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Caustics in quantum many-body dynamics
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We describe a new class of nonequilibrium quantum many-body phenomena in the form of networks of
caustics that dominate the many-body wave function in the semiclassical regime following a sudden quench. It
includes the light cone-like propagation of correlations as a particular case. Caustics are singularities formed by
the birth and death of waves and form a hierarchy of universal patterns whose natural mathematical description
is via catastrophe theory. Examples in classical waves range from rainbows and gravitational lensing in optics
to tidal bores and rogue waves in hydrodynamics. Quantum many-body caustics are discretized by second
quantization (“quantum catastrophes”) and live in Fock space, which can potentially have many dimensions.
We illustrate these ideas using the Bose Hubbard dimer and trimer models, which are simple enough that
the caustic structure can be elucidated from first principles and yet run the full range from integrable to
nonintegrable dynamics. The dimer gives rise to discretized versions of fold and cusp catastrophes whereas
the trimer allows for higher catastrophes including the codimension-3 hyperbolic and elliptic umbilics, which
are organized by, and projections of, an 8-dimensional corank-2 catastrophe known as X9. These results describe
a hitherto unrecognized form of universality in quantum dynamics organized by singularities that manifest as
strong fluctuations in mode population probabilities.
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I. INTRODUCTION

Despite playing a fundamental role in many-body dy-
namics, the first observations of light cone-like spreading of
correlations were only made recently using ultracold atomic
gases in optical lattices [1–3] and trapped ions [4,5]. These
systems offer long relaxation times, the ability to vary external
potentials and interparticle interactions, and spatially resolved
imaging at the level of single sites/ions. The experiments
proceed by creating a highly nonequilibrium state through a
sudden quench, e.g., by rapidly changing the lattice depth,
and then monitoring the time evolution of site occupations.
This success has been followed up with observations of the
many-body localization transition [6–9] to a non-thermalizing
dynamical phase of matter [10,11] related to localization
in Fock space [12]. Another highly controllable system,
which allows individual site addressing and imaging is pro-
vided by arrays of Rydberg atoms; starting from high-energy
states experiments have revealed the surprising existence of
long-lived periodic revivals [13–15], dubbed “quantum many-
body scars” [16–21]. These discoveries have foundational
implications for our understanding of how isolated quan-
tum systems reach thermal equilibrium [22–25] and whether
nonequilibrium dynamics can display universality akin to
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that seen at equilibrium phase transitions [26–30]. There are
also technological implications because quantum information
processors are themselves out-of-equilibrium many-particle
systems [31].

In this paper we introduce the idea of quantum many-body
caustics. Like the above-mentioned phenomena, caustics oc-
cur in out-of-equilibrium quantum many-body wave functions
but unlike scars, which arise from individual eigenstates, these
come from the interference of multiple eigenstates. Caustics
are the result of wave bifurcations, which are violent events
where waves are born or die. This results in a locally large
amplitude that diverges in the classical (mean-field) limit and
caustics can thus dominate wave fields. Remarkably, certain
shapes of caustic are structurally stable against perturbations
and hence occur generically. These form a hierarchy described
by catastrophe theory [32–34]. They also obey scaling laws in
which each member of the hierarchy has its own set of scal-
ing exponents comprised of Arnold and Berry indices [35].
This universality, like that in equilibrium phase transitions,
ultimately derives from the presence of singularities. In previ-
ous papers we have considered caustics in integrable systems
such as the Bose-Hubbard (BH) dimer (bosonic Josephson
junction) [36–38] and the transverse field Ising model with
infinite-range [39] and short-range [40] interactions, respec-
tively. In particular, the latter paper showed that light-cone
wave fronts on a spin chain are in fact caustics arising from
the coalescence of two waves (fold catastrophe). This allowed
us to predict new properties of cones including a nontrivial
scaling with respect to the spin coupling strength and the
existence of a hierarchy of new structures such as double
cones when the spin-spin coupling symmetry is broken, e.g.,
in the anisotropic XY model where three waves coalesce (cusp
catastrophe).
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The present paper has two goals: firstly to explore higher
catastrophes beyond the fold and cusp in Fock space, and
secondly to see if caustics occur in nonintegrable systems
and hence are a generic feature of many-body wave func-
tions. For this purpose we choose the BH trimer, which is
simple enough to permit exact numerical solutions for mod-
erate particle numbers, and even analytic calculations in the
case of a δ-kicked Hamiltonian, such that the caustics can be
easily identified, and yet is nonintegrable (classically chaotic)
with direct connections to current experiments in optical lat-
tices and spin-1 Bose-Einstein condensates (BECs) [41]. The
power of the catastrophe theory approach, which derives from
its origins in topology, lies in its ability to make robust qualita-
tive predictions for the hierarchy of allowed caustics and their
morphologies. In this paper we verify these mathematically
rigorous predictions with detailed numerical and analytical
calculations.

Some images of caustics are shown in Fig. 1. They were
made by shining laser pointers through water droplets and
photographing the resulting pattern on a screen. These strik-
ing morphologies occur without special tuning: they are
structurally stable and hence occur in “typical” or generic
situations [42,43]. For example, an isolated point focus arising
from a perfect lens is not structurally stable in two or more
dimensions and instead evolves into an extended caustic in the
presence of aberrations. Note that higher catastrophes contain
the lower ones. Indeed, the structurally stable catastrophe in
2D is the cusp and in both panels (a) and (b) we can see, re-
spectively, one and three cusp shapes embedded in these slices
through what are actually patterns in 3D space. The wave
catastrophe dressing the cusp is known as the Pearcey function
[44], and is defined through a so-called “diffraction integral”
[which can be viewed as an elementary form of path integral,
see Eq. (18)] [45]. The three-fold forked pattern seen in panel
(c) of Fig. 1 corresponds to a section of the elliptic umbilic
catastrophe, which can be described by a pair of separable
Airy functions [42]. Zooming out to larger scales the fringes
bunch up so that the caustics appear as singular intersecting
lines with diverging intensity, but at the wavelength scale we
see that they are softened by interference. At the finest scales
(not shown) the interference pattern contains a network of
vortices [35] that we predict are also present in light cones
and many-body caustics more generally.

Everyday optical examples of caustics include rainbows,
bright lines on the bottom of swimming pools, and twinkling
starlight [46]. Less everyday examples include Cherenkov ra-
diation [47,48] and gravitational lensing [49]. Caustics occur
in hydrodynamics as ship wakes (as first understood by Kelvin
[50]), and also as tsunamis [51,52] and tidal bores [53], and
have been identified as one of the causes of freak waves
and extreme events [54–58]. This has inspired recent studies
comparing freak waves in linear and nonlinear optical systems
[59–67]. Cosmology is another field where caustics appear
because smooth distributions of matter evolving under gravity
will generically develop caustics (singularities in the density
distribution) and this has been proposed as an explanation for
the large scale structure of the universe [68,69].

Caustics also occur in quantum waves. Historically, rain-
bows have been studied in nuclear scattering [70], and more
recently have been observed in electron microscopy [71],

FIG. 1. Real optical caustics made by shining a laser pointer
through a water droplet of radius ∼1 mm and photographed on a
screen at a distance of several meters. The droplet has a triangular
perimeter imposed by placing it in a triangle cut out of tape stuck
on a microscope slide. This mimics the triangular Fock space found
in the BH trimer model and leads to the same families of caustics.
Panel (a): Hyperbolic umbilic. Panel (b): Elliptic umbilic. Panel (c):
Elliptic umbilic near its most singular point. What we see in these
photos are slices through three dimensional catastrophes that also
contain lower catastrophes: the hyperbolic umbilic contains a single
cusp (which is the only structurally stable catastrophe in 2D and is
dressed by the Pearcey function wave catastrophe) and the elliptic
umbilic contains three cusps. Taking a 1D slice across a cusp gives
the simplest catastrophe of all, the fold catastrophe (whose wave
pattern is the Airy function), and in fact folds and cusps are the
basic elements in “light cones” in Ising and XY models, see Fig. 2
in Ref. [40]. These images and the methods used to make them were
inspired by the experiments reported in reference [42]. The different
colors arise from using three different color lasers.

atom optics [72–75], and in the experiment described in
reference [76] a cusp caustic was recorded in the time-
dependent atom density distribution of a dilute BEC moving
in a 1D optical lattice. In these examples the matter waves
are adequately described by the single-particle Schrödinger
wave equation, but caustics are not limited to this scenario
and also arise in solutions of the Gross-Pitaevskii equation
(nonlinear Schrödinger equation), which can equally describe
self-interacting BECs [77] and nonlinear optics in a fibre [59].
Nevertheless, these cases still correspond mathematically
to the “classical” wave scenario, i.e., an actual or effec-
tive single-particle wave, whether linear or nonlinear. The
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many-body caustics we study in this paper are a new kind
of object: they live in Fock space, which is fundamentally
discrete. This second quantization is crucial for regulating
the singularities present in the classical (mean-field) limit
[36], and thus they are in the same spirit as quantized phase
singularities in quantum optics [78,79].

The BH dimer and trimer models we focus on here
give rise to dynamical caustics that live in (1+1)- and
(2+1)-dimensional spaces: 1- and 2-dimensional Fock space
plus time, respectively (assuming total number conservation).
Catastrophe theory predicts, and we shall indeed find, that
the dimer displays discretized fold and cusp catastrophes,
which are the simplest two in Thom’s hierarchy, while the
trimer hosts the codimension-3 catastrophes: the hyperbolic
elliptic and umbilic catastrophes. Our results are the first
steps in elaborating the hierarchy of many-body caustics and,
by fully incorporating quantum fluctuations, they go beyond
previous applications of catastrophe theory to many parti-
cle systems such as equilibrium thermodynamic [80,81] and
quantum [82–85] phase transitions in the Lipkin-Meshkov-
Glick and Dicke models, which were limited to mean-field
theory.

The plan for the rest of this paper is as follows: In Sec. II
we present the BH dimer and trimer models and in Sec. III
explain the relevant parts of catastrophe theory, including the
associated interference patterns. In Secs. IV and V we present
a gallery of images of caustics in the dimer and trimer found
using exact numerical solutions of the quantum equations
of motion. However, although we can numerically compute
the wave function for N ∼ 150 particles, we are unable to
obtain analytic mappings onto the canonical catastrophe wave
functions for the trimer because it is non-integrable. In order
to provide some analytic examples, in Sec. VI we instead
study δ-kicked dynamics where the interactions are flashed
on and off such that the mapping can be achieved analytically
(interactions can be engineered in cold atom experiments us-
ing Feshbach resonances, see e.g., Ref. [86]). In Sec. VII we
go beyond the quantum phase model (rigid pendulum model),
which assumes all three modes are significantly occupied, and
find corrections that break circular symmetry in Fock space
in favor of triangular symmetry and identify the particular
subfamily of the X9 catastrophe at work. In order to do this we
introduce a path integral representation for the wave function.
In Sec. VIII we compare repulsive and attractive interactions
and discuss the crucial role interactions play in the formation
of caustics in BH dynamics. Finally, in Sec. IX we give our
conclusions. There are also three appendices, which contain
details of some of the calculations, including a derivation of
the path integral. As the caustics described in this paper live
in Fock space, their main experimental signature would be
singularity dominated fluctuations in mode populations, e.g.,
populations of sites in an optical lattice or populations of
spin states in a spinor gas. Experimental considerations are
discussed mainly in Secs. II and IX.

II. TWO- AND THREE-MODE BOSE-HUBBARD MODELS:
EXPERIMENT AND THEORY

We choose the BH model to illustrate the basic ideas of
many-body caustics because it is a key model in statistical

physics [87,88] that describes interacting bosons hopping on a
lattice, and has been realized in celebrated experiments using
ultracold atoms [89,90]. Due to the ability of these exper-
iments to create sudden quenches, the dynamical states of
the BH model have received ongoing theoretical [24,91–105]
and experimental [1,2,106–113] attention including: studies
of the timescales for many-body quantum revivals and the
establishment of coherence, light-cone-like propagation of
correlations, effective Hamiltonians in periodically driven
“Floquet” systems, and relaxation to equilibrium, to name
just a few. The BH dimer and trimer models are particular
cases that consider two and three lattice sites (modes), re-
spectively. The dimer describes bosonic Josephson junctions
[114–121] that have been realized experimentally with BECs
trapped in double-well potentials [122–127], and also with
spinor BECs exhibiting the internal version of the Josephson
effect [128]. Additionally, the same Hamiltonian describes
trapped ions with two internal states and long-range interac-
tions [4,5,129,130].

