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Quantum many-body scars in spin-1 Kitaev chains
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To provide a physical example of quantum scars, we study the many-body scars in the spin-1 Kitaev chain
where the so-called PXP Hamiltonian is exactly embedded in the spectra. Regarding the conserved quantities, the
Hilbert space is fragmented into disconnected subspaces and we explore the associated constrained dynamics.
The continuous revivals of the fidelity and the entanglement entropy when the initial state is prepared in
|Zk〉 (k = 2, 3) state illustrate the essential physics of the PXP model. We study the quantum phase transitions
in the one-dimensional spin-1 Kitaev-Heisenberg model using the density-matrix renormalization group and
Lanczos exact diagonalization methods, and determine the phase diagram. We parametrize the two terms in
the Hamiltonian by the angle φ, where the Kitaev term is K ≡ sin(φ) and competes with the Heisenberg
J ≡ cos(φ) term. One finds a rich ground-state phase diagram as a function of the angle φ. Depending on
the ratio K/J ≡ tan(φ), the system either breaks the symmetry to one of distinct symmetry broken phases, or
preserves the symmetry in a quantum spin-liquid phase with frustrated interactions. We find that the scarred
state is stable for perturbations which obey Z2-symmetry, while it becomes unstable against Heisenberg-type
perturbations.

DOI: 10.1103/PhysRevResearch.4.013103

I. INTRODUCTION

With the rapid development of experimental techniques,
specifically with the advancement of stable and precisely
adjustable ultrashort pulse laser technologies, and the im-
provement of detection methods, the real-time information
with atomic scale and subpicosecond resolution can be ob-
tained. It provides new opportunities for perceiving the
phenomena in related many-body systems. Meanwhile, quan-
tum simulators with high isolation, long relaxation time,
and experimental controllability, such as ultracold atoms, ion
traps, nitrogen vacancy centers in diamonds, and supercon-
ducting circuits, have opened up a new direction in the studies
of strongly correlated electron systems in condensed matter
physics. Studies of abstract quantum complex systems are
another route to provide a more complete description of quan-
tum phase transitions and many-body dynamics in isolated
quantum systems.

Particularly in recent years, tremendous progress was
made in describing the nonequilibrium dynamics of isolated

*a.m.oles@fkf.mpi.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

quantum systems. Thermalization and localization are dis-
tinct fates of the steady quantum states. The first will lose
information of the initial state after undergoing a long-time
evolution, while the second retains information of the initial
state as much as possible. In general, the system will tend to
thermalize as it follows the eigenstate thermalization hypoth-
esis (ETH), which is generally regarded as the cornerstone of
contemporary quantum statistics. A system that satisfies ETH
is considered to be ergodic. Numerical calculations show that
most interacting systems are indeed strongly ergodic [1–4].
Thermal excitations enrich the properties of spin chains and
are, for instance, responsible for the dimerization in spin-
orbital systems [5].

However, currently many quantum systems were found to
disobey the ETH. A typical exception is the integrable system
undergoing Anderson localization [6], in which there are infi-
nite local conserved quantities that can inhibit the relaxation
between eigenstates and thus retain the coherence in the quan-
tum system. However, even a weak perturbation will suffice to
break the integrability of the system, and then the ETH would
be restored [7].

Another mechanism to avoid thermalization is many-
body localization—it has been intensely investigated in the
past decade [8–12]. The emergent integrability of these a
priori nonintegrable systems prevents them from thermaliza-
tion [13]. The Anderson localization generally concerns the
ground state, while the many-body localization usually occurs
at finite temperature. Recently, the phase transitions between
the thermalized and many-body localized phases, highlighting
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many-body localized mobility edge, were observed in 19-
qubit superconducting systems [14].

Nowadays exact quantum many-body scars (QMBSs) and
their stability in constrained quantum chains attract attention
[15]. Quantum scars are nonthermal eigenstates characterized
by low entanglement entropy, initially detected in systems
subject to nearest-neighbor Rydberg blockade, the PXP model
[16–19]. This model has been introduced as a simplified
description of the quantum simulator on 51 Rydberg atoms
[20]. It has been shown that the quantum quench dynamics
starting from an antiferromagnetic (AFM) state will return to
the certain initial state repeatedly after reaching equilibrium.
The continuous oscillations of physical observables such as
domain-wall density show that the system exhibits a new type
of nonthermalization behavior and the peculiar behavior was
dubbed as QMBSs. If the initial state is prepared in other
generic states, the atomic system will thermalize as expected.
In addition to the Rydberg atomic system, QMBSs were also
observed in one-dimensional (1D) dipolar Bose gas [21].

The ideas of the quantum scar state were borrowed from
the classic chaotic scar phenomenon, which is characterized
by a high probability density distribution near a specific clas-
sical periodic orbit. Quantum scars were originally proposed
by Heller in 1984 based on the single-particle picture [22].
QMBSs are abnormal condensations of quantum many-body
wave functions on specific eigenstates, and these eigenstates
constitute quantum scars. On one hand, because QMBSs are
different from the conventional paradigm of thermalization,
Anderson localization, and many-body localization, the nature
of this novel quantum phenomenon has stimulated the interest
of many physicists. On the other hand, QMBSs may represent
a new way to realize coherent quantum mechanics, which can
protect the quantum dense coding processing for a long time.
Obviously, searching for nonthermal dynamics in interacting
nonintegrable quantum systems has not only fundamen-
tal theoretical significance in condensed matter theory, but
also has great practical significance in quantum information
processing.

