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Polynomial systems over the binary field have important applications, especially in symmetric and asymmetric
cryptanalysis, multivariate-based postquantum cryptography, coding theory, and computer algebra. In this paper,
we study the quantum annealing model for solving Boolean systems of multivariate equations of degree 2,
usually referred to as the multivariate quadratic problem. We present different methodologies to embed the
problem into a Hamiltonian that can be solved by available quantum annealing platforms. In particular, we
provide three embedding options, and we highlight their differences in terms of quantum resources. Moreover, we
design a machine-agnostic algorithm that adopts an iterative approach to better solve the problem Hamiltonian
by repeatedly reducing the search space. Finally, we use D-Wave devices to successfully implement our
methodologies on several instances of the multivariate quadratic problem.

DOI: 10.1103/PhysRevResearch.4.013096

I. INTRODUCTION

Adiabatic quantum computation is a universal quantum
computation scheme [1] where a quantum system is prepared
in the ground state of an easy-to-prepare Hamiltonian and
evolved towards a Hamiltonian that encodes the solution of
a problem in its ground state. If the evolution is performed
adiabatically, the quantum system will remain in its instanta-
neous ground state, and the problem will be solved. Quantum
annealers are special-purpose devices based upon the princi-
ples of adiabatic quantum computation that work with simpler
Hamiltonians and more relaxed evolution times. However,
these devices are believed to provide an edge when solving
classical satisfiability problems by leveraging quantum phe-
nomena and are easier to control and scale up for larger,
real-life problems [2–12]. Interestingly, quantum annealers on
the order of thousands of qubits are already commercially
available from D-Wave [13].

The quantum annealing approach to quantum computing
is a research topic that can be relevant to many research
problems in a variety of scientific fields. Motivated by this
idea, we investigate the possibility of using the D-Wave quan-
tum annealer for a fundamental problem in computer science:
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solving systems of multivariate polynomial equations over the
binary field. If all polynomials in the system are linear, then
the system can be efficiently solved, for instance, by Gaus-
sian elimination. The problem is easy also when the system
is either underdetermined (many fewer equations than vari-
ables), overdetermined (many more equations than variables),
or sparse (the number of terms is linear with respect to the
number of variables). However, the problem is known to be
NP-hard already for generic quadratic systems [14]. More-
over, assuming the exponential-time hypothesis [15], there
exists no subexponential time (worst-case) algorithm for this
problem.

Polynomial systems over the binary field can be used to
perform algebraic cryptanalysis [16] potentially against any
cipher. Moreover, in the case of degree 2 polynomials, the
problem, usually referred to as the multivariate quadratic
(MQ) problem, has important applications in postquantum
cryptography, since several postquantum schemes exist bas-
ing their security on its difficulty to be solved [17,18]. For
these reasons, there is a spreading interest in the scientific
community to find new algorithms to solve the MQ problem,
both in the classical and quantum computation model. The
former case has been extensively studied (see, for example,
Refs. [19–22] for comprehensive surveys of the most effective
algorithms). Regarding the latter, a detailed analysis of the
required qubits and time for a Grover’s algorithm approach
is presented in Ref. [23]. Building upon the previous work,
the authors of Ref. [24] demonstrate that by applying pre-
processing the computational load on the quantum computer
can be reduced and, in a generalization of the multitarget
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search for single targets, the efficiency of the basic quantum
search oracle for the MQ problem over the binary field can be
improved. In Ref. [25], the authors present a quantum version
of BOOLEANSOLVE [26], which is currently the fastest asymp-
totic algorithm for classically solving systems of nonlinear
Boolean equations, that takes advantage of Grover’s quantum
algorithm. Note that Ref. [27] also proposed a new Gröbner-
based quantum algorithm for solving quadratic equations with
a complexity comparable to QUANTUMBOOLEANSOLVE (we
refer to Ref. [25] for further details). Finally, in Ref. [28],
the authors show how to reduce the use of quantum random
access memory (RAM) and circuit complexity by delegating
some precomputations to a classical computer.