The BH trimer model describes BECs in triple-well po-
tentials as well as spin-1 BECs [131–133] where the atoms
share a common external state (as in a tight trap). Spin-1 BECs
have been realized in experiments on 23Na [41,134–136] and
87Rb [137–142] where the three internal states are provided
by the Zeeman sublevels of the F=1 hyperfine manifold. Due
to conservation of the angular momentum during collisions,
these models do not naturally realize the full trimer model,
but this can enforced by applying an integrability breaking
RF field that drives transitions between the |m〉 and |m ± 1〉
states [41,143]. Like the dimer, these systems can display
macroscopic quantum self-trapping [144–146]. However, un-
like the dimer the trimer is nonintegrable and its classical
dynamics exhibits chaos [143,144,147–152] giving behavior
qualitatively closer to the many-site model. The trimer also
accommodates next-to-nearest-neighbor interactions, which
are important when the atoms have dipole-dipole interactions
[153–156].

A. Two-Mode Equations of Motion

We first consider the BH dimer, which will form up to
(1+1)-dimensional caustics in the dynamics [36,37]. The
Hamiltonian is [157,158]

Ĥdimer = −J
(
â†

l âr + â†
r âl

) + U
(
â†

l âl − â†
r âr

)2
, (1)

where â(†)
l/r annihilates (creates) a particle in the left/right well,

J is the hopping energy and U is the on-site interaction en-
ergy between particles. The operators obey the usual bosonic
commutation relations [âi, â†

j ] = δi j , where i and j correspond
to either l or r.

In this paper we study caustics that form in Fock space. The
Fock states |n〉 are eigenstates of the half-number-difference
operator n̂ ≡ (â†

l âl − â†
r âr )/2. A general quantum state can

be expanded as

|�(t )〉 =
∑

n

cn(t ) |n〉 . (2)

Inserting Eq. (2) into the time-dependent Schrödinger equa-
tion, ih̄∂t |�(t )〉 = Ĥ |�(t )〉, we obtain a set of N + 1 coupled
differential equations for the Fock-space amplitudes cn(t ),
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which we refer to as the generalized Raman-Nath (RN) equa-
tions (a similar set of differential difference equations were
derived by Raman and Nath in the context of dynamical
diffraction [159–161]),

ih̄ċn(t ) = 4Un2cn(t ) − Jcn−1(t )

√
N2

4
+ N

2
− n2 + n

− Jcn+1(t )

√
N2

4
+ N

2
− n2 − n (3)

where the dot represents a time derivative.
The mean-field limit is given by the Heisenberg substi-

tution rules, replacing operators with complex amplitudes
[148,162]

âr/l → √
Nr/l e

iθr/l , (4)

and leads to the Hamiltonian

Hdimer
MF = 4Un2 − J

√
N2 − 4n2 cos φ, (5)

where φ = θr − θl is the phase difference between the two
modes and is the conjugate variable to n. Hdimer

MF describes a
classical nonrigid pendulum where n is angular momentum
and φ angular position. The variable length of the nonrigid
pendulum is accounted for by the square root factor [115]. In
fact, because they have simultaneously well-defined position
and momentum as a function of time, the mean-field solutions
are analogous to geometric rays. Hamilton’s equations of mo-
tion give Josephson’s equations for two coupled superfluids
[163]

ṅ = − 1

h̄

∂

∂φ
Hdimer

MF = −J

h̄

√
N2 − 4n2 sin φ, (6)

φ̇ = 1

h̄

∂

∂n
Hdimer

MF = 8
U

h̄
n + J

h̄

8n√
N2 − 4n2

cos φ. (7)

Attempts to semiclassically quantize the mean-field prob-
lem are complicated by the appearance of both number and
phase variables in the potential energy term, meaning that the
Hamiltonian is not separated into the sum of a “kinetic” term
proportional to n2 and a “potential” term V (φ), but can be
pushed through with some care [119,164]. However, provid-
ing the population difference is always small in comparison
to the total particle number (n � N) the square root term in
Hdimer

MF can be set to unity reducing it to that of a standard rigid
pendulum. This is the relevant Hamiltonian in atomic BECs in
optical lattices when there are many atoms per site [165–170],
and also in superconducting Josephson junctions where it is
known as the quantum phase model (QPM) [171,172]. In this
paper we shall sometimes make use of the QPM for simplicity
but will also consider corrections to it (we will see in Sec. VII
that this can make a difference to the caustics that occur).

B. Three-mode Equations of Motion

The Hamiltonian for the BH trimer can be written as

Ĥ = − KL(â†
1â2 + â†

2â1) − KR(â†
2â3 + â†

3â2)

− KX (â†
3â1 + â†

1â3) + U

2

3∑
i=1

n̂i(n̂i − 1) +
3∑

i=1

εin̂i.

(8)

The parameters KL, KR, KX correspond to the hopping ener-
gies between wells 1 and 2, 2 and 3, and 1 and 3, respectively.
The εi allow for different well depths.

In its linear configuration (KX = 0), the BH trimer sys-
tem has been used as a spatial model for rapid adiabatic
passage by controlling the well depths εi(t ) as functions of
time [173–178]. Indeed, adding a magnetically-induced tilt to
the lattice allows additional rich behavior including control
of correlations [179,180]. The linear configuration has also
been studied from the point of view of an ultracold atom
transistor-like device [181–184]. In its fully-connected trian-
gular configuration (KX �= 0), the trimer system provides a
minimal model for superfluid circuits and discrete vortices
[185–188]. Both chain and triangle have been discussed in
the context of quantum steering [189–192]. To the best of
our knowledge the BH trimer has not been studied experimen-
tally using triple-well BECs, although detailed proposals with
tuneable hopping and interaction parameters via Feshbach
resonances exist [193]. As mentioned above, spin-1 BECs
provide another physical system where the three mode BH
model can provide the natural theoretical description [143].

When U = 0, the mean-field BH trimer model exhibits
regular dynamics, while for nonzero interactions it exhibits
chaos indicating nonintegrability. Close to the ground-state
chaotic trajectories are mixed with islands of regular dynam-
ics [144,162]. Energy level statistics in the quantum version
tell a similar story: in general they obey neither the Poisson
nor Wigner distributions but are better described by a Berry-
Robnic distribution [194], which is a signature of a classical
limit containing both regular and chaotic dynamics [195].
The significance of this for the results we present below is
that we find caustics in a nonintegrable model even though
caustics are usually associated with integrable behavior [196].
We therefore conjecture that the caustics are at least stable
against weak integrability breaking terms as described by the
famous Kolmogorov-Arnold-Moser theorem [197].

The quantum many-body state can be expanded as

|�(t )〉 =
∑

n1n2n3

Mn1n2n3 (t ) |n1, n2, n3〉 (9)

=
∑
n1nX

Mδn2nX (t ) |δn2, nX 〉 (10)

where we have introduced new Fock space coordinates δn2 ≡
n2 − N/3 and nX ≡ n1 − n3, and have assumed the total parti-
cle number is conserved so that one of the sums is eliminated
(the variables δn2 and nX are similar to those used by Arwas
et al. [185]). The allowed Fock space is then triangular in
shape and contains (N + 2)(N + 1)/2 states. The schematic
in Fig. 2 depicts a small region of it. Since each Fock state is
coupled to six others by all the possible hopping terms, Fock
space can be tiled by a hexagonal pattern as shown.
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FIG. 2. A small region of Fock space for the BH trimer. It can
be tiled by hexagonal cells in the coordinates {δn2, nX } we use
throughout this paper. Hopping terms shift δn2 by only 1 unit, while
nX ≡ n1 − n3 can change by 1 or 2 units. If the reader zooms in
on the BH trimer Fock space figures in this paper they will see this
underlying hexagonal lattice. This discretization is a true feature of
second quantization not present in classical wave catastrophes (it is
not a false effect due to pixilation of the images).

Inserting Eq. (10) into Schrödinger’s equation gives the
following generalized Raman-Nath equations for the Fock
space amplitudes Mi j (t ) (we have put all εi = 0)

ih̄Ṁδn2,nX (t ) =

− KL√
2

√(
N
3 + δn2 + 1

)(
2N
3 − δn2 + nX

)
Mδn2+1,nX −1

− KL√
2

√(
N
3 + δn2

)(
2N
3 − δn2 + nX + 2

)
Mδn2−1,nX +1

− KR√
2

√(
N
3 + δn2

)(
2N
3 − δn2 − nX + 2

)
Mδn2−1,nX −1

− KR√
2

√(
N
3 + δn2 + 1

)(
2N
3 − δn2 − nX

)
Mδn2+1,nX +1

− KX

2

√(
2N
3 − δn2 + nX + 2

)(
2N
3 − δn2 − nX

)
Mδn2,nX +2

− KX

2

√(
2N
3 − δn2 − nX + 2

)(
2N
3 − δn2 + nX

)
Mn2,nX −2

+ U

4

[
3δn2

2 + n2
X

]
Mδn2,nX . (11)

The mean-field approximation is obtained as above by
replacing operators with complex amplitudes, âi → √

nieiφi .
The resulting Hamiltonian is

HMF = − 2KL
√

n1n2 cos(ϕ2 − ϕ1)

− 2KR
√

n2n3 cos(ϕ3 − ϕ2)

− 2KX
√

n3n1 cos(ϕ1 − ϕ3)

+ U

2

3∑
i=1

ni(ni − 1) +
3∑

i=1

εini. (12)

Like in the quantum case, we can change our coordinates to
δn2 and nX and eliminate the third member due to number
conservation. However, in the mean-field problem we also
require the phase variables conjugate to the number variables
and these are φX ≡ 1

2 (ϕ1 − ϕ3) and φC ≡ 1
2 (2ϕ2 − ϕ1 − ϕ3),

respectively. The third phase variable 	 ≡ ϕ1 + ϕ2 + ϕ3 is
irrelevant to the mean-field dynamics studied here, and in the
quantum wave function becomes a global phase. The resulting
mean-field equations of motion in these variables come out to
be:

ṅX = − KL

√
2
(

N
3 + δn2

)(
2N
3 − δn2 + nX

)
sin (φX − φC )

− KR

√
2
(

N
3 + δn2

)(
2N
3 − δn2 − nX

)
sin (φX + φC )

− 2KX

√(
2N
3 − δn2

)2 − n2
X cos (2φX ), (13)

δ̇n2 = KL

√
2
(

N
3 + δn2

)(
2N
3 − δn2 + nX

)
sin (φX − φC )

− KR

√
2
(

N
3 + δn2

)(
2N
3 − δn2 − nX

)
sin (φX + φC ),

(14)

φ̇X = U

2
nX − KL

(
N
3 + δn2

)
cos(φX − φC )√

2
(

N
3 + δn2

)(
2N
3 − δn2 + nX

)
+ KR

(
N
3 + δn2

)
cos(φX + φC )√

2
(

N
3 + δn2

)(
2N
3 − δn2 − nX

)
+ KX

nX cos(2φX )√(
2N
3 − δn2

)2 − n2
X

, (15)

φ̇C = 3U

2
δn2 − KL

(
N
3 − 2δn2 + nX

)
cos(φX − φC )√

2
(

N
3 + δn2

)(
2N
3 − δn2 + nX

)
− KR

(
N
3 − 2δn2 − nX

)
cos(φX + φC )√

2
(

N
3 + δn2

)(
2N
3 − δn2 − nX

)
+ KX

(
2N
3 − δn2

)
cos(2φX )√(

2N
3 − δn2

)2 − n2
X

. (16)

While the dimer case gave mean-field equations describing
a non-rigid pendulum, the trimer case can be interpreted as
describing three coupled anharmonic oscillators [162]. Equa-
tions (13)–(16) must in general be solved numerically, but a
problem can potentially arise for trajectories that touch the
boundaries of Fock space where the square root factors in the
denominators vanish. Physically, the boundaries correspond to
situations where one of the modes is empty. We find empiri-
cally that this becomes less of a problem as N is increased and
almost never occurs in the semiclassical regime we consider
in this paper where N ∼ 150 because trajectories spend most
of their time in the central region of Fock space.

III. WAVE CATASTROPHES

Catastrophe theory describes the structurally stable sin-
gularities of gradient maps. This includes all theories that
can be posed in terms of a minimum principle, e.g.,
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TABLE I. Thom’s seven elementary catastrophes, their symbols,
and generating functions 
Q(s; C), organized by corank n, and codi-
mension Q [43].