In a nutshell, the scarred model is characterized by a sub-
space which is decoupled from the rest of the energy spectrum
and cannot be simply attributed to a symmetry of the system.
Taking the spin-S system on a chain with length N as an
example, the dimension of the full Hilbert space scales expo-
nentially as (2S + 1)N , and the dimension of the scar subspace
scales algebraically with the system size N as O(N ). These
zero-measure scar eigenstates allow the quantum system to
maintain long-time coherent dynamics. The underlying mech-
anism for the 51 Rydberg atoms finding the return journey of a
specific initial state in the Hilbert space of more than 4 × 1010

dimensions is fuzzy.
Ergodicity breaking in such systems can often be attributed

to the presence of symmetries (hidden, emergent, or explicit)
that preclude the establishment of a global equilibrium state
[23,24]. The existence of quantum scars may be revelent to the
emergent integrability of the Hamiltonian [25], the algebraic
structure of dynamic symmetry [26], while some researches
rule out the integrability [27].

A flurry of subsequent theoretical works addressed the
puzzle posed by the experiment: the nature and origin of this
new regime of ergodicity breaking, intermediate between ther-

malization and strong ergodicity breaking. Notably, extensive
research on weak ergodicity breaking was performed in vari-
ous quantum many-body systems, such as the extended Ising
model [28], integer spin XY model [29], Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [30–32], and the Hubbard model
[33–35]. It was demonstrated that using 1D so-called PXP
models for spin-1 can lead to weak ergodicity breaking [12].

Kitaev models attracted much attention currently as they
provide a deeper understanding of the spin-orbital physics
in transition metal oxides [36]. The search for their phase
diagrams is motivated by a topological quantum spin liquid
(QSL) ground state and Majorana excitations emerging from
the frustrated Kitaev model [37]. This research developed
rapidly after a seminal paper of Jackeli and Khaliullin [38]
was published. They proposed that the QSL might be realized
in Mott insulators with strong spin-orbit coupling, opening a
new route to seek for the Kitaev QSLs.

In recent years it was recognized that the S = 1 variant
could be designed by considering strong Hund’s coupling
among two electrons in eg orbitals and strong spin-orbit cou-
pling at anion sites [39], and this innovative concept sparked
intensive theoretical studies. The 1D version of the Kitaev
model can be considered as a limiting case with vanishing
interactions along z bonds of the hexagonal lattice. The XX -
and YY -type nearest-neighbor Ising interactions toggle se-
quentially between odd and even bonds in the 1D Kitaev
chain. Despite severe simplification, the Kitaev chain shares
some features of the honeycomb model.

In this paper, we study the spin-1 Kitaev chain, which is
nonintegrable. We show that this model after increasing spin
to S = 1 surprisingly harbors an extensive set of anomalous
scarred eigenstates at finite energy density that exhibit subex-
tensive entanglement entropy. These scarred states survive
certain Heisenberg perturbation. Our results thus firmly estab-
lish the existence of QMBSs in the 1D spin-1 Kitaev model.
The entanglement entropy of a subregion A in an eigenstate
α is, Sα

A = −Tr{ρα
A ln ρα

A}, and ETH-obeying states have ex-
tensive volume-law entanglement entropy, Sα

A ∝ V . Thus, to
show that the quantum states violate the ETH, we need only
to show that their entanglement entropy is subextensive.

The purpose of this paper is twofold. First, we would like
to provide evidence that scarred eigenstates indeed appear
naturally in the spin-1 Kitaev model as the PXP model is
embedded in one of subspaces. Second, quantum scars in
the many-body Hamiltonian relevant for electronic systems
are also of interest. Thereby we are guided by the idea that
studying a wide variety of interacting systems with exact scar
states and their stability to perturbations would be beneficial
for general understanding.

II. SPIN-1 KITAEV CHAIN

In the present paper, we focus on a spin-1 Kitaev chain

ĤK = K
N/2∑
j=1

(
Sx

2 j−1Sx
2 j + Sy

2 jS
y
2 j+1

)
, (1)

where spin operators {Sa
j } (with a = {x, y, z}) are the spin-1

operators at site j, for a chain of N sites. The spin operators
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obey the SU(2) algebra, [Sa
i , Sb

j ] = iδi jεabcSc
j , with the to-

tally antisymmetric tensor εabc and (S j )2 = S(S + 1)= 2. The
spin-1 Kitaev model in Eq. (1) breaks the global spin rotation
SU(2) symmetry, while still obeying the time reversal symme-
try T , (Sx,y,z

j → −Sx,y,z
j ) and the spatial inversion symmetry I,

( j → N − j + 1, Sx,y,z
j → Sx,y,z

N+1− j). The sign of K in Eq. (1) is
irrelevant as far as a rotation Uz = ∏

j �
z
2 j at each even lattice

site by an angle π about the z-axis will reverse the sign.
While the sign of the Kitaev interactions is still under

debate, with conflicting results from theoretical and experi-
mental studies, RuCl3 was deemed as a promising candidate
for the Kitaev QSL with spin S = 1

2 [40]. For the present
model Eq. (1) we shall investigate whether QSL is also stable
in a certain regime of parameters. Previous neutron scattering
studies performed to complement density functional theory
(DFT) suggested that the Kitaev interaction may be ferro-
magnetic (FM) or AFM. A recent experiment on α-RuCl3 by
measuring azimuthal dependence [41] suggests that the Kitaev
interaction is here FM.

It is convenient to use a representation for S = 1 given by
the set of orthonormal states {|−〉, |0〉, |+〉}, where

|−〉 ≡ 1√
2

(| − 1〉 − |1〉),

|+〉 ≡ i√
2

(| − 1〉 + |1〉), (2)

and |m〉 is an eigenstate of the spin operator Sz
i to an

eigenvalue m = −1, 0, 1, i.e., it stands for the state |1, m〉.
Furthermore, spin-1 operators can be written as Sa

bc = iεabc.
Explicitly, spin operators {Sx, Sy, Sz} for spin S = 1 may be
represented by the matrices⎛

⎝0 0 0
0 0 −i
0 i 0

⎞
⎠,

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (3)

The spin components define site parity operators �a
j = eiπSa

j ,
i.e., {�x, �y, �z} are given by the matrices⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠,

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠,

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠.