Note that all the above quantum techniques have only
considered the use of universal fault-tolerant quantum com-
puters. Therefore the aforementioned methods cannot be
implemented on current quantum computers without error
correction. In contrast, the use of quantum annealers to solve
systems of multivariate equations over a finite field is still
unexplored, and in this paper, we try to fill this gap.

In this paper, we explore how quantum annealing can be
used for solving multivariate systems of quadratic equations
over binary fields, namely, the MQ problem. We present
different methodologies to translate the MQ problem into a
Hamiltonian that can be solved by a quantum annealer. To
support our proposal, we provide results obtained by run-
ning examples on D-Wave’s Advantage quantum device [13],
a commercially available quantum computer. Our approach
takes into consideration the decomposition of multiqubit
terms up to at most two-qubit interactions, which is a con-
straint of the underlying architecture of near-term quantum
annealing devices.

Our work highlights the main obstacle of mapping Boolean
systems of equations into Hamiltonian ground states, which is
the fact that the inherent correlations in operations over the
binary field have to be encoded into a real Hamiltonian, at
the cost of an overhead. We present two alternative methods
to circumvent the exponential overhead in quantum memory
that the naive transformation would incur. Moreover, we also
introduce an iterative approach that aids quantum annealing
devices in finding the ground state of the Hamiltonian by re-
peatedly shrinking the search space using information gained
in previous executions of the system. This method allowed us
to successfully solve small instances of the MQ problem using
current D-Wave devices.

This paper is organized as follows. In Sec. II, we introduce
the background required for this work. Next, in Sec. III we
present our methodologies to translate a given MQ problem
into a Hamiltonian in the context of quantum annealing and
analyze the needed resources. Finally, in Secs. IV and V we
present the results of our experiments with the D-Wave quan-
tum annealer and the conclusions of this work, respectively.

II. PRELIMINARIES

We denote by Fq the finite field with q elements. Fn
q is the

set of all vectors of length n, viewed as an Fq-vector space.
For compactness, we sometimes denote with �x the vector
(x1, . . . , xn).

The MQ problem is defined as follows. The in-
put of the problem consists of m quadratic polynomials
p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) ∈ Fq[x1, . . . , xn] in n vari-
ables x1, . . . , xn and coefficients in a finite field Fq. The output
of the problem is given by the set of (a1, . . . , an) ∈ Fn

q for
which pi(a1, . . . , an) = 0 for all i = 1, . . . , m. The vector
(a1, . . . , an) is called a solution of the system of equations

pi(x1, . . . , xn) = 0, i = 1, . . . , m. (1)

Three variants of the MQ problem can be defined. (1) The
decision variant asks to determine if Eq. (1) has a solution. (2)
The search variant asks to find a solution of Eq. (1), if there
is one. (3) The exhaust variant asks to find all solutions of
Eq. (1).

The decision variant of MQ is known to be an NP-complete
problem [29]. It is easy to observe that solving the search
variant also solves the decision one. On the other hand, by
iteratively guessing each variable, it is possible to solve the
search variant by solving the decision variant at most n times.

For practical purposes, one is usually interested in the
search variant, and sometimes in the exhaust variant. From
now on, unless stated otherwise, “MQ problem” refers to its
search variant. Furthermore, we will focus on the Boolean
case, i.e., where q = 2. In this case, polynomials are called
Boolean polynomials, and the corresponding unique map f
from Fn

2 to F2 is called a Boolean function. It is common to
refer to the Boolean polynomial as the algebraic normal form
(ANF) of f , which we indicate with f (F ). In this paper, we
will also need another representation of f called the numerical
normal form (NNF), which we indicate with f (Z).