Catastrophe Symbol n Q 
Q(s; C)

Fold A2 1 1 s3 + Cs
Cusp A3 1 2 s4 + C2s2 + C1s
Swallowtail A4 1 3 s5 + C3s3 + C2s2 + C1s
Butterfly A5 1 4 s6 + C4s4 + C3s3 + C2s2 + C1s
Hyperbolic
Umbilic

D+
4 2 3 s3

1 + s3
2 + C3s1s2 + C2s2 + C1s1

Elliptic
Umbilic

D−
4 2 3

3s2
1s2 − s3

2 + C3

(
s2

1 + s2
2

)
+C2s2 + C1s1

Parabolic
Umbilic

D5 2 4
s4

2 + s2
1s2 + C4s2

2 + C3s2
1

+C2s2 + C1s1

principle of stationary action, and hence applies to both
classical and quantum mechanics. The seven elementary
catastrophes introduced by René Thom [32] are listed in Ta-
ble I, and some examples of higher catastrophes are listed in
Table II. They are organized by corank (number of “state”
variables s = {s1, s2, . . .} that label paths) and codimension
(number of control parameters C = {C1,C2, . . .}, which in
our case is the dimension of Fock space plus time and any
other parameters in the Hamiltonian). The key objects are the
generating functions 
Q(s; C), and in physical applications
they give the local action close to the caustic. Stationary
points ∂s
Q = 0 specify classical paths or rays, which in
many-particle problems correspond to mean-field solutions.
Caustics occur where the action is stationary to higher order,
i.e. ∂2

s 
Q = 0 (in two or more dimensions this condition
becomes the vanishing of the Hessian matrix), and thus are
regions where classical paths either coalesce or are born (bi-
furcations). The main point is that this can only happen in
certain ways if the bifurcation is to be structurally stable
against perturbations.

For example, in the case of light-like cones the action is

(k; x, t ) = kx − εkt/h̄, where εk is the dispersion relation
for quasiparticles of wave number k [40]. The Lieb-Robinson

TABLE II. Catastrophe organization beyond Thom’s seven ele-
mentary list [49], with general control space dimension Q. Many of
the higher catastrophes do not have names, and are referenced by
their group-theoretic symbol, yet are often split into cuspoids AQ+1,
and umbilics {DQ+1, EQ+1, X9}.

Symbol n 
Q(s; C)

AQ+1 1 sQ+2 + ∑Q−1
i=1 Cisi

D±
Q+1 2 sQ

1 ± s1s2
2 + CQ+1s2

2 + ∑Q−1
i=2 Cisi

1 + C1s2

E6 2 s3
1 + s4

2 + C5s1s2
2 + C4s2

2 + C3s1s2 + C2s2 + C1s1

E7 2
s3

1 + s1s3
2 + C6s4

2 + C5s3
2 + C4s2

2

+C3s1s2 + C2s1 + C1s2

E8 2
s3

1 + s5
2 + C7s1s3

2 + C6s1s2
2 + C5s3

2

+C4s1s2 + C3s2
2 + C2s1 + C1s2

X ±
9 2

s4
2 + Ks2

1s2
2 ± s4

1 + C7s2
2s1 + C6s2s2

1

+C5(s2
2 + s2

1 ) + C4(s2
2 − s2

1 )
+C3s2s1 + C2s2 + C1s1

bound, which gives the maximum speed of quasiparticles and
hence defines the cone is [198,199]

vLR = max
k

∣∣∣∣dεk

dk

∣∣∣∣, (17)

which is exactly equivalent to the two conditions ∂s
Q = 0
and ∂2

s 
Q = 0 defining caustics.
Each catastrophe has a “germ”, which is the part of 
Q

that remains when it is evaluated at the origin of control space
C = 0. The germ characterizes the order of the singularity.
The other terms show how the catastrophe “unfolds” as one
moves away from the origin of control space. The corank 1
catastrophes, AQ+1 are called the cuspoids, and extend beyond
the butterfly to the wigwam and star catastrophes (not listed).
The remaining catastrophe types, DQ+1, EQ+1, and above
are typically called umbilics, referring to the classification
of cubic forms near an umbilic point (a point on a surface
with locally spherical curvature), which become the germs for
these catastrophes.

Catastrophes obey projection identities: Higher catastro-
phes contain lower ones, e.g., the swallowtail contains two
cusps and three fold lines when projected into two dimen-
sions. It is not, however, guaranteed that catastrophes of high
order (i.e., higher codimension and/or corank) contain all
catastrophes of lower order. In Sec. VI, we will briefly discuss
distinctions between families of the high-order catastrophe
X9, which have different projection identities (X9 is the catas-
trophe that organizes all the structures we see in the BH
trimer dynamics). With special tuning one could engineer
focusing events with any shape, but catastrophe theory instead
describes structurally stable caustics that result from natural
focusing, and so are more likely to appear generically.

The geometric ray theory (mean-field theory in Fock space)
gives the basic shape of the caustic, but these ray sums give
divergent amplitudes. To remove these one should include
interference and we enter the realm of wave catastrophes
(diffraction integrals) [43,49]. Each ray catastrophe is dressed
by a characteristic wave interference pattern described by a
diffraction integral,

�(C) ∝ λn/2
∫

...

∫
ds eiλ
Q (s;C). (18)

This wave function lives in the space of control parameters
(Fock space + time) and resembles a path integral where
the generating function plays the role of the action and we
integrate over state variables s, which label paths. The pa-
rameter λ acts as the inverse of Planck’s constant, and in the
BH model is proportional to the total number of particles N .
The precise connection to path integrals will be explained
in Sec. VII and Appendix C. It is interesting to note that
while wave theory removes geometric singularities it also
introduces new ones, namely phase singularities where the
phase takes all values and hence is undefined [200]. These are
more commonly known as dislocations in optics and vortices
in condensed matter systems. A genuinely new feature of
caustics in quantum many-body wave functions in comparison
to classical waves is that phase singularities are removed by
second-quantization because it discretizes the vortices [39].
We shall not dwell on this “fine structure” of caustics here,
and focus instead on their gross features.
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In the semiclassical regime N 
 1 the discretization is
hardly visible and we tend to a continuous theory. However,
there are two possible limits that distinguish many-body ver-
sus one-body interference [39,164]:

(1) A wave-like theory where commutators between op-
erators like [â, â†] = 1, or approximate macroscopic versions
such as [φ̂, n̂] ≈ i, are maintained (interference fringes in Fock
space preserved)

(2) A geometric ray-like theory where commutators van-
ish. This is the Gross-Pitaevskii equation limit (interference
fringes in Fock space removed)

In Fig. 3 we compare the mean-field (ray) and fully
quantum (2nd quantized) theories for a caustic in the
3-mode BH model. Although present, the discretization
of Fock space is hard to see (unless zoomed in) and
the quantum waves appear smooth at large scales. The
interference fringes in Fig. 3(b) are true many-body fringes
not present in the one-body (ray) theory shown in Fig. 3(a).
The ray theory we apply is the truncated Wigner approx-
imation (TWA) where an ensemble of classical rays are
propagated using the classical equations (13)–(16) with initial
conditions sampled from a quantum quasiprobability distri-
bution (the Wigner function) [201–204]. Summing these rays
gives the mean-field approximation to the quantum dynamics.
The initial state in Fig. 3 is a phase state, which is a state with
narrow relative phase distributions but which consequently
has a flat probability distribution in Fock space because num-
ber and phase are conjugate variables. In the mean-field case
shown in panel (a), we see that the first time slice contains a
representative set of points approximating an equal superpo-
sition of Fock states. Panel (b) plots the absolute values of the
quantum amplitudes of the Fock states found by solving the
Raman-Nath equations Eq. (11). In both cases the dynamics
leads to focusing and clearly forms an elliptic umbilic caustic,
which can be compared to those shown in Fig. 1. An equal
superposition of Fock states is a plane wave-like state anal-
ogous to the initial state often considered in optics, but here
it is the BH dynamics that acts as an imperfect lens, which
focuses the wave in Fock space. The key feature of this initial
state is that it is broad in Fock space, and structural stability
means that the caustics it generates will not be qualitatively
different from those generated by other broad states such as
the gaussian-shaped ground state in the case with strongly
coupled sites such that the hopping dominates interactions
(this case will be discussed in Sec. VI B).

In the next two sections we investigate the hierarchy of
wave catastrophes that appear in BH dimer and trimer dy-
namics, building up to the high-order catastrophe X9, which
ultimately organizes the lower catastrophes we see. It should
be borne in mind that because the trimer is not integrable
our ability to analytically describe the appearance of each
catastrophe is limited and for this reason we go to δ-kicked
dynamics in Sec. VI. Furthermore, unlike free-space optics,
classical rays in Fock space do not travel in straight lines in
the BH model even for the integrable case (U = 0).

IV. CAUSTICS IN THE DIMER

Dynamical caustics in the BH dimer live in the (1+1)D
space formed by Fock space and time. The only structurally

FIG. 3. Time slices comparing mean-field and quantum dynam-
ics in the triangular Fock space found in the BH trimer under the
constraint of total number conservation. Panel (a): An ensemble of
initial points are evolved in time using the classical equations of
motion Eqs. (13)–(16) and form a space-time version of the elliptic
umbilic catastrophe, with one particular trajectory picked out for
illustration. In the TWA the initial conditions are drawn from a
quantum probability distribution and in this simple case the initial
state is a phase state meaning that the relative phases are sharply
defined (here taken to be φX = φC = 0) but with the consequence
that their conjugate number differences take all possible values with
equal probability, thereby uniformly populating the allowed trian-
gular region of Fock space. Panel (b): The quantum dynamics are
obtained by solving Eq. (11). The initial phase state appears as a
discretized plane wave in Fock space (although here N = 150 and the
discreteness of Fock space is hard to see unless the reader zooms in).
The correspondence between the quantum and classical dynamics
is clear: the quantum wave function is brightest where the density
of trajectories is highest. In both images, KL = KR = KX ≡ J , U =
−0.005J , and εi = 0.

013105-7



KIRKBY, YEE, SHI, AND O’DELL PHYSICAL REVIEW RESEARCH 4, 013105 (2022)

FIG. 4. The wave catastrophes associated with the fold and the
cusp. Panel (a): The fold catastrophe is decorated by an Airy func-
tion, Eq. (20). The location of the classical caustic is indicated by
a vertical dotted line. In the classical (ray) theory the intensity is
divergent at this point and falls off as 1/

√−C on the bright side.
By contrast, the Airy function is finite at the caustic and two-wave
interference gives rise to oscillations; these two waves coalesce at
C = 0 and become evanescent on the dark side. Panel (b): The cusp
catastrophe is decorated by the Pearcey function, which is a complex-
valued function (here we plot the modulus) given by Eq. (22), with
the divergent classical cusp caustic shown as a solid black curve.

stable catastrophes in two dimensions are fold lines, which
can meet at cusp points.

A. Fold

The simplest catastrophe is the fold. Folds are corank-1,
codimension-1 objects with a cubic generating function,


1(s;C) = s3 + Cs. (19)

Folds arise where two families of rays coalesce and this can
be at a point on a line, a line in a plane, a surface in 3D etc.
The corresponding wave catastrophe is

2π

31/3
Ai
( C

31/3

)
=
∫ ∞

−∞
ds ei(s3+Cs) (20)

and is plotted in Fig. 4(a). This function is the well-known
Airy function introduced as the wave description for light at
rainbows in 1838 [205]. It not only removes the singularity
in the ray theory but its interference fringes also explain the
supernumerary arcs that are sometimes visible inside the main
bow in optical rainbows.

B. Cusp

In two dimensions, generic focusing events are fold lines
that meet at cusps. These have quartic generating functions,


2(s;C1,C2) = s4 + C2s2 + C1s. (21)

Inside the cusp, three families of classical rays coexist, while
only one family exists outside. This means that along each
fold line, two sets of rays coalesce, while at the highly singular
cusp point, all three families coalesce. The wave catastrophe
associated with the cusp is a 2D wave function known as the
Pearcey function [44,45],

Pe[C1,C2] =
∫ ∞

−∞
ds ei(s4+C2s2+C1s), (22)

and is plotted in Fig. 4(b). As can be seen, the Pearcey
function consists of an interference pattern inside the cusp
(due to three-wave interference), while outside it becomes

FIG. 5. Recurring cusp caustics in the two-mode BH model.
Panel (a): Each curve is a mean-field configuration obtained from
Eqs. (6)–(7) starting from n = 0 and with an initial phase sampled
from the distribution φ = [0...2π ) corresponding to a definite (equal)
number of bosons in each well. Panel (b): Modulus of the quantum
wave function calculated using the two-mode RN equations Eq. (3)
with N = 400 and where the initial state is the single Fock state
|n = 0〉. In both cases we can identify a series of cusp caustics
corresponding to partial revivals of the initial state. In the inset we
see that in the immediate vicinity of each cusp the wave function
resembles a Pearcey function [36,39] (the wave function appears
continuous but the discretization of Fock space can be seen if the
reader zooms in).

exponentially suppressed. Since the cusp catastrophe consists
of the meeting of two fold lines, a one-dimensional slice of
the Pearcey function across one of these lines projects onto an
Airy function.