(4)

From the form of these operators we see that the eigenval-
ues of operators �a

j are ±1, but −1 is doubly degenerate.
The Hamiltonian in Eq. (1) respects the dihedral group D2

for a global discrete symmetry with a rotation by an an-
gle π about the {x, y, z} axes, i.e.,

∏
j �

a
j . One finds that

all �a
j matrices commute with each other. In addition, �a

j

commutes with Sa
j but anticommutes with Sb

j (a �=b), i.e.,
{�a

j , Sb
j } = {exp(iπSa

j ), Sb
j } = 0.

In terms of the ladder operators S±
j ≡ Sx

j ± iSy
j , one finds

that

[S+
j , S−

j ] = 2Sz
j,

[
Sz

j, S±
j

] = ±S±
j ,

{S+
j , S−

j } = 2
[
2 − (

Sz
j

)2]
. (5)

The Ising terms in Eq. (1) change the total pseudospin-z at
both x-link (2 j-1, 2 j) and y-link (2 j, 2 j + 1) by either 0 or
±2. Thus the bond parity operators on odd/even bonds

Ŵ2 j−1 = �
y
2 j−1�

y
2 j, and Ŵ2 j = �x

2 j�
x
2 j+1, (6)

define the invariants of the Hamiltonian in Eq. (1). The differ-
ent forms on odd and even bonds in Eq. (6) can be cured by a
unitary transformation on the even sites

Sx
2 j → Sy

2 j, Sy
2 j → Sx

2 j, and Sz
2 j → −Sz

2 j . (7)

In the transformed frame, the Hamiltonian in Eq. (1) then
takes a translationally invariant form

H̃K = K
N∑

j=1

Sx
j S

y
j+1, (8)

and the bond parity operators on odd/even bonds then simul-
taneously take a universally convenient form

W̃j = �
y
j�

x
j+1. (9)

The eigenvalues of W̃j are w j = ±1. One observes from
Eq. (4) that �z

j = �x
j �

y
j , implying two of them are indepen-

dent, e.g., �x
j and �

y
j . The Z2-valued conserved quantity W̃j

implies that the Hilbert space can be decomposed into 2N

sectors of unequal sizes for the spin-1 chain.
The projector at a subspace with a given set of

invariants, {w1,w2, . . . ,wN }, can be constructed as
Q̂(w1,w2, . . . ,wN ) = ∏

j (1 + w jW̃j )/2. It acts on a random
state |ψrand〉 and the dimension D can be calculated by using
the technique of the transfer matrix. The ground state of H̃K

with periodic boundary conditions (PBCs) lies in the sector
with defect-free subspace [42]. Different from the spin-1/2
counterpart, where the uniform subspace, with parity being
either w j = +1 or w j = −1 for all j, are all equivalent up to a
unitary transformation, but the dimensions of these sectors are
nonidentical. The dimension of the sector with all w j = −1
is equal to D({−1,−1, . . . ,−1}) = 2, which appears to be
the smallest subspace, as is evidenced in Fig. 1.

The two-dimensional subspace with all w j = −1 can
be rewritten as | − − − · · · − −〉 and | + + + · · · + +〉 de-
fined in the rotated bases in Eq. (7). On the contrary,
the dimension D for the subspace with parity w j = +1
for all j is proven to be the Lucas number, i.e.,
D({1, 1, . . . , 1}) = FN−1 + FN+1, where Fn is the nth Fi-
bonacci number. More precisely, D({1, 1, . . . , 1})=gN+g−N ,
where g = (1 + √

5)/2 ≈ 1.618 is the golden ratio. It is inter-
esting to observe that such fractal dimension-based subspace
is the largest among all the sectors, see Fig. 1.

The constrained Hilbert space without any adjacent spin-up
atoms makes the system identical to that of chains of spin-
1/2 atoms. Hence, the Hilbert space of a given sector can
be mapped into the Hilbert space of a spin-1/2 chain with
some states excluded. Accepting the notation that the |↑〉 state
represents the state |−〉 (head), and the |↓〉 state stands for
either the state |0〉 (empty) or the state |+〉 (tail), the system
can be mapped to a single qubit-flip model with nearest-
neighbor exclusion represented by the effective Hamiltonian
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FIG. 1. The dimension of subspaces D for given par-
ity (w1, w2, . . . , wN ) as a function of the defect number
N = N − ∑N

j=1 w j , for a chain with N = 12 sites. The red dot
denotes the maximum (minimum) of D corresponding to the uniform
subspace with parity w j = +1 (w j = −1) for all j. The dashed line
is a guide for the eye.

in the sector with w j = +1 for all j [43]:

H{1,1,...,1} =
N∑

j=1

X̃ j . (10)

Here X̃ j ≡ Pj−1XjPj+1, where the Pauli operators
Xj = ( |↑〉〈↓| + |↓〉〈↑| ), Zj = ( |(↑〉〈↑| − |↓〉〈↓| ), and
the projectors Pj = |↓〉〈↓| = (1 − Zj )/2, ensure that the
nearby atoms are not simultaneously in the excited state. The
corresponding dimension of the constrained Hilbert space
is exactly equal to D({1, 1, . . . , 1}) through an isomorphic
mapping. Note that the PXP model is an effective model of
the biaxial Ising model with both transverse and longitudinal
fields, where the low field hx � Jz and the saturation field
hz = 2Jz are present. In spite of its rather friendly form, the
Hamiltonian Eq. (10) is nonintegrable due to the low-energy
constraint imposed on the Hilbert space.

