain
compound SrCuO2, J. Phys.: Condens. Matter 25, 365601
(2013).

[70] A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B.
Stone, G. E. Granroth, J. E. Moore, and D. A. Tennant, De-
tection of Kardar–Parisi–Zhang hydrodynamics in a quantum
Heisenberg spin-1/2 chain, Nat. Phys. 17, 726 (2021).

[71] C. Zu, F. Machado, B. Ye, S. Choi, B. Kobrin, T. Mittiga,
S. Hsieh, P. Bhattacharyya, M. Markham, D. Twitchen et al.,
Emergent hydrodynamics in a strongly interacting dipolar spin
ensemble, Nature (London) 597, 45 (2021).

[72] P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and
A. P. Mackenzie, Evidence for hydrodynamic electron flow in
PdCoO2, Science 351, 1061 (2016).

[73] L. Ella, A. Rozen, J. Birkbeck, M. Ben-Shalom, D. Perello, J.
Zultak, T. Taniguchi, K. Watanabe, A. K. Geim, S. Ilani, and
J. A. Sulpizio, Simultaneous voltage and current density imag-
ing of flowing electrons in two dimensions, Nat. Nanotechnol.
14, 480 (2019).

[74] J. A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D. J. Perello, D.
Dutta, M. Ben-Shalom, T. Taniguchi, K. Watanabe, T. Holder
et al., Visualizing Poiseuille flow of hydrodynamic electrons,
Nature (London) 576, 75 (2019).

[75] M. Ljubotina, D. Roy, and T. Prosen, Absence of thermaliza-
tion of free systems coupled to gapped interacting reservoirs,
arXiv:2106.08373.

[76] Y. Meir and N. S. Wingreen, Landauer Formula for the Current
Through an Interacting Electron Region, Phys. Rev. Lett. 68,
2512 (1992).

[77] T. Jin, M. Filippone, and T. Giamarchi, Generic transport
formula for a system driven by Markovian reservoirs, Phys.
Rev. B 102, 205131 (2020).

[78] A. Kamenev, Field Theory of Non-Equilibrium Systems (Cam-
bridge University Press, Cambridge, 2011), pp. 1–341.
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