We show examples of these two wave catastrophes ap-
pearing in Fock-space dynamics of the BH dimer following
a quench in Fig. 5. The initial condition is a single Fock
state |n = 0〉 (which is the opposite case to the phase state
shown in Fig. 3). Physically, it describes the situation where
two independent BECs are suddenly coupled so that at t = 0
particles can begin to hop between them, thereby building
up coherence [206]. The structural stability of catastrophes
means that qualitatively similar behavior is found for similar
initial states such as narrow gaussians in Fock space that
can also be centered away from n = 0. Figure 5(a) shows
the set of TWA trajectories propagating from n = 0, each
with a different relative phase φ. The complete certainty in
n means complete uncertainty in φ so the phases are drawn
with equal probability from the interval φ = [0...2π ). The
imperfect focusing of trajectories leads to cusps, which revive
at times Jt = mπ/(2

√
1 + 2NU/J ) for m = 1, 2, 3, .... Cusps

only form because of the nonlinearity due to interactions:
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FIG. 6. Recurring cusps in the BH trimer model, starting from
an equal superposition of Fock states, the three-mode version of a
phase state. Panel (a): Classical trajectories along the plane of fixed
nX = 0. Panel (b): Quantum dynamics in the same plane as (a) where
the classical cusps are now dressed by interference fringes, locally
approximated by the Pearcey function. The bright streaks are finite-
size effects due to reflections off the Fock-space boundary in the nX

direction, but structural stability ensures the cusps survive. In both
panels, KL = KR ≡ J = 100U , KX = 0 (linear configuration), while
for the quantum dynamics we used N = 180.

setting U = 0 leads to isolated focal points. In the quantum
theory Pearcey patterns dress each cusp. Moving away from
the cusp tip, the wave function rapidly tends to back-to-back
Airy functions describing the two fold lines emanating from
the cusp [36].

V. CAUSTICS IN THE TRIMER

The BH trimer model also yields cusps if we restrict at-
tention to just one of the Fock space variables, as illustrated
in Fig. 6. For variety the initial condition is this time chosen
to be an equal superposition of all Fock states. Like an indi-
vidual Fock state, this does not correspond to an eigenstate
of the Hamiltonian that we use to propagate the system in
time. Instead it is a highly-excited state made up of a broad
superposition of eigenstates, and this allows the system to
explore its nonlinearity and produce caustics, which revive
periodically.

When we examine the full (2+1)D space available in the
trimer then, as expected, we discover codimension-3 catas-
trophes, namely the elliptic and hyperbolic umbilics. This is
shown in Figs. 7 and 8, which compare numerical solutions of
the generalized Raman-Nath equations given in Eq. (11) with
the canonical wave catastrophes. According to Table I, there is
a third codimension-3 catastrophe known as the swallowtail,

FIG. 7. Comparison of BH trimer dynamics with the canoni-
cal elliptic umbilic catastrophe. Panel (a): Fock-space amplitudes
starting from an even superposition of Fock states [Eq. (29)] for
KL = KR = KX ≡ J , U = 0.01J and N = 150 at Jt/h̄ = 0.47. Panel
(b): Diffraction pattern amplitude in the plane around the elliptic
umbilic focus. Panel (c): Same conditions as panel (a), but now at
Jt/h̄ = 0.54. Panel (d): Diffraction pattern for a slice of the elliptic
umbilic at C3 = 3.8. Panel (e): Caustic surface of the elliptic umbilic
catastrophe. The triple-cusped intersection with a C3 = const. plane
is highlighted in red.

but this is a corank 1 catastrophe meaning that it only has a
single state variable. To realize the swallowtail catastrophe
in the trimer we could freeze one of the conjugate phases
{φX , φC}, but we will not pursue this possibility here.

It is important to emphasize that although we have chosen
parameters where the match in Figs. 7 and 8 between the
numerical results and the canonical catastrophes is quite good,
we have not optimized the parameters and these catastrophes
occur generically. If we could solve the trimer model ana-
lytically we could perform an exact mapping but due to its
nonintegrability this is not possible. We must therefore satisfy
ourselves with qualitative rather than quantitative matches,
which are in any case fully within the spirit of catastrophe
theory, which is a topological theory [32–34]. In Sec. VI we
consider simplified kick dynamics where we can precisely
map the wave functions onto canonical wave catastrophes. A
brief note on the figures in this paper: we present the bifurca-
tion sets in orientations that are convenient to visualize, hence
some of the caustic surfaces are plotted using the negative axis
of control parameters, specifically Figs. 4, 10, and 11.
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FIG. 8. Comparison of BH trimer dynamics with the canonical
hyperbolic umbilic catastrophe. Panel (a): Wave function amplitudes
for hopping strengths KL = KR ≡ J = 4U , KX = 0, and N = 150
at Jt/h̄ = 0.24. The initial state was |δn2, nX 〉 = |0, 0〉. Panel (b):
Hyperbolic umbilic diffraction pattern on the plane C3 = 0. Panel
(c): Same conditions as panel (a) now at Jt/h̄ = 0.34. The bottom
umbilic is now completely unfolded. Panel (d): Diffraction pattern
for the hyperbolic umbilic in the plane C3 = 3. Panel (e): Caustic
surface of the elliptic umbilic catastrophe. A projection onto the
plane C3 = const. is highlighted in red.

A. Elliptic Umbilic

The elliptic umbilic catastrophe,


D−
4

(C) = 3s2
1s2 − s3

2 + C3(s2
1 + s2

2) + C2s2 + C1s1, (23)

is one of the two catastrophes of codimension 3 with corank
2. As can be seen in Fig. 7, the dominant feature of the elliptic
umbilic is its three-fold symmetry. Taking two-dimensional
slices at fixed values of C3 (which for us is the time direction),
the elliptic umbilic appears as three curved fold lines that meet
at three cusps. In its full three dimensional form we see that
these are really three fold surfaces that meet at cusp shaped
ribs. In the geometric theory, there are four rays at all points
inside the caustic, while only two exist at any point outside
because two coalesce on the caustic.

The corresponding diffraction catastrophe has been stud-
ied both theoretically and experimentally by Berry et al. in
Ref. [42] by focusing light through a triangular water droplet
lens (as repeated by us in Fig. 1). A Pearcey diffraction pattern
locally dresses each cusp, as apparent by considering any
particular corner of Fig. 7(d). The three-fold cusp structure
expands/contracts as the control parameter C3 is changed until
it collapses at C3 = 0. The most singular part of the caustic,

the umbilic focus, is at the center of control space (C = 0). In
the wave theory the focus is dressed by a diffraction pattern
composed of a three-fold symmetric fork with the brightest
patch at the center and surrounded by an Airy fringe pattern,
as shown in Fig. 7(b).

B. Hyperbolic Umbilic

The hyperbolic umbilic catastrophe,


D+
4

= s3
1 + s3

2 + C3s1s2 + C2s2 + C1s1, (24)

is the remaining catastrophe of codimension 3 with corank
2. The hyperbolic umbilic caustic surface corresponds to an
overlapping cusp and fold extended into three-dimensional
space, as shown in Fig. 8(e). Within the cusp, there are four
classical rays at every point, two of which annihilate each
other as the cusp surface is crossed. The remaining two rays
annihilate as the fold is crossed. The resulting diffraction
pattern projected on a plane of constant C3 is a Pearcey-like
function surrounded by an Airy fringe pattern as seen in
Fig. 8(d). At the plane C3 = 0, the caustic is only partially
unfolded, and now two sets of fold lines overlap to form a
right-angle corner, dressed by a pattern described by a product
of Airy functions in two dimensions, as shown in Fig. 8(b).

We can observe the hyperbolic umbilic in the dynamics
of the trimer system by starting from the single Fock state
|δn2, nX 〉 = |0, 0〉 and with KX = 0 (linear spatial configu-
ration of the triple-well). The initial compact state spreads
non-uniformly into a two-fold symmetric polygon with par-
tially unfolded hyperbolic umbilic corners as shown in
Fig. 8(a). As the dynamics continue, the edges unfold com-
pletely, and the cusps separate from the fold lines (moving off
the C3 = 0 plane), as is first visible in the bottom corner of
Fig. 8(c).

C. The X9 catastrophe

In the absence of tilts (εi = 0), the BH trimer can
be seen to have six independent control parameters:
{U, KR, KX , δn2, nX , NKLt} (or transformations thereof), thus
the codimension-3 catastrophes that we have discussed are
merely projections of a catastrophe embedded in a higher
dimensional space. We shall argue in this and the following
sections that the higher catastrophe that organizes the BH
trimer dynamics is in fact the high order umbilic catastrophe
known by its group-theoretic symbol, X9. This complicated
object has previously been the subject of detailed theoretical
analysis by Borghi [207] and by Berry and Howls [208],
and plays an important role in optical refraction through
two-dimensional surfaces, such as water droplets [209], glass
junctions [210], gravitational lensing [49], and has also been
discussed in the context of stochastic resonance in two dimen-
sions [211]. X9 acts as an organizing center for a multitude
of lower catastrophes and we refer the reader to Fig. 15 for
a “bordering” diagram showing its relationship to these sub-
catastrophes.

The X9 catastrophe is of corank 2 and its complete 8-
dimensional unfolding can be written as [49],


X ±
9

= s4
2 + Ks2

1s2
2 ± s4

1 + C7s2
2s1 + C6s2s2

1 + C5
(
s2

2 + s2
1

)
+ C4

(
s2

2 − s2
1

) + C3s2s1 + C2s2 + C1s1. (25)
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FIG. 9. 6-cusped diffraction pattern surrounded by a fold line,
typical of systems with 3-fold symmetry also organized by X9. Panel
(a): Fock space amplitudes after a quench starting from all particles
evenly distributed in each well, |δn2, nX 〉 = |0, 0〉. Here, N = 150,
KL = KR = KX ≡ J , U/J = 0.04 at Jt/h̄ = 0.475. Panel (b): As
panel (a), now with KR = J , KL = 1.2J , and KX = 0.8J , showing
how an absence of symmetry does not destroy the caustics.

Although X9 appears 8-dimensional, its control space has only
seven parameters, while the eighth, K , is known as the mod-
ulus. Catastrophes beyond codimension 5 (or above corank
3) can contain moduli, which are different from regular con-
trol parameters in that they can only alter the caustic pattern
geometrically [85] (rather than topologically by changing the
number of critical points [209]), and cannot be removed via
scaling arguments. This modulus has two excluded values:
K �= ±2, where the singularities achieve infinite codimen-
sion, meaning there are an infinite number of ways to unfold
the singularity, and perturbations can lead to any number of
coalescing critical points. As we shall see in the following
sections, the X9 germ 
X ±

9
[C = 0] arises naturally as the base

singularity in all the cases we study.
The high dimension of X9 makes it hard to visualize and

we shall therefore concentrate on particular projections. An
example from BH trimer dynamics is shown in Fig. 9(a) where
all the hopping amplitudes are equal and leads to two su-

perimposed elliptic umbilics slightly rotated from each other.
More precisely, the characteristic features are a three-fold
symmetric caustic featuring a six-cusped figure encapsulated
by Airy-like fringes. This type of caustic is commonly en-
countered when light passes through liquid drops, where a
2n-cusped pattern is formed by drops with n-fold symmetry,
all surrounded by an “oval” fold line [209]. Perturbing the
symmetry will not destroy this caustic structure, as shown in
Fig. 9(b) where the symmetry of the hopping terms is broken.
It can only be altered dramatically by changing the symmetry
in a fundamental way, such as setting a hopping term to 0.

It may appear that the control space of X9 contains one
too many parameters for the BH trimer. This is because the
physical constraint of number conservation restricts us from
exploring the full mathematical control space. We shall see
(Fig. 10) that loosening the restriction n1 + n2 + n3 = N al-
lows us to access a complete section of the X9 catastrophe
since a point in Fock space is then specified by three coor-
dinates rather than two, bringing the total number of control
parameters to seven.

The case K = +2 in Eq. (25) does not give a proper
structurally stable catastrophe but is conceptually important
because it arises in models with circular symmetry, wherein
a perfectly circular “spun cusp” is realized, punctured by an
unstable axial caustic line. This is in fact the case we shall
find within the QPM and for a perfectly triangular trimer (all
hopping amplitudes equal) to be discussed in Sec. VI B. The
value K = −2 is also not a proper catastrophe but is important
because it separates X9 into two distinct sub-families 0X9 and
4X9, which will come up in Sec. VII when we go beyond the
QPM. The catastrophe germ for K = 0, which for C7 = C6 =
C3 = 0 is equal to 
2(s1) + 
2(s2), has led to the X9 family
being known as the “double cusp”, sometimes even for K �= 0
[212–214].

VI. KICKED DYNAMICS

The patterns and shapes exhibited in Figs. 6–9 are exact
numerical solutions for the BH trimer model, which is in
general analytically intractable. They clearly resemble the
caustics that catastrophe theory predicts, and also have the
expected properties. However, it would be reassuring to have
an analytical demonstration that in some tractable limit we
really can map the dynamics to catastrophes. This is what we
now do using a simplified kicked Hamiltonian. This not only
allows us to analytically realize various versions of the X9

catastrophe but also suggests an experimentally viable method
for engineering precisely defined caustics.