It was noted that the PXP model specified by the Hamilto-
nian (10) will exhibit QMBSs, which can be experimentally
prepared and probed using a global quench. Experiment [20]
and numerical simulations on small systems [44] revealed that
the relaxation under unitary dynamics strongly depended on
the initial state of the system. It was found that special eigen-
states have anomalously high overlaps with certain product
states.

The polarized state with all spins in |↓〉 state
|∅〉 = ∏

j Pj |ψrand〉 satisfies H{1,1,...,1}|∅〉 = 0, which allows
one to identify a dominant subset of special states in the PXP
model. We initialize the system at time t = 0 in the state
|ψ (0)〉 ≡ |Zk〉, namely,

|Zk〉 = . . . X̃k . . . X̃2k . . . |∅〉, (11)

and then follow the evolution of the initial state with the PXP
Hamiltonian, |ψ (t )〉 = exp(−iH{1,1,...,1}t )|ψ (0)〉. The evolu-

tion is determined by the decomposition of |ψ (0)〉 in terms of
the eigenstates of H{1,1,...,1}. The initial states with atoms in all
spin-down state |Z1〉 ≡ |∅〉 or |Z4〉 show fast relaxation and
no revivals, characteristic of thermalizing systems. Remark-
ably, the quantum quench from either period-2 state (|Z2〉) or
the period-3 state (|Z3〉) will surprisingly give rise to coherent
oscillations, which can be observed in the dynamics by mea-
suring the expectation values of certain local observables and
the quantum fidelity

F (t ) = |〈Zk| exp(−iHt )|Zk〉|. (12)

The observed oscillations and the apparent nonergodic dy-
namics are attributed to the existence of QMBSs [45].

Intuitively, the empty state |∅〉 corresponds to the state
|0000 . . . 00〉, which can be inferred from Eq. (4) that the con-
figuration |0000 . . . 00〉 resides in this subspace with uniform
Z2 invariants, i.e., w j = 1 for all j. In this context, the akin
states |Z̃k〉 of spin-1 Kitaev model Eq. (8) as product states in
Eq. (11), can be reconciled by acting

|Z̃k〉 = . . . Sx
k Sy

k+1 . . . Sx
2kSy

2k+1 . . . |0000 · · · 00〉. (13)

Then the corresponding spin-1 states are given by

|Z̃2〉 = | − + − + · · · − +〉, (14)

|Z̃3〉 = | + −0 + −0 · · · + −0〉, (15)

|Z̃4〉 = | + −00 + −00 · · · + −00〉. (16)

It is clear that the translated states, |Z̃′
k〉 = (Ti→i+1) j |Zk〉

( j = 1, 2, . . . , k − 1), also belong to the QMBSs, where
Ti→i+1 denotes the translation by one lattice site, i.e.,
i → i + 1. As is shown in Fig. 2(a), the revivals of the
quantum fidelity for spin-1 Kitaev model (8) [spin-1/2 PXP
model (10)] starting from the initial Néel state |Z̃2〉 (|Z2〉) are
indistinguishable, suggesting the existence of ETH-violating
QMBSs.

Figure 3 shows that the fidelity F and entanglement S with
its dynamics for different initial states are interrelated in a sub-
tle way. One can observe the coherent oscillations of fidelity
that persist for long times for quenches from initial product
states |Z̃2〉 and |Z̃3〉 [18], with different revival periods, and
the entanglement entropy S , see Fig. 3(b), is gradually grow-
ing with time. The weak oscillations of the entanglement are
clearly visible by eliminating the linear growth, featuring the
many-body revivals [19].

By contrast, the fast damping amplitude of fidelity for
quench from the |Z̃4〉 state indicates the negligible over-
laps between scarred eigenstates and the |Z̃4〉 product state.
Meanwhile, the entanglement undergoes an extremely fast
growth. Note that the bipartite entanglement approaching the
maximum entanglement entropy log2(χd ) implies a large
accumulated error and thus an inevitable breakdown of the
density-matrix renormalization group (DMRG) method [46].

Furthermore, it is striking to find that the energy spectra
and eigenstates overlap with the Néel state of Eq. (10) also
coincide with those of Eq. (8), except the highly degenerate
states at E = 0, implying that a precise relation exists between
the eigenstate of spin-1 Kitaev model (8) and the celebrated
spin-1/2 PXP model (10). The zero modes of the PXP model
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FIG. 2. Characteristic quantum features of the spin-1/2 PXP
model. (a) The fidelity F (t ) for spin-1 Kitaev model starting from
the initial |Z̃2〉 (|Z2〉) states with N = 18. (b) Eigenstate overlap with
the Néel Z2 state for spin-1/2 PXP model (dots) and the w j = 1 for
( j = 1, 2, . . . , N ) subspace of spin-1 Kitaev model (squares) with
N = 16. Color scale on the right of panel (b) indicates the density of
data points, with lighter regions being more dense.
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FIG. 3. Quantum features of the 24-site S = 1 Kitaev chain:
(a) the fidelity F and (b) the entanglement S. The results correspond
to starting from the initial |Z̃k〉 (k = 2, 3, 4) states. The bond dimen-
sion is set as χ = 300.
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FIG. 4. Bipartite entropy of the eigenstates for (a) spin-1/2 PXP
model and (b) spin-1 Kitaev model, within wi = 1 (i = 1, 2, . . . , N )
subspace. Color scale indicates the density of data points, with lighter
regions being more dense. Here the chain has N = 16 sites.

at the center of the spectrum are pinned by the particle-
hole symmetry, i.e., {C, HPXP} = 0, with C = ∏N

j=1 Zj [47].
The states with E = 0 can be classified as eigenstates of C.
An exponential growth of protected many-body zero-energy
modes with system size arise as a consequence of intertwining
of spectral-reflection C symmetries and relevant point-group
symmetries [48].