Following an optical analogy where caustics are formed
after light passes through “bad” lenses, which deform the
wavefront (an ideal lens will produce a perfect hemispherical
wavefront that results in a point focus), the role of δ kicking
is to produce a wavefront in Fock space that has distortions
that upon further propagation will generate caustics like those
we have seen for the full Hamiltonian. Since catastrophes are
stable to perturbations the caustics we find in the kicked case
will survive under more generic conditions.

In the examples that follow, the interaction term propor-
tional to U will be flashed on instantaneously at t = 0 and the
system will afterwards evolve purely under the hopping terms.
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FIG. 10. Hyperbolic sections of X9 in the classical and quantum BH trimer. Panel (a): Caustic surface for 
H
X9

, as given in Eq. (38). The

red highlights mark the intersection with the plane C4 = √
2. Panel (b): Distribution of points arising from classical trajectories of the δQPM

Hamiltonian Eq. (28) (see Appendix A for solutions of Hamilton’s equations) for the linear trimer configuration (KX = 0) at t = h̄2/(JNŨ )
and α = C4 = √

2, starting in an equal spread of number differences, and with phase differences φC (0) = φX (0) = 0. The resulting caustic is
a partial section through the hyperbolic unfolding of X9, restricted by the triangular Fock space (black solid lines) of physical classical paths.
Panel (c): Same snapshot as in panel (b), now including some unphysical paths (such as those which have started or ended with nX > N), to
demonstrate how the caustic is restricted by the shape of Fock space (number conservation). Panel (d): Wave function amplitude at the same
moment as panels (b) and (c), starting from an equal superposition of Fock states (29) and evolved using the RN equations corresponding to
the δQPM model (square root factors set to unity). Here, N = 150, and Ũ/h̄ = 0.02.

In ultracold atom systems time-dependent manipulation of
interactions can be achieved using a Feshbach resonance [86].
In general, when presented with Hamiltonians of the form,

Ĥδ (t ) = Ĥ0 + Ĥ1δ(t ), (26)

time-evolution can be achieved via the Floquet operator,

F̂ ≡ e− i
h̄ Ĥ0t e− i

h̄ Ĥ1 . (27)

In a previous paper [37], we demonstrated the presence
of catastrophes of codimension 2 in (1+1)D kicked sys-
tems. Here, we employ and generalize this framework to
higher-dimensional catastrophes in the triple-well system, in
particular to the different available unfoldings of X9. The δ

kick is sometimes, but not always, necessary to see caustics
in each of the cases we study in this section, since Fock space
trajectories can still be focused by the hopping terms, a fact,
which can be demonstrated by ignoring Ĥ1. We include the
kick as part of the calculations since it is more general and it
allows the Ĥ1 term to mimic a tuneable “lens” as mentioned
above.

We begin by considering the mean-field Hamiltonian,

HδQPM = − 2JN

3
cos (φX − φC ) − 2JN

3
cos (φX + φC )

− 2KX N

3
cos (2φX ) + δ(t )

Ũ

4

[
3δn2

2 + n2
X

]
, (28)

which describes a kicked trimer within the quantum phase
model and with a tuneable KX hopping term. Note that the
interaction strength in the kicked model has the units of h̄
and is therefore given the symbol Ũ in Eq. (28) in order
to distinguish it from the original interaction energy U in
Eq. (8). We recall that the QPM is a valid approximation to
the BH model when the mode occupation numbers are large,
so that the square root factors can be neglected from HMF in
Eq. (12). In fact, we shall see that the QPM gives circularly
symmetric caustics and will consider small corrections to the
QPM later on in Sec. VII in order to unfold the X9 catastrophe
that is orchestrating the dynamics from the shadows. To quote
Nye [209]: “...generic unfoldings may be best understood as
perturbations of symmetrical ones”.

The integrability of the kicked model is evident from the
fact that analytic solutions for the classical trajectories can be
found and are given in Appendix A. To obtain quantum dy-
namics under the Floquet operator with HδQPM we repromote
the observables in Eq. (28) to operators such that they obey
the Dirac number-phase commutators [φ̂, n̂] = i.

A. Linear spatial configuration of trimer

We will first consider the dynamics of the linear spatial
configuration of the BH trimer, which means we set KX = 0
in Eq. (28), and further specialize to starting from an equal
superposition of Fock states

|�(0)〉 =
∑

δn′
2,n

′
X

|δn′
2, n′

X 〉 . (29)

This state is a plane wave in the number difference basis but
corresponds to a single phase state, |φX = 0, φC = 0〉. Being
more concrete than we have in the earlier parts of this paper,
we define the phase states as eigenstates of the phase operators
and are the three-mode generalization of phase difference
Bargmann states studied in Ref. [164]. These phase states
are overcomplete and thus not strictly orthogonal for finite
N [162], but in what follows we operate on the assumption
that N 
 1 is large enough to approximate a complete set of
states. Furthermore, in such a semiclassical regime we will
take sums to be continuous integrals when convenient.

The time-dependent state after undergoing Floquet evolu-
tion is given by

|�(t )〉 =
∑

δn′
2,n

′
X

e− i
h̄ 
̂t e− i

h̄
Ũ
4 (3δn′2

2 +n′2
X ) |δn′

2, n′
X 〉 , (30)

where 
̂ = 
(φ̂X , φ̂C ) is the part of the Hamiltonian con-
taining all the phase operators. To obtain the wave function
in Fock space we project |�(t )〉 onto the Fock basis by
applying 〈δn2, δnX | and insert a resolution of identity 1=∑

φX ,φC
|φX ,φC〉〈φX ,φC | between the exponential term and the ket

|δn′
2, n′

X 〉. Making use of relations such as 〈φX , φC |δn′
2, n′

X 〉 =
exp[−i(n′

X φX + δn′
2φC )] and evaluating Gaussian integrals

over the variables n′
X and δn′

2, which appear at most quadrat-
ically, we arrive at Eq. (31). Next, since the phase variables

013105-12



CAUSTICS IN QUANTUM MANY-BODY DYNAMICS PHYSICAL REVIEW RESEARCH 4, 013105 (2022)

{φX , φC} are localized around zero, at least for short times,
we expand the cosine terms to fourth order. Finally, under
a change of variables, φC → 181/4φC and φX → 181/4φX ,
we obtain Eq. (32), which is in a form recognizable as the
diffraction integral of X9, although the symmetry of the QPM
Hamiltonian and the initial state we have chosen restricts the

unfolding so that the terms C3, C6, and C7 do not yet appear
(the remaining symmetries will be broken in Sec. VII). Note
that both Eqs. (31) and (32) have been written in a slightly
more general form than necessary for the linear configuration
trimer by including the KX term so that they also apply to the
triangular case discussed in Sec. VI B.

�(δn2, nX , t ) = 4π h̄

i
√

3Ũ

∑
φX ,φC

exp

[
i
2NJt

3h̄

(
cos (φX − φC ) + cos (φX + φC ) + KX

J
cos (2φX )

)

+ nX φX + δn2φC + h̄

3Ũ

(
φ2

C + 3φ2
X

)]
(31)

ψ (δn2, nX , t ) = A(t )
∫∫

dφX dφC exp

[
i
NJt

h̄

(
φ4

X + Kφ2
X φ2

C + φ4
C + αφ2

X + βφ2
C + ζφX + ηφC

)]
(32)

For the linear configuration trimer, the modulus in Eq. (32)
comes out to be K = 6, and the control parameters are given
by

α = 3
√

2h̄2

NJtŨ
− 2

√
2 (33)

β =
√

2h̄2

NJtŨ
− 2

√
2 (34)

ζ = 21/4
√

3h̄

NJt
nX (35)

η = 21/4
√

3h̄

NJt
δn2 (36)

with

A(t ) = 4
√

6π h̄

U
e−i π

2 ei 4NJt
3h̄ . (37)

The wave catastrophe described by Eq. (32) might appear
four dimensional, with coordinates {α, β, ζ , η}, but exami-
nation of Eqs. (33) and (34) reveals that α and β are not
independent: α = 3β + 4

√
2, and therefore it is really three

dimensional. Let us consider the particular case α = −β,
which occurs naturally at the time t = h̄2/(JNŨ ). This gives
a three-dimensional section of X9 that is hyperbolic and de-
scribed by the generating function


H
X9

= s4
2 + 6s2

1s2
2 + s4

1 + C4
(
s2

2 − s2
1

) + C2s2 + C1s1, (38)

which has previously been studied by Berry and Howls and
is relevant to liquid-droplet lenses [208]. The corresponding
theoretical caustic surface is plotted in panel (a) of Fig. 10
where a two-dimensional section at α = C4 = √

2 is high-
lighted in red. If we move slightly away from t = h̄2/(JNŨ ),
then α �= −β leading to the introduction of a C5 term.

The actual caustic formed by the classical dynamics [with
Hamiltonian Eq. (28)] is plotted in Fig. 10(b). This clearly
resembles the analytical prediction but only half of it is
present. This is because of the restriction of physical paths
to always lie within the triangular Fock space −N

3 � δn2 �
2N
3 and −N � nX � N . If unphysical paths are allowed (i.e.,

non-number conserving paths such as those with |nX | > N or
n2 > N), the full caustic is captured, as shown in Fig. 10(c).

Panel (d) shows the resulting quantum amplitudes in Fock
space after time evolution under the corresponding RN equa-
tions. The quantum-classical correspondence is clear in this
semiclassical regime and we can identify the hyperbolic X9

boundary, which is now dressed with characteristic interfer-
ence fringes across the fold lines.

B. Triangular spatial configuration of trimer

Let us now consider the δQPM Hamiltonian Eq. (28)
with KX = J , corresponding to a system of three sites ar-
ranged in an equilateral triangle such that all three hopping
amplitudes are equal. We follow the same procedure as the
linear configuration case, except that in order to bring the
wave function to the canonical form given in Eq. (32) the
two phase variables must be scaled differently: φC → 21/4φC

and φX → 181/4φX . We thereby obtain a modulus K = 2 and
find the following mapping between physical quantities and
abstract control parameters,

α = β =
√

2h̄2

Ũ JNt
− 2

√
2 (39)

ζ = 21/4h̄

NJt
nX (40)

η = 21/4
√

3h̄

NJt
δn2 (41)

and

A(t ) = 4
√

2π h̄

Ũ
e−i π

2 ei 2NJt
h̄ . (42)

Once again we find that α and β are not independent, which
this time leads to a spun cusp surrounding an axial caustic line
described by the generating function


circ
X9

= s4
2 + 2s2

1s2
2 + s4

1 + C5
(
s2

2 + s2
1

) + C2s2 + C1s1 (43)

and pictured in Fig. 11. The axial caustic line is not generic
and is in fact unstable. It arises from the rotational symme-
try we have assumed in the δQPM with KX = J . Physically
speaking, the combination of isotropic hopping along with the
simplified quantum phase Hamiltonian causes the system to
not “feel” the triangular symmetry, and results in a perfectly
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FIG. 11. The spun cusp caustic generated by the triangular BH
trimer (KX = J ) within the δQPM. Panel (a): Distribution of points
arising from classical trajectories of the δQPM Hamiltonian Eq. (28)
(see Appendix A for solutions of Hamilton’s equations) at time
t = h̄2/(JNŨ ) (twice tcusp), starting from an equal spread of num-
ber differences, and with phase differences φC (0) = φX (0) = 0. The
circular caustic from the K = 2 section of X9 is clearly visible. Panel
(b): Quantum wave function amplitude at the same time as panel (a),
starting from an equal superposition of Fock states (29) and evolved
using linearized RN equations. N = 150, and Ũ/h̄ = 0.02. Panel (c):
Caustic surface for the spun cusp, for negative C5. The 2D circular
caustic and the axial caustic are highlighted in red.

circularly symmetric structure in Fock space. From the pa-
rameters (39), we can read off that the time at which the cusp
point occurs is tcusp = h̄2/(2Ũ JN ).

Figure 11 shows the dynamics of the wave function
(32) with control parameters given in Eqs. (39)–(41) at t =
h̄2/(Ũ JN ), twice the cusp time. Panel (a) shows the circular
caustic formed by the classical trajectories by mimicking the
initial state Eq. (29) with an even spread of initial points in
Fock space. Panel (b) shows the wave function amplitude un-
der the same conditions as (a), with clearly visible interference
effects and a bright central Fock state amplitude | 〈0, 0|ψ (t )〉 |
corresponding to the axial caustic. The canonical spun cusp
caustic surface is shown in panel (c), with a two-dimensional
circular caustic outlined in red. In Appendix B we give the
control parameters for the X9 wave function [Eq. (32)] for any
intermediate value of KX between the linear and equilateral
triangle configurations.

C. Gaussian Initial states

Using the same system parameters, let us revisit our earlier
choice of initial state as an equal superposition of Fock states
[Eq. (29)], which is the Fock space analog of a plane wave.
The primary goal of this choice is to demonstrate the natu-
ral focusing effect of the BH dynamics. We claim that any
sufficiently wide spread of initial Fock states will yield qual-
itatively similar results with only slightly altered coefficients.
As an example, consider the ground state of the trimer model

FIG. 12. A Gaussian initial state gives the same caustic as a
“plane wave”. Panel (a): The amplitude of the ground state of the
noninteracting trimer model for KL = KX = KR ≡ J and N = 120
has a Gaussian form. Panel (b): Time evolution of the ground
state using the kicked Hamiltonian with Ũ/h̄ = 0.08, at time t =
2h̄2/(JNŨ ). Comparing with Fig. 11 we see a strong resemblance
indicating that initial states, which differ significantly but have the
same general form (flat near the center of Fock space) will give rise
to qualitatively similar caustics.

(8) for U = 0,

|ψG〉 =
∑

n1+n2+n3=N

√
N!

3N n1!n2!n3!
|n1, n2, n3〉 (44)

where the sum is over all Fock space occupation numbers such
that n1 + n2 + n3 = N . For more detail on the diagonalization
of this model, see, e.g., Ref. [215] and references therein. In
the limit of large N , this coherent state closely resembles a
Gaussian centered at δn2 = nX = 0. After changing variables,

|ψG〉 ≈ 3
3
4√

2πN

∑
δn2, nX

e− 3 ln 3
8N (3δn2

2+n2
X ) |δn2, nX 〉 . (45)

Note that the coefficients of δn2
2 and n2

X are not the same since
nX ranges from −N to N and δn2 ranges from −N/3 to 2N/3.
The assumption of localized phase-state contributions around
φ = 0 still applies, since,

〈φX , φC,	|ψG〉 ≈ 4
√

2πN

3
3
4 ln 3

ei	N/3e− 2N
9 ln 3 (φ2

C+3φ2
X ), (46)

which for large N becomes narrowly peaked around φX =
φC = 0, while widely spread in the number difference values.
Starting from this initial state, we use the Floquet operator
to propagate and the results are shown in Fig. 12 where we
see that despite the fact that the Gaussian differs significantly
from a plane wave we still obtain qualitatively the same
caustic as in Fig. 11. Note that the result of applying the
Floquet operator is to take U → U − i 3 ln 3

2N , implying that for
finite N there is no longer a well-defined cusp point since
the solution α = β = 0 cannot occur for a real value of t .
The outer circular caustic surface does, however, remain and
we see a diffraction pattern reminiscent of the K = 2 spun
cusp. Furthermore, in the semiclassical regime N 
 1 we can
closely approximate a cusp point.

VII. BEYOND THE QUANTUM PHASE MODEL

In the QPM the effects of depletion of the modes [ac-
counted for by the square root factors in the RN equations
Eq. (11)] are ignored. This is often a good approximation
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FIG. 13. Breaking circular symmetry by going beyond the QPM. Panel (a): The energy surface determining classical trajectories as
provided by HδQPM in Eq. (28) immediately following the δ kick at t = 0. The initial values of the dynamical variables that generate this
surface are φX = φC = 0 and an equal superposition of all number differences; the phase trajectories are bent by the δ kick as explained in
Appendix A. The overall scale is arbitrary and lighter colours represent higher energy. Note the circular symmetry as seen from the contour
lines. Panel (b): Same as panel (a) but now with the δ-kicked mean-field Hamiltonian HδMF given in Eq. (47) with all hopping amplitudes
equal. The circular symmetry is broken by the square root factors and the resulting three-fold symmetric “valleys” will act to pinch the caustic
away from the corners of Fock space. Panel (c): Same as panel (a) but now with H� as given in Eq. (48). In this Hamiltonian the square root
factors have been expanded to first order and this is enough to break the circular symmetry and replace it with a three-fold symmetric energy
surface. Panel (d): Quantum wave function obtained using the full RN equations with δ-kicked interactions (quantum equivalent of HδMF) and
the same parameters as used in Fig. 11 (b). The chosen time is t = h̄2/(JNŨ ), which is twice that of where the cusp point appears.

in experimentally realizable superfluids, including arrays of
Josephson junctions [171,172] and also some regimes of
atomic BECs in optical lattices [165–170]. However, in terms
of caustics it can lead to some special situations such as the
appearance of a K = 2 spun-cusp caustic for the triangular
trimer with KX = J , as discussed in the previous section. This
has circular symmetry, which is of course non-generic and,
indeed, the modulus K = 2 is excluded from the X9 catas-
trophe. The symmetry is broken by any perturbation, which
is noncircular, such as choosing KX �= J . Counter-intuitively,
another way to break the symmetry is to go beyond the QPM
by including the effects of the square root factors. For our
purposes of illustrating generic many-body caustics, it suffices
to expand the square roots and keep just the first order correc-
tions because this is enough to generate the X9 catastrophe
(even when all the hopping amplitudes are equal), thereby
providing an instructive example of structural stability, or lack
thereof, for caustics that do not correspond to catastrophes.

A. Triangular deformations: a path integral formulation

The mean-field Hamiltonian that retains the square root
factors, has δ-kicked interactions and all-equal hopping is
given by

HδMF = −J
√

2(δn2 + N
3 )(nX − δn2 + 2N

3 ) cos(φX − φC )

− J
√

2(δn2 + N
3 )(−nX − δn2 + 2N

3 ) cos(φX + φC )

− J
√

(δn2 − 2N
3 )2 − n2

X cos(2φX )

+ δ(t )
Ũ

4

[
3δn2

2 + n2
X

]
. (47)

In Figs. 13(a) and 13(b) we compare the energy surfaces
produced by HδQPM and HδMF. It is evident from the contour
lines that HδMF breaks the circular symmetry and replaces
it with a triangular one. However, as explained above, our
interest is more in generic many-body caustics rather than

specific models, so all we really need to do is perturb away
from the QPM and hence we expand the square roots in HδMF

and keep only the first-order corrections:

H� = − J

2

(
nX + δn2 + 2N

3

)
cos (φX − φC )

− J

2

(
−nX + δn2 + 2N

3

)
cos (φX + φC )

− J

(
2N

3
− δn2

)
cos (2φX ) + δ(t )

Ũ

4

[
3δn2

2 + n2
X

]
≡ NJ
� + δ(t )

Ũ

4

[
3δn2

2 + n2
X

]
. (48)

As can be seen from the energy surface in Fig. 13(c), this “tri-
angular” Hamiltonian retains the basic triangular symmetry
possessed by the full mean-field model. The cone shape of
the energy surface present in all three models has an overall
focusing effect on trajectories, but the triangular shape of the
latter two models channels the trajectories away from the three
corners of Fock space and effectively pinches the outer part
of the caustic in three spots. This can be seen in the quantum
version shown in panel (d) created using the RN equations un-
der no approximations at t = 2tcusp = h̄2/(JNŨ ). The caustic
evolves at roughly the same speed in both the classical and
quantum cases, and three bright spots appear both before and
after the cusp point and correspond to the three valleys on
the triangular energy surfaces. Another crucial feature is that
there is no bright patch at the center of Fock space, due to the
destruction of the axial caustic, which is a feature peculiar to
circular symmetry.

In order to treat this problem analytically we need to re-
consider our approach, since calculating an analytic form for
the wave function as a single diffraction integral in the same
manner as we did for the δQPM is not possible for the full
Hamiltonian. More precisely, in the δQPM there is a separa-
tion between the phase and number difference variables, like
in a standard H = p2/2m + V (x) type Hamiltonian, allowing

013105-15



KIRKBY, YEE, SHI, AND O’DELL PHYSICAL REVIEW RESEARCH 4, 013105 (2022)

us to integrate out the number (momentum) variable using
gaussian integrals leaving a diffraction integral purely in terms
of the phase (position) variables. The presence of the square
root factors effectively gives us a potential V (x, p), which
depends on both position and momentum variables. This dif-
ficulty is not reduced by expanding out the square root factors
and we instead resort to a phase space path integral-style
formulation for the wave function:

ψ (nX , δn2, t ) = 〈nX , δn2|F̂ |ψ (0)〉 (49)

∝
∫

DφDn eiS[n(τ ),φ(τ )] (50)

where we have introduced the bold vector notation φ =
(	,φX , φC ) and n = ( N

3 , nX , δn2). In the semiclassical regime
the dominant contributions to the path integral come from the
evaluation of the action S along classical paths, which we
denote by {n̄, φ̄}. However, the standard WKB approxima-
tion blows up precisely at caustics because these are places

where saddles of S coalesce. Following Schulman [216] and
Dangelmayr and Veit [217], a proper treatment of the problem
shows that the leading contribution to the path integral close to
caustics can be factorized into a part involving the phase along
the classical path and a part which is a diffraction integral

ψ (n, t ) ∝ eiS(n̄,φ̄,t )
∫∫

ds1ds2 eiλ
Q (s;C), (51)

(in the above cited papers the diffraction integral is sometimes
referred to as a “generalized Airy function”). For the BH
trimer model, s is two-dimensional and dependent on φ, and
the control parameters C depend on the remaining parameters
of the system, including n.

The action that appears in Eq. (49) can be derived by break-
ing up the time evolution operator into infinitesimal steps, i.e.,
applying the Trotter prescription to the operator F̂ with H�.
The details of this calculation are presented in Appendix C
where we find

S[n(τ ),φ(τ )] =
∫ NJt

h̄

0
dτ

[
n · φ̇ − 
�

] + h̄

3Ũ

[
φ2

C (0) + 3φ2
X (0)

]
=
∫ NJt/h̄

0
dτ

[(
1

2
− 5

8N
δn2

)
φ4

X +
(

1

18
+ 1

24N
δn2

)
φ4

C +
(

1

3
+ 1

4N
δn2

)
φ2

X φ2
C − 1

6N
nX
(
φ3

X φC + φX φ3
C

)

−
(

2 − 3

2N
δn2

)
φ2

X −
(

2

3
+ 1

2N
δn2

)
φ2

C + nX

N
φX φC + n · φ̇

]
+ h̄

3Ũ

[
φ2

C (0) + 3φ2
X (0)

]
. (52)

Comparing to the standard relation L = pẋ − H , we see that
the generating function 
 plays the role of a Lagrangian.

The action given in Eq. (52) is not in a canonical form
for any unfolding of X9, since the coefficients of the fourth
order phase variables have not been appropriately scaled away
yet, and the terms φ3

X φC and φX φ3
C are still present. It is

possible to remove these terms by an appropriate change of
variables, resulting in the introduction of the cubic unfold-
ing terms φ3

X and φX φ2
C , which lead to triangular symmetry

and a stable caustic. However we shall not attempt this here
since it involves the simultaneous solution of five equations
of quartic and cubic order. We shall instead proceed by re-
stricting ourselves to the projection nX = 0. In Fig. 14 we
plot the classical trajectories in the nX = 0 plane and com-
pare between the HδQPM and the HδMF cases. As expected,
in (1+1)D the stable caustics are cusps and indeed the cusp
point occurs nearly simultaneously for HδQPM and the HδMF.
This is because the square roots multiplying the cosines do
not drastically affect the shape of the focusing surface near
the center of Fock space. Rather, the effects of the square
roots only become significant near the edges of Fock space, a
region in which the QPM approximation becomes inaccurate.
Indeed, we see from Fig. 14 that the effect of the square
root factors is to make fold lines of the full model, shown
in panel (b), become curved near the boundaries. Thus, al-
though the rotational symmetry of the caustic is removed by
beyond QPM effects, other features of the caustic are robust
against such changes, a result that follows from structural
stability.

Nevertheless, the nX = 0 projection does allow us to
account for some beyond-QPM effects and even obtain
qualitative features such as the subfamily of X9 that results
from the breaking of the circular symmetry in H� and HδMF.
In particular, after scaling phase variables to put X9 in its
canonical form, the modulus for the restricted problem for H�
becomes

KnX =0(δn2) = (8N + 6δn2)

√
1

3δn2 + 4N

√
1

4N − 5δn2
.

(53)

FIG. 14. Stability of cusp formation in the nX = 0 plane against
inclusion of beyond QPM effects. Panel (a): Set of classical trajecto-
ries for the δQPM when nX = 0 starting from a range of δn2 values
and kicked with Ũ/h̄ = 0.02. The cusp point here is Jt/h̄ ≈ 0.167.
Panel (b): Exact trajectories (without approximation to the square
root factors) for the triangular trimer with a kicked interaction term
as given by HδMF. The cusp structure remains intact and is only
curved near the edge of Fock space, showing that the δQPM is a
good approximation for this subcatastrophe and that caustics have
structural stability against perturbations.
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FIG. 15. Bordering (or abutment) diagram for the catastrophe X9,
adapted from Nye [49] and obtained using theorems of catastrophe
projection. Each catastrophe of higher order contains (many, not
necessarily all) catastrophes of lower order, shown by the direction
of arrows. The subfamilies of X9 lead to two different subcatastrophe
sets. 4X9 contains the singularities E7 and D6, shown by the red
dashed arrows. 0X9 does not contain E7 and will only contain E6,
shown by the blue dotted arrow.