Among the above macroscopic number of states, two exact
scar states for PBC were identified in terms of matrix product
states with a finite bond dimension [47], which shows that
these exact scar states have constant entanglement. However,
the bipartite entropy of the eigenstates of spin-1/2 PXP model
in Fig. 4(a) and the w j = 1 ( j = 1, 2, . . . , N ) subspace of
spin-1 Kitaev model in Fig. 4(b) quantitatively exhibit similar
features but are not exactly equivalent. Notably, the different
choice of reference bases will modify the values of bipartite
entanglement entropy.

The explicit technical insights can be accessible by an
exact solution of the two-site model, which are presented
in Appendix A. The scarred eigenstates are characterized by
the low bipartite entanglement entropy SA, and they become
increasingly decoupled from the thermal bulk states as the
system size N increases. The primary Z2 scar states can be
constructed from the excitations on top of the exact scar
states at E = 0. The equally spaced towers of QMBSs in the
spectrum are closely related to perfect revivals, but these char-
acteristics of particular interest are currently limited by small
system sizes. However, they are experimentally relevant.

III. STABILITY OF QMBS AGAINST HEISENBERG
INTERACTIONS

It is appealing to consider the stability of the QMBS to
a nonzero perturbation, which could possibly preserve or
undermine the conservation of local quantities characteristic
of the Kitaev model. Considering atomic states in the t2g

manifold are immersed under the crystalline electric field
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FIG. 5. Time evolution of an 18-site Kitaev chain starting from
the initial |Z̃2〉 state: (a) the order parameter (18) and (b) the quench
fidelity (12). The data are presented for increasing strength of single-
ion anisotropy (17), D = 0.0, 0.2, 0.4. See legend.

with the strong spin-orbit coupling, other interactions, such
as the Heisenberg exchange, and Dzyaloshinskii-Moriya in-
teraction, coexist with the Kitaev interactions [49]. In addition
to the quadratic exchange interactions, the uniaxial single-ion
anisotropy (SIA) due to crystal-field effects [50] and further-
neighbor interactions are also ubiquitous [51]. In reality, these
interactions play an important role in establishing nontrivial
electronic correlations for low-dimensional models with
higher spin S > 1

2 .
We are interested in effects induced by perturbations that

leave the intermediate symmetries intact. The SIA

ĤD = D
∑

j

(
Sz

j

)2
(17)

is one of them and leads to a quantum phase transition be-
tween a topologically trivial phase and a nontrivial phase
in spin-1 AFM Heisenberg chain as predicted by Haldane
[52,53]. Simultaneously, the SIA leads to a low-entropy spin
Mott insulator in the FM analogy [54,55]. It is easy to find that
Eq. (17) is invariant under the rotation (7) and commutes with
the local parity operators defined in Eq. (9). We can observe
in Fig. 5 that periodic oscillations in the order parameter [56]

O1 = 〈(S+
1 )2〉, (18)

and the quench fidelity persist for long times when starting
from |Z̃2〉. As D increases, the oscillation period gets shorter.

We are also interested in the effects under a perturbation
V ∝ (Sx

j S
z
j+1Sy

j+2) that obey the same intermediate Z2 sym-
metries of Eq. (8). The origin of such three-site XZY -type
interactions is explained in Appendix B. One can observe that
the order parameter O1 and the quench fidelity F (t ) show
quite similar oscillations as those of SIA. The state coherence
sustains a long time for a moderate perturbation, and the

revival will degrade quantitatively with the increasing ampli-
tude of multispin perturbations, while the oscillation period is
almost unchanged.

However, it is gradually recognized that isotropic Heisen-
berg interactions commonly exist in solid-state materials and
perturb the systems with frustrated interactions. One fre-
quently considered example is the compass model where
Heisenberg interactions are responsible for the onset of pos-
sible long-range two-dimensional (2D) order in the ground
state, but simultaneously excited states preserve their unique
nature which may be used for information storage. Here the
nematic order which persists in excited states may be used for
correcting the faults along the computations [57,58].

Another example of the robust structure of excited states
in the presence of perturbation is encountered in the Kitaev-
Heisenberg model for S = 1/2 spin, which was intensely
investigated and several phases with broken symmetry were
found [40,59,60]. A similar situation was reported as well for
the spin-1 Kitaev honeycomb model in candidate materials,
such as honeycomb Ni oxides with heavy elements of Bi and
Sb, where Kitaev interaction is accompanied by a finite FM
Heisenberg interaction. In the zero-field limit, the Kitaev QSL
is destabilized when J/K > 0.08 [61]. We thus assume that
such interactions are of Heisenberg type

ĤJ = J
N∑

i=1

Si · Si+1, (19)

where J stands for the Heisenberg exchange coupling. After
the rotation (7), the perturbation by Heisenberg interaction can
be rewritten as

H̃J = J
N∑

j=1

(
Sx

j S
y
j+1 + Sy

j S
x
j+1 − Sz

jS
z
j+1

)
. (20)

The full Hamiltonian takes an anisotropic translational form

H̃KJ =
N∑

j=1

{
(K+J )Sx

j S
y
j+1+ JSy

j S
x
j+1− JSz

jS
z
j+1

}
. (21)

A direct consequence is the additional Heisenberg interac-
tions spoil the Z2 symmetry of Eq. (1) associated with each
bond. It is worth noting that the energy levels of low-lying
excited states cross at J = 0. The first excited state of H̃K is
N-fold degenerate, corresponding to one w j = −1 defect in
the sector with all other w j = 1, such that either |00+0 . . . 00〉
or |00−0 . . . 00〉 state occurs. A narrow gapped Kitaev phase
is capable of sustaining the perturbations of Heisenberg inter-
actions.

The competition between spin-1 AFM Kitaev chain and
isotropic Heisenberg interactions was analyzed for K = 1
[62], while a complete phase diagram, to the best of our
knowledge, is elusive and still deserves a careful investigation.
To incorporate the phase diagram of the spin-1 Kitaev-
Heisenberg model with K = 1 [62], the ground-state phase
diagram with K = −1 is depicted using the DMRG and exact
diagonalization methods. In the DMRG simulations, we keep
up to χ = 500 bond states during the procedure of basis trun-
cation and the number of sweeps is n = 30. These conditions
guarantee that the simulation is converged sufficiently fast and
the truncation error is smaller than 10−7.
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FIG. 6. The correlations between site 1 and (r + 1) for increas-
ing distance r and for (a) J = −1.0, (b) J = 0.03, (c) J = 0.2, and
(d) J = 1.0. Here we use PBCs for the chain with N = 200 sites.

One motivation for the study of AFM spin-1 Heisenberg
chains (K = 0, J > 0) is that the model hosts a symmetry-
protected topological ground state with a finite Haldane gap
[63], a reminiscent of AKLT state [64]. It has been known for
decades that the indicator of the Haldane phase is beyond any
local symmetry-breaking order parameters. Instead, it can be
characterized by the exponential decay of two-spin correlation
function and nonlocal string order parameters [65,66].

As for the coexistence the Kitaev interaction and the
Heisenberg interactions, the spatial inversion symmetry, the
time-reversal symmetry, and the dihedral D2 symmetry are
preserved, which protects the Haldane phase [67,68]. Another
specific case occurs with J ≡ −K/2. Then Eq. (21) can be
recast into an isotropic form

H̃KJ = 1

2
K

N∑
j=1

(
S̃x

j S̃
x
j+1 + S̃y

j S̃
y
j+1 + S̃z

j S̃
z
j+1

)
, (22)

through the following spin rotation:

S̃x
j = cos (π j/2)Sx

j − i sin (π j/2)Sy
j ,

S̃y
j = cos (π j/2)Sy

j + i sin (π j/2)Sx
j . (23)

In this case, the ground state of Eq. (22) possesses one
Goldstone mode, and its character depends on the sign of
K . The Goldstone mode has a quadratic dispersion for FM
Heisenberg model with K = −1, while it is gapped for AFM
Heisenberg model with K = 1.

For a generic case, a well-defined order parameter is a vital
ingredient for characterizing the nature of phases. To identify
the region of the Kitaev phase and the Haldane phase, we
calculate the nonlocal correlator

Ca
i, j =

〈
Sa

i exp

(
iθ

j−1∑
l=i+1

Sa
l

)
Sa

j

〉
, a = x, y, z. (24)

For θ = π , Eq. (24) becomes the den Nijs–
Rommelse string order parameter whose limiting value
Oa

s = lim|i− j|→∞(−Ca
i, j ) reveals the hidden symmetry

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

J

Cz
1,N/2

Oz
1,N/2

Cx
1,N/2

Ox
1,N/2

0.5

FIG. 7. Two-point correlation Ca (24) and string order parameter
Oa (a = x, z) of 1D pristine spin-1 Kitaev-Heisenberg model for
J ∈ (−1, 1) between sites 1 and N/2 for N = 80. With increasing
J , the order in the ground state changes from FMx through QSL and
LLRR phase to the Haldane phase.

breaking [69,70]. For θ = 0, Eq. (24) reduces to two-point
correlations.

When J varies for K = −1, the competing correlations
will trigger miscellaneous phase transitions. For J � −1, the
Cx

i, j correlations dominate, suggesting that the ground state is
FMx, see Fig. 6(a). For J ≈ 0, the pure spin-1 Kitaev chain
hosts nearest-neighbor AFM orders due to the Z2 symmetry.
The especially short-range correlations are demonstrated for
J = 0.03. The nearest-neighbor spins favor here the FM align-
ment as the next-nearest-neighbor interactions are FM, this
state is shown in Fig. 6(b). When J increases further, the dom-
inating y-component correlations have a negative sign on odd
bonds and a positive sign on even bonds. These correlations
indicate that spin order develops into the left-left-right-right
(LLRR) phase, as is shown in Fig. 6(c). Figure 6(d) shows that
the Cx

i, j correlations dominate over Cy
i, j and Cz

i, j when J � 1.
To clarify the uniaxial order, the two-point correla-

tion Ca and the string order parameter Oa (a = x, z)
between sites 1 and N/2 on a N = 80 site chain are
shown for increasing J in Fig. 7. One can recognize
a finite Cx

1,N/2 that characterizes the FMx phase for
J < −0.08, while all correlations vanish in the interval
−0.08 < J < 0.08. Next Cx

1,N/2 < 0 for 0.08 < J < 0.50,
while finally Oz

1,N/2 � 0.9 is finite for J > 0.5 and defines the
phase boundary of the Haldane phase.

IV. PHASE DIAGRAM OF THE KITAEV-HEISENBERG
CHAIN FOR S = 1

The parameters {K, J} for the Kitaev and Heisenberg ex-
change couplings can be set as

K ≡ sin(φ), J ≡ cos(φ), (25)

where the angle φ ∈ [0, 2π ) parametrizes the Hamiltonian
(21). To this end, the complete phase diagram of the 1D spin-1
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LLRRQSL

FMz
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Haldane
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FIG. 8. Ground-state phase diagram of the 1D Kitaev-
Heisenberg model for S = 1. The vertical (horizontal) axis stands
for the Kitaev K (Heisenberg J) exchange coupling, as given
in Eq. (25). Here φ ∈ [0, 2π ) is the angle which determines the
exchange constants, see Eq. (25).