This result warrants some explanation because the wave func-
tion contains a range of the Fock space variables (δn2, nX ),
and hence there is no single well defined value of the modulus.
However, because all physical paths must lie in the interval
−N

3 � δn2 � 2N
3 , we have to first order, 6√

17
� K � 6 with

K = 2 occurring only at δn2 = 0. This range of values for K
indicates that the system symmetry selects the 0X9 subfamily
of X9, and specifically its 0X +

9 variant, called compact by
Callahan [213]. A schematic plot, known as an “abutment”
or “bordering” diagram is given in Fig. 15, which summa-
rizes the relationships between the subcatastrophes, which
can appear within X9 [49]. We see that the 0X9 subfamily
does not contain the umbilic catastrophes E7 or D6 given
in Table II, both of which are instead members of the 4X9

subfamily. Diagnosing the family of X9 experimentally via
the sub-catastrophes is in principle possible via a careful
analysis of elliptic umbilic foci [Fig. 1(c), the last time slice
in Fig. 3(b), and Figs. 7(a) and 7(b) all show elliptic umbilic
foci]. As illustrated in Fig. 16, elliptic umbilic foci are three-
fold symmetric about straight axes of symmetry meeting at the
origin, while for D−

6 two of these lines become curved and the

FIG. 16. Most singular sections of the diffraction patterns for
D−

4 and D−
6 showing how the foci of the two subfamilies of X9

differ. Panel (a): The focal plane of D−
4 revealing an elliptic umbilic

focus. Panel (b): The focal plane of D−
6 revealing another, but subtly

different type of elliptic umbilic-like structure. In the case of D−
4

the caustic in its canonical form is threefold symmetric with the
brightest ribs (traced with green dashed lines) meeting in straight
lines at angles of 2π/3. For D−

6 the bright central ribs meet along
curved lines obeying 27C4

2 = 64C3
1 . The presence of a D−

6 focus can
in principle be a diagnostic tool for determining the presence of 4X9.

FIG. 17. Distorted elliptic umbilic due to unequal hopping
strengths using the full trimer Hamiltonian. KR = 1.1KL , KX =
1.2KL , U/KL = 0.01 and N = 150, starting from an equal superpo-
sition of Fock states. Panel (a): Distorted focus at KLt/h̄ = 0.431.
Panel (b): Unfolded at KLt/h̄ = 0.513

pattern is only two-fold symmetric (see Nye [218] for more
details).

There is an important lesson to be learned from Eq. (53)
and the fact there is no single value of the modulus (except
locally, at the origin of Fock space). Catastrophes have their
origin in topology, and as such there is considerable flexibility
as to their precise shape. In fact each catastrophe forms an
equivalence class, where different specific realizations within
each class are related by smooth transformations (diffeomor-
phisms) of state variables and control parameters (there is no
smooth mapping between different classes). The dynamics of
a nonlinear system such as the BH model results in a caustic
of the X9 class, which slowly varies in space-time but which
is not destroyed by nonlinearities.

B. Unequal hopping amplitudes

So far our consideration of beyond-QPM dynamics has
centered on the effect of mode depletion accounted for by
the square root factors. However, one can also consider the
situation where we have already included the effects of the
mode depletion but then additionally break the symmetry
further by making the hopping amplitudes unequal (a similar
effect could be had by including a bias, εi �= 0). In Fig. 17
we see the effects of changing the hoppings so that they
are slightly detuned from one another (KR �= KL �= KX ). The
elliptic umbilic caustic becomes distorted and asymmetric, but
due to the structural stability of the underlying catastrophe it
remains intact and recognizable. In particular, panel (a) shows
the effect on the focus, which can be shifted in space and
time but clearly retains its form. Likewise for panel (b), which
shows a time slice somewhat after the focus.

VIII. ROLE OF INTERACTIONS

In their original setting of natural optics (rainbows etc.),
caustics occur in a linear and hence integrable system. Simi-
larly, the BH dimer is an integrable, albeit nonlinear, system
as long as energy is conserved. The trimer, by contrast, is not
generally integrable. In our analytic calculations in this paper
we used δ-kicked interactions such that the time evolution
is integrable. While this made calculations possible, it does
raise the question of the stability of caustics in the presence of
constant interactions. It is therefore worth emphasizing again
that all the (numerical) examples of caustics shown in Sec. V
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FIG. 18. Instability of perfect focusing events to the introduction of interactions. Panel (a): Set of classical trajectories starting from an
equal spread of Fock states, with KL = KR, U = KX = 0. Focusing events are isolated, meaning that all trajectories meet at a point. Panel (b):
Same initial state as panel (a), but now with weakly attractive interactions, KL = KR ≡ J and U/J = −0.03. A similar result was found for
repulsive interactions in panel (a) of Fig. 6, except that the cusps open in the opposite direction for attractive interactions.

were obtained with the interactions switched on throughout
the time evolution. Moreover, interactions can sometimes be
necessary for catastrophes to fully manifest in both the dimer
and trimer. This is best understood with an example, as given
in Fig. 18. In panel (a) U = 0, KL = KR = J , and KX = 0,
for which the quantum revival time is Jtrev/h̄ = π/

√
2 (the

recurrence time is twice this time). Starting from an even
spread of Fock states, we observe a set of classical trajectories
in the nX = 0 plane, similar to Fig. 6(a) except that here the
trajectories form isolated focal points. According to catastro-
phe theory these are unstable in two dimensions and indeed,
in panel (b) where interactions are present the focal points are
unfolded to cusps. For variety we have chosen attractive inter-
actions U < 0 here whereas Fig. 6 has repulsive interactions
U > 0. The difference is that we find forward-opening cusps
for U > 0 and backward-opening cusps for U < 0. The effect
is similar when starting from a highly focused state, such as
a Fock state, where a point focus will recur infinitely unless
interactions are introduced and structurally stable caustics
form. The nonlinearity introduced by interactions is therefore
crucial to fully unfold the caustics (essentially by introducing
different periods for different amplitudes of excitation).

Another example of dynamics with attractive interactions
is shown in Fig. 19. The effect of negative U is to pull
the caustic outwards towards the corners of Fock space in
comparison to the case of the repulsive U shown in Fig. 8.
This means that the elliptic umbilic emerges more clearly
before the central focusing event, but also results in fold “lips”
around the edges of each cusp point. The formation of lips
around an elliptic umbilic caustic appears to be a threefold
symmetric version of the fourfold unfolding of X9 with a
negative modulus studied in Ref. [209] (see also Fig. 9). These
lips continue to extend into long fold lines as time progresses
and ultimately intersect one another after the elliptic umbilic
focus, reminiscent of the triple glass junction studied by Berry
[210] and later elaborated on by Nye [49].

Finally, we note that our choice of parameters in this paper
has been guided empirically so as to make the catastrophes as
visible as possible. For example, the elliptic and hyperbolic
umbilic unfoldings shown in Section V were made using rel-
atively weak interactions in the range U/J = 0.01J to U/J =
0.25J . This regime is called the strong-tunneling (or Joseph-
son [182]) regime (see Refs. [149,177,185,187,188,194]), and

exhibits moderate quantum revivals, allowing the catastro-
phes to be clearly identified because a single caustic stretches
across a good fraction of Fock space. Stronger interactions
result in more powerful effective focusing potentials, which,
in the case of repulsive interactions, compress the wave func-
tion into a small region around the center of Fock space.
In Fig. 20(a) we show that the canonical hyperbolic um-
bilic catastrophe is still visible even when U = J , although
Fig. 20(b) indicates that at longer times this wave function
evolves into a highly intricate structure (which will eventually
reveal the discreteness of Fock space as the wave function
fringes reach small scales). The highly distorted wavefronts
that arise in this situation would probably be best described
using the statistical version of catastrophe theory developed
in the context of light passing through a turbulent atmosphere
[46], where caustics manifest themselves as extreme ampli-

FIG. 19. Formation of fold lines around cusps due to attractive
interactions. Panel (a): Same as panel (c) of Fig. 7, now with U/J =
−0.01. The elliptic umbilic diffraction pattern is now surrounded
by bright fringes, which consist of small fold lines. Panels (b) and
(c): Same as panel (a) but at Jt/h̄ = 0.641 and Jt/h̄ = 0.818. As
the elliptic umbilic focus is approached, the fold lines around each
cusp extend and form a ring. Panel (d): Schematic of a section of the
elliptic umbilic caustic, with “lips” surrounding each cusp point.
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FIG. 20. Catastrophe formation at high interaction strength. In this figure, we show exact (numerical) dynamics deep in the chaotic regime
with U = J in the linear configuration of the BH trimer where KL = KR ≡ J , and KX = 0. Caustic formation follows similarly to previously
discussed cases with weaker interactions, however stronger interactions compress the dynamics to a smaller region in Fock space. Panel (a):
Formation of a fourfold diffraction pattern at Jt/h̄ = 0.13, similar to the one seen in Fig. 8(a), but its largest extent is smaller than the weaker
interaction case. Panel (b): At Jt/h̄ = 0.36, the wavefront has become highly distorted, although strong focusing (fluctuations) remains.

tude events that occur more frequently than expected from
random Gaussian fluctuations. This is the freak/rogue wave
paradigm recently explored in microwave [55] and optical
[59–67] experiments.

IX. CONCLUSIONS AND EXPERIMENTAL
PERSPECTIVES

Using a combination of exact numerical computations
and analytic calculations (in the δ-kicked case), we have
demonstrated the existence of simple and higher caustics in
integrable and nonintegrable quantum many-body dynamics.
More precisely, using a variety of initial states (broad and
narrow in Fock space) we have shown that caustics occur
generically following a quench in the BH dimer and trimer
models even when the latter is in the chaotic regime (e.g.,
when U ∼ J). In the semiclassical regime caustics dominate
the many-body wave function, which takes on character-
istic patterns that are stable against perturbations to both
the Hamiltonian and initial conditions. Catastrophe theory
provides a mathematically rigorous tool for predicting and
analyzing these universal wave functions. The universality of
wave catastrophes is underlined by the fact that we find the
same basic caustic structures in the optics of liquid droplet
lenses whose principal curvatures have been modified by a
triangular perimeter, as shown in Fig. 1, as we do in the
triangular Fock space of the BH trimer.

One may ask, if quantum many-body caustics are generic
and striking why have they not been seen already? The answer
is that they have been seen following quenches in experiments
on ultracold atoms in optical lattices and trapped ions in the
form of so-called light cones [1–5]. As shown in our previous
paper on spin chains [40], and as we explain in Sec. III in
this paper, light cones are caustics closely analogous to ship
wakes. The ones seen experimentally so far are fold catas-
trophes (which have an Airy function profile [1]) and are
the simplest in the hierarchy we discuss in Sec. III. Turning
this around, the higher caustics we predict can be viewed as
generalized light cones.

Caustics will manifest themselves in experiments as singu-
larity dominated fluctuations that are stronger than the random

gaussian fluctuations one expects during generic chaotic dy-
namics [219]. For cold atoms in an optical lattice this means
strong fluctuations (which form universal patterns) in the
probability distribution for populations of different sites, see
Figs. 3, 5–14 17–20. In fact, thanks to advances in imaging
such as the quantum gas microscope [220,221], it is now pos-
sible to monitor the population of single sites in situ in optical
lattices at the single atom level and thereby directly measure
the Fock-space probability distribution, just as was done in
the observation of light cones [1] and many-body localization
[6,7]. Alternatively, miscible spin-1 gases (as can be realized
using 23Na) where the atoms occupy the same spatial mode,
also offer a highly controllable environment for exploring in-
tegrable and nonintegrable three-mode many-body dynamics
where the populations of the three Zeeman sublevels can be
obtained using Stern-Gerlach type measurements [41].