Kitaev-Heisenberg model as a function of φ is displayed in
Fig. 8, where the vertical (horizontal) axis is the Kitaev K
(Heisenberg J) exchange coupling. For both cases with either
K > 0 or K < 0, the phase diagram consists of four different
phases, i.e., the FM phase, the Kitaev QSL phase, the LLRR
phase, and the Haldane phase. To some extent, the symmetry
between the regimes of K > 0 and K < 0 is restored.

It is interesting to note that a generalized Kennedy-Tasaki
transformation, UKT = ∏

j<k exp (iπSy
j S

x
k ) [71,72], can be re-

alized as the reciprocal transformation between the string
order and the local FM order. In this regard, Eqs. (1) and (19)
are transformed into equivalent ones with a minus sign stand-
ing with short-range interactions, where the nonlocal string
observable Oa

i, j (Ĥ ) is responsible for the two-point correla-
tions Ca

i, j (H̃ ), with a = x, z of the transformed Hamiltonian

H̃ ′
KJ = −K

N/2∑
j=1

(
Sx

2 j−1Sx
2 j + Sy

2 jS
y
2 j+1

)

− J
N∑

j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + W̃jS

z
jS

z
j+1

)
. (26)

This suggests a likely relationship H̃ (−K,−J ) � Ĥ (K, J ).
Notably, the coupled Z2 gauge fields {W̃j} are not con-

served in the transformed pristine Hamiltonian. The duality
becomes exact when the strength of the Heisenberg interaction
J is tiny (φ ≈ ±π/2), which means that the parameters are
within the boundaries of the Kitaev QSL phases. However,
Fig. 8 clearly shows that such a relationship does not hold for
moderate values of J owing to quantum fluctuations of Ising
gauge fields. The system undergoes a second-order quantum
phase transition from the FM phase to the LLRR phase at
φ = 0.8280π (i.e., for K = 1, J = −0.6), while another tran-
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1.0

0 5 10 15 20
0

2

4

0.0 0.1
0

1
J=0.00
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F

t

(a)

J=0.00
J=0.04
J=0.20

(b)

S

t

�F
1

1/N

FIG. 9. Quantum characteristics of the S = 1 Kitaev-Heisenberg
chain of N = 36 sites, starting from | − + − + · · · − +〉 in Eq. (21)
as the initial state for selected values of J: (a) the fidelity F and
(b) the entanglement entropy S. The inset in (a) shows the scaling
of the first revival peak δF1 versus 1/N for J = 0.0 and J = 0.04.
The bond dimension is set as χ = 400.

sition from the LLRR phase to the Haldane phase occurs at
φ = 1.8524π (i.e., for K = −1, J = 0.5). In fact, there is no
phase transition at φ = 0 (K = 0, J = 1), where the string
observables Oa

i, j are balanced in both the x- and z-directions,
corresponding to the restoration of hidden Z2 × Z2 symmetry
breaking.

We note that the phase diagram of the S = 1 Kitaev-
Heisenberg chain resembles to some extent the phase diagram
of the Kitaev-Heisenberg chain for S = 1

2 spin [60], and one
finds the following correspondence between phases: the Hal-
dane phase for S = 1 corresponds to the AFM phase for S = 1

2
and the FM phase for S = 1 corresponds again to the FM
phase when spin is smaller. But it is remarkable that the
LLRR phase corresponds to two distinct phases when S = 1

2 :
the zigzag phase for K > 0 and the stripe phase for K < 0.
Thereby the regime of the LLRR phase for K > 0 extends
over a broader range of angle φ, similar to the broader range
of φ for the zigzag phase at S = 1

2 [60]. In addition, both the
FM and the Haldane phase consist here of two distinct phases,
depending on whether K > 0 or K < 0. This demonstrates
that the quantum components of S = 1 spins are nonequiva-
lent and the SU(2) symmetry of the Heisenberg term does not
hold when Kitaev interactions are finite.

Finally, we investigate the scar stability in a broader
regime, which is relevant for possible solid-state applications.
Then we consider the scar stability of the Kitaev model with
Heisenberg perturbations, and show that they display anoma-
lous stability in the Kitaev phase. Figure 9 shows the fidelity
with periodic slowly decaying revivals in the dynamics for
J = 0. In contrast, it completely collapses for J = 0.2 with
N = 36. The coherent dynamics is retained in the Kitaev
phase while it is lost quickly when the phase enters other
phases. Away from the Kitaev point, one can observe how the
entanglement grows rapidly with time. These results suggest
that exact scars are a generic property of Kitaev models.
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V. SUMMARY AND CONCLUSION

In this paper, we studied the eigenstate properties of Hamil-
tonian relevant for spin-orbit-coupled electronic system,
where the PXP model was embedded. Thus, the many-body
quantum scars and the associated constrained dynamics can
be unveiled. This phenomenology is characterized by the
fact that the dynamics is anomalously slow provided the
initial state has a nonnegligible overlap with scarred states.
The ETH violations were explicitly detected in the uniform
w j = 1 (∀ j) sector, where the spin-1 Kitaev model can be
rigorously mapped into a spin- 1

2 PXP model. The PXP model
acts here as an archetypal model to possess quantum scars,
which are introduced to explain the slow dynamics observed
by evolving a charge-density wave initial state in the Ryd-
berg atom chain realized in Ref. [20]. As a consequence of
nearest-neighbor Rydberg blockaded, the dimension of con-
strained Hilbert space grows as gN , where g = (1 + √

5)/2 is
the golden ratio. A few scarred eigenstates spread throughout
the spectrum and their presence is evidenced by subextensive
entanglement entropy and persistent oscillation of local ob-
servables. We showed that there is the coexistence of volume-
law and area-law entangled eigenstates throughout the
spectrum.

These ETH violating eigenstates survive despite hybridiza-
tion with an exponential number of thermal eigenstates and
motivated the study of their stability against perturbation.
We consider the perturbations by Heisenberg interactions, see
Eq. (26). To characterize the ground-state properties, we adopt
both the local and nonlocal correlations, which identify dis-
tinct phases when the Kitaev coupling K and the Heisenberg
coupling J vary, see Fig. 8. For large negative J , the FM
order along the z (x) axis is favored for K = 1 (K = −1).
Increasing the value of J , the ground state evolves from the
FM state into the stripy phase, in which the spin structure
has a left-left-right-right pattern. The magnetic order vanishes
when J approaches the Kitaev limit. In stark contrast to the
gapless ground state of the S = 1

2 Kitaev chain, the gapped
ground state supports a narrow Kitaev phase in the vicinity
of J = 0, which is characterized by the extremely short-range
correlations.

As a universal feature, the system enters into the Hal-
dane phase upon increasing J . The Haldane phase maintains
its topological character and cannot evolve adiabatically to
other phases since it is protected by the combination of
the spatial inversion symmetry, the time-reversal symmetry,
and the dihedral D2 symmetry. The continuous revivals for
starting from particular initial states remains in the disor-
dered Kitaev phase, while the state coherence breaks down
swiftly in the symmetry-breaking phases. Nevertheless, with
the help of examples of the single-ion term and multispin
interactions, we demonstrate the scarred states appear to be
robust against Z2-symmetry preserving perturbations, at least
for the currently experimentally accessible system-sizes. Our
findings highlight that spin-1 Kitaev systems exhibit a rich
variety of phenomena and thus provide a generic nonin-
tegrable constrained quantum many-body system to study
nonergodic behaviors, the stability under generic perturba-
tions, and quantum analogs of the Kolmogorov-Arnold-Moser
theorem.
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APPENDIX A: BIPARTITE ENTROPY OF TWO-SITE
SPIN-1/2 PXP MODEL AND SPIN-1 KITAEV MODEL

Here we consider N = 2. The Hamiltonian of the spin-1/2
PXP model within the bases in the constrained Hilbert space

{|↓↓〉, |↓↑〉, |↑↓〉}, (A1)

H =
⎛
⎝0 1 1

1 0 0
1 0 0

⎞
⎠, (A2)

and the ones for the spin-1 Kitaev model within (wi = 1,
i = 1, 2, . . . , N ) subspace

{| − +〉, | + −〉, |00〉}, (A3)

H =
⎛
⎝0 0 1

0 0 1
1 1 0

⎞
⎠. (A4)

There is a one-to-one correspondence between Eqs. (A1)
and (A3):

| − +〉 ⇒ |↓↑〉, | + −〉 ⇒ |↑↓〉, |00〉 ⇒ |↓↓〉. (A5)

The eigenvectors of Eq. (A2)

|ψ1〉 = −0.7071 |↓↓〉 + 0.5000 |↓↑〉 + 0.5000 |↑↓〉,
|ψ2〉 = 0.0000 |↓↓〉 − 0.7071 |↓↑〉 + 0.7071 |↑↓〉,
|ψ3〉 = 0.7071 |↓↓〉 + 0.5000 |↓↑〉 + 0.5000 |↑↓〉. (A6)

The entanglement spectra and von Neumann entropy

λ
(1,2)
1,3 = 1

2
±

√
3

4
, with SA = 0.3546, (A7)

λ
(1,2)
2 = 1

2
,

1

2
, with SA = 1.0. (A8)

Similarly, the eigenvectors of Eq. (A4)

|φ1〉 = 0.5000 |−+〉 + 0.5000 |+−〉 − 0.7071 |00〉,
|φ2〉 = 0.7071 |−+〉 − 0.7071 |+−〉 + 0.0000 |00〉,
|φ3〉 = 0.5000 |−+〉 + 0.5000 |+−〉 + 0.7071 |00〉. (A9)
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The entanglement spectra and von Neumann entropy are

λ
(1,2,3)
1,3 = 1

4 , 1
4 , 1

2 , with SA = 1.5, (A10)

λ
(1,2,3)
2 = 1

2 , 1
2 , 0, with SA = 1.0. (A11)

To this end, the diverse choice of bases in Eqs. (A1) and
(A3) will lead to multiple values of bipartite entanglement
entropy.

APPENDIX B: KITAEV CHAIN UNDER XZY -TYPE
PERTURBATIONS

The energy current follows from the continuity equa-
tion [74]

ĴE =
N∑

j=1

i[h j, h j+1] = K2
N∑

j=1

Sx
j S

z
j+1Sy

j+2. (B1)

This operator acts on three adjacent sites and contains also the
z component of spin-1 operators, which commutes with W̃j .
The presence of an effective energy flow will manifest itself in
the effective Hamiltonian followed by a Lagrange multiplier
λ:

H̃K = K
N∑

j=1

Sx
j S

y
j+1 − λĴE. (B2)

It can be verified that [W̃j,W̃k] = 0, [W̃j, H̃K] = 0. In this
respect, the three-site XZY -type interactions belong to

FIG. 10. Quantum properties of the Kitaev chain with N = 18
sites starting from the initial |Z̃2〉 state with XZY interactions and
for λ = 0.0, 0.2, 0.4: (a) the order parameter (18) and (b) the quench
fidelity F (t ).

Z2-symmetry preserved perturbations. The numerical results
for different values of λ are shown in Fig. 10. One finds that
the oscillations of the order parameter (18) are more damped
and the fidelity F (t ) has a richer structure at larger time t when
λ increases.
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