The above mentioned experimental examples suggest that
it may soon be possible to map out wave catastrophe patterns
in many-body wave functions in some detail. However, it
should be borne in mind that there are fundamental differences
between classical and quantum waves and this impacts the
information we can extract in a single projective measure-
ment. In classical waves, the wave catastrophe patterns can
be captured in a single shot like in Fig. 1, whereas in the
quantum case a measurement in the Fock basis will randomly
collapse the wave function to give us a single Fock state. Thus,
a single absorption image of the BH trimer case will yield
just two numbers: the two relative population differences be-
tween the three wells (assuming total number conservation).
The experiment must be repeated many times under the same
conditions in order to build up a probability distribution for
the population differences and thereby reveal the caustics in
the probability distribution. The whole scheme should then
be repeated for different evolution times if we wish to map
out the full three dimensional dynamical caustic. This is a
challenging task, and there is no getting around the fact that
quantum many-body wave functions are high dimensional
objects containing a huge amount of information, but it is
important to note that measuring the probability distribution
is a simpler task than full quantum tomography (see [39]
for a discussion). It should also be pointed out that caustics
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equally occur in the phase-difference variables [37] conjugate
to the number-difference variables and hence caustics can
alternatively be seen by releasing the atoms from the wells
and imaging after some time of flight to allow the atom clouds
from each well to overlap and interfere [222].

In traditional measurements on condensed matter systems
it is not the full wave function that is usually measured directly
but one- and two-point correlation functions that are obtained.
Although we have chosen to focus on the wave function in
this paper, it is the key object needed to calculate correlation
functions and we have seen here how it takes on universal
forms. Furthermore, in our previous work on light-cones in
integrable systems [40] we showed that due to the hierarchy of
catastrophes and the projection identities they obey (such that
the higher ones contain the lower ones), correlation functions
also contain caustics. For example, the equal-time two-site
correlation function on a spin chain can be expressed as the
product of two single quasiparticle wave functions evaluated
at different points (see Sec. VII of [40]) and gives codimen-
sion 3 catastrophes such as the hyperbolic umbilic. Based on
the results of the present paper, we expect that following a
quench correlation functions for nonintegrable systems will
also display caustics.

Rather than a finished theory, the results presented in this
paper are merely one step on the road to understanding caus-
tics in quantum many-body systems. In going to systems with
a larger number of wells we encounter higher dimensional
Fock spaces and hence higher dimensional catastrophes. In
these cases it is easier to proceed by going over to the sta-
tistical version of catastrophe theory mentioned in Sec. VIII
and developed in the context of random focusing of light
passing through a turbulent atmosphere [46], that has also
been applied to freak waves in hydrodynamics and optics
[59–67]. The statistical theory aims to predict the “twinkling
exponents” of fluctuations. Perhaps surprisingly, it is not the
higher order (more singular) catastrophes that necessarily
dominate these fluctuations due their relative rarity. Moreover,
the existing theory for classical waves will need to be revised
since in the quantum case there is a new scale provided by the
discretization in Fock space that can alter the finest details and
potentially change the exponents.
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APPENDIX A: CLASSICAL TRAJECTORIES OF THE
δQPM

Using Hamilton’s equations of motion,

ṅ2 = − 1

h̄

∂H

∂φC
(A1)

ṅX = − 1

h̄

∂H

∂φX
(A2)

φ̇C = 1

h̄

∂H

∂n2
(A3)

φ̇X = 1

h̄

∂H

∂nX
(A4)

The δ kick allows classical trajectories to be calculated di-
rectly via integration,

φC (t ) = φC (0) + 3U

2h̄
δn2(0)	(t ) (A5)

φX (t ) = φX (0) + U

2h̄
nX (0)	(t ), (A6)

where we make use of the Heaviside function,

	(t ) =
{

1 t > 0
0 t � 0.

(A7)

First, for the triangular configuration of the trimer, assum-
ing a classical analog of an equal superposition of Fock states
corresponds to an ensemble of classical trajectories, each with
different {δn2(0), nX (0)}, but all φC (0) = φX (0) = 0, then
for t > 0,

δn2(t ) = δn2(0) − 4JNt

3h̄
cos

(
U

2h̄
nX (0)

)
sin

(
3U

2h̄
δn2(0)

)
(A8)

nX (t ) = nX (0) − 4JNt

3h̄

[
cos

(
3U

2h̄
δn2(0)

)
sin

(
U

2h̄
nX (0)

)

+ 2 cos

(
U

2h̄
nX (0)

)
sin

(
U

2h̄
nX (0)

)]
(A9)

Note that the trajectories nX (0) = δn2(0) = 0 have no time
dependence and correspond exactly to the unstable axial caus-
tic in the K = 2 excluded family of X9.

In the case of the linear spatial configuration (KX = 0),
then δn(t ) remains the same, while

nX (t ) = nX (0) − 4JNt

3h̄
cos

(
3U

2h̄
δn2(0)

)
sin

(
U

2h̄
nX (0)

)
.

(A10)

APPENDIX B: DEPENDENCE OF δQPM WAVE FUNCTION
ON KX

For general KX , the Hamiltonian (28) yields wave functions
of the same form as in Eq. (32), but now with modulus,

K = 6√
8KX

J + 1
(B1)

and control parameters,

α =
√

2
(
3h̄2 − 2NJtU − 4NtUKX

)
NJtU

√
8KX

J + 1
(B2)

β =
√

2
(
h̄2 − 2JNtU

)
JNtU

(B3)
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ζ = 21/4
√

3h̄

NJt
( 8KX

J + 1
)1/4 nX (B4)

η = 21/4
√

3h̄

NJt
δn2 (B5)

and

A(t ) =
(

324

8KX /J + 1

)1/4 4π h̄√
3U

e−i π
2 ei 2NJt

h̄ . (B6)

APPENDIX C: DERIVATION OF THE PATH INTEGRAL

Starting with the Hamiltonian given in Eq. (48), which
goes beyond the QPM by including the square root factors
to first order and hence includes effects due to the triangular
boundaries of Fock space, we expand the cosine terms to
fourth order in the phase difference coordinates to give

H� ≈ −NJ

[(
1

2
− 5

8N
δn2

)
φ4

X +
(

1

18
+ 1

24N
δn2

)
φ4

C +
(

1

3
+ 1

4N
δn2

)
φ2

X φ2
C − 1

6N
nX
(
φ3

X φC + φX φ3
C

)
−
(

2 − 3

2N
δn2

)
φ2

X −
(

2

3
+ 1

2N
δn2

)
φ2

C + nX

N
φX φC

]
+ δ(t )

Ũ

4

[
3δn2

2 + n2
X

]
(C1)

≡ NJ
� + δ(t )
Ũ

4

[
3δn2

2 + n2
X

]
. (C2)

Notice that relative to the expansion of HδQPM, all of the circularly symmetric terms get a perturbation proportional to δn2 and
we also pick up some non-circularly symmetric terms proportional to nX . Applying the Floquet operator incorporating this
Hamiltonian to an initial state comprising of an equal superposition of all Fock states, and projecting onto the Fock basis, we
obtain the wave function

ψ (nX , δn2, t ) =
∑

n′
X ,δn′

2

e−i U
4 [3δn′

2
2+n′

X
2] 〈nX , δn2| ei NJt

h̄ 
�(n̂X ,δn̂2,φ̂C ,φ̂X )︷ ︸︸ ︷
1≈∑

	,φX ,φC
|	,φX ,φC〉〈	,φX ,φC |

|n′
X , δn′

2〉 (C3)

=
∫

d	dφX dφC 〈nX , δn2| ei NJt
h̄ 
�(n̂X ,δn̂2,φ̂C ,φ̂X )t |	,φX , φC〉 e−i 	N

3

∑
n′

X ,δn′
2

e−i U
4h̄ [3δn′

2
2+n′

X
2]e−i[n′

X φX +δn′
2φC ]

︸ ︷︷ ︸
≈ 4π h̄

i
√

3Ũ
exp [ ih̄

3Ũ
(φ2

C+3φ2
X )]

(C4)

where in the first line we have indicated where a resolution of the identity in terms of phase states should be inserted, and in
second line we have turned the resulting double sums over phase variables into integrals as well as indicating that the double
sum over the primed number variables can be approximated by gaussian integrals. Let us now focus on the matrix elements of
ei NJt

h̄ 
̂� ,

〈nX , δn2| ei NJt
h̄ 
�(n̂X ,δn̂2,φ̂C ,φ̂X ) |	,φX , φC〉 ≈ 〈nX , δn2|

(
1 + i

NJt

Mh̄

̂�

)M

|	,φX , φC〉 (C5)

= 〈nX , δn2|
(
1 + i

NJt

Mh̄

̂�

)(
1 + i

NJt

Mh̄

̂�

)
...
(
1 + i

NJt

Mh̄

̂�

)
︸ ︷︷ ︸

Mtimes

|	,φX , φC〉 , (C6)

where M is an integer giving the number of infinitesimal time steps t/M into which the propagation is decomposed. We shall
assume that M 
 N 
 1. Switching to the bold vector notation φ = (	,φX , φC ) and n = ( N

3 , nX , δn2) for brevity, we insert
resolutions of the identity

1 =
∫

dφ |φ〉 〈φ| (C7)

between each set of parentheses

〈nX , δn2| ei NJt
h̄ 
�(n̂X ,δn̂2,φ̂C ,φ̂X ) |	,φX , φC〉 ≈

∫
dφM−1 . . . dφ1

{
〈nX , δn2|

(
1 + i

NJt

Mh̄

̂�

)
|φM−1〉

× 〈φM−1|
(
1 + i

NJt

Mh̄

̂�

)
|φM−2〉 × . . . × 〈φ1|

(
1 + i

NJt

Mh̄

̂�

)
|φ0〉

}
, (C8)

where we have used |φ0〉 to denote |	,φX , φC〉. In order to evaluate each matrix element in this product, we note that 
̂� has
the form


̂� =
(

1

2
− 5

8N
δ̂n2

)
φ̂4

X +
(

1

18
+ 1

24N
δ̂n2

)
φ̂4

C +
(

1

3
+ 1

4N
δ̂n2

)
φ̂2

X φ̂2
C − 1

6N
n̂X
(
φ̂3

X φ̂C + φ̂X φ̂3
C

) + ... (C9)

where the operator ordering is assumed to be the same as the classical expression given in Eq. (C1) such that all the
number operators lie to the left of the phase operators. We therefore insert resolutions of the identity over the number states
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1 = ∫
dn |n〉 〈n| inside the matrix elements so that the number operators can act to the left and the phase operators to the right

〈φ j+1|
(
1 + i

NJt

Mh̄

̂�

)
|φ j〉 −→ 〈φ j+1|

∫
dn j |n j〉 〈n j |

(
1 + i

NJt

Mh̄

̂�

)
|φ j〉 (C10)

≈
∫

dn j exp
[
in j · (φ j+1 − φ j )

]
exp

[
i
NJt

Mh̄

�(n j,φ j )

]
(C11)

where to obtain the second line we have used the relation 〈φ|n〉 = exp[in · φ] twice and 
�(n j,φ j ) is now a function of ordinary
variables rather than operators. Thus, all the matrix elements apart from the most left-hand one in Eq. (C8) contribute a phase
factor exp[i NJt

Mh̄ 
�(n j,φ j ) + in j · (φ j+1 − φ j )], and the wave function becomes

ψ (nX , δn2, t ) =
∫

dφM−1

∫ M−2∏
j=0

dφ jdn j B(nX , δn2,φM−1)︸ ︷︷ ︸
boundary term

exp

[
i

M−2∑
j=0

{NJt

Mh̄

�(n j,φ j ) + n j · (φ j+1 − φ j )

}]

×
(

4π h̄

i
√

3Ũ
exp

[
ih̄

3Ũ

({φC} 2
0 + 3{φX } 2

0

)])
. (C12)

The boundary term comes from the most left-hand matrix element in Eq. (C8) and is also a pure phase factor

B(nX , δn2,φM−1) = exp
[
i
NJt

Mh̄

�[nX , δn2,φM−1] − nX {φX }M−1 − δn2 {φC}M−1

]
. (C13)

in which the notation {φX }M−1 and {φC}M−1 is used for the individual components of φM−1 and likewise {φX }0 and {φC}0 is used
for the individual components of φ0.

A condition that the above expansion of the propagator into M terms is an accurate approximation is that NJt/(h̄M ) ≡ ε is a
small quantity. Assuming this to be the case we can write

B(nX , δn2,φM−1) + ε

M−2∑
j=0

{

�[n j,φ j] + n j · φ j+1 − φ j

ε

}
∼
∫ NJt/h̄

0
dτ {
�[n(τ ),φ(τ )] + n(τ ) · φ̇(τ )}. (C14)

This becomes exact when ε → 0, or equivalently M → ∞ so that we can express the wave function as a path integral

ψ (nX , δn2, t ) = 4π h̄

i
√

3Ũ

∫
DφDn exp

[
i
∫ NJt/h̄

0
dτ {
�[n(τ ),φ(τ )] + n(τ ) · φ̇(τ )}

]
exp

[
ih̄

3Ũ

{
φ2

C (0) + 3φ2
X (0)

}]
(C15)

where

DφDn = lim
M→∞

dφM−1

M−2∏
j=0

dφ jdn j = lim
M→∞

M−1∏
j=0

dφ jdn j δ[nM−1 − (nX , δn2)] (C16)
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