Definition 1. Let f be a Boolean function on Fn
2 taking val-

ues in the integer ring Z. We call the numerical normal form
(NNF) of f the following expression of f as a polynomial:

f (x1, . . . , xn) =
∑
u∈Fn

2

λu

(
n∏

i=1

xui
i

)
=

∑
u∈Fn

2

λuX u,

with λu ∈ Z and u = (u1, . . . , un).
With abuse of notation and when clear from the context,

we sometimes write f = f (F ) = f (Z), and we indicate with
“+” the addition either over F2 or over another field or ring.
Given a Boolean function, its ANF and NNF are unique. It
is also worth noting that, in general, if a Boolean function in
ANF has about k terms (i.e., nonzero coefficients), then its
corresponding NNF will contain about 2k terms (see Ref. [30]
for detailed proof). As described in this paper, this significant
increase in the number of terms turns out to be the main
obstacle when trying to solve Boolean polynomial systems
using annealing evolution. We finally refer to Ref. [31] for
an exhaustive introduction to Boolean functions.

Example 1. An example of a quadratic Boolean polynomial
system with n = 4 variables and m = 4 equations is given
below:

x1x2+x1x3+x1x4+x1+x2x3+x2x4+x2+x3x4+x4 = 0,

x1x2+x1x3+x2+x3x4+x3 = 0,

x1x2+x1x3+x2x3+x2+x3+x4 = 0,

x1x3+x2x4+x4+1 = 0.

The polynomials are given in algebraic normal form, and
the only solutions of the system are the two binary vectors
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(1, 0, 1, 0) and (0, 0, 1, 1). For example, the numerical normal
form of f (F ) = x1x3 + x2x4 + x4 + 1 (note that the addition is
over F2) is given by f (Z) = −2x1x2x3x4 + 2x1x3x4 − x1x3 +
x2x4 − x4 + 1 (note that the addition is over the integer
ring Z).

III. FORMALIZING THE PROBLEM
IN A QUANTUM ANNEALER

In the early 2000s, Farhi et al. proposed a new universal
quantum computation model based on the quantum adiabatic
theorem [1,32]. The so-called adiabatic quantum computa-
tion model was shown to be polynomially equivalent to the
quantum gate-based model proposed by Deutsch in 1989
[33,34] and is one of the most promising models of quantum
computing due to its natural robustness against errors [35].
The adiabatic theorem guarantees that if the Hamiltonian that
dictates the energy of a quantum system is modified slowly
enough, a quantum state will remain in its instantaneous
ground state during the evolution [36,37]. This implies that we
can encode the solution of a hard problem, the MQ problem in
this case, into the ground state of a problem Hamiltonian Hp

and then, starting from an easy-to-prepare ground state of an
initial Hamiltonian H0, drive the system slowly to the problem
Hamiltonian to then measure its solution.

A less restrictive, more hardware-friendly, technique to
solve classical problems is quantum annealing. Quantum an-
nealing also follows the evolution of a quantum Hamiltonian
in order to find low-energy configurations of the system but
does not demand adiabatic evolution and forgoes universality.
Devices such as the D-Wave quantum annealer, while not
being universal quantum computers due to their limitations,
are still useful for solving hard optimization problems [38,39].
Hard classical problems that can be codified to a problem
Hamiltonian by only using the computational basis of the
system, as is the case for the MQ problem tackled in this
paper, are ideal for these available quantum annealers.

We want to solve the MQ problem defined in Sec. II,
where we are given a set of m quadratic polynomials
p1(x1, . . . xn), . . . , pm(x1, . . . xn) over the binary field and we
are tasked with finding �x so that all �p are equal to zero, via
quantum annealing. Therefore we need to create a Hamil-
tonian with a ground state that encodes the solution to this
problem.

A. Direct embedding

A first direct approach is penalizing with positive energy
each of the equations pi(�x) that is not fulfilled. The corre-
sponding problem Hamiltonian can be constructed as

Hp =
m∑

i=1

pi(�x), (2)

as it contributes with positive energy if the input bits for pi(�x)
do not result in a zero solution.

Usually, the polynomials pi(�x) in Eq. (2) are given in ANF
since bitwise operations are performed over the binary field
F2. However, the quantum Hamiltonian we can encode into
a quantum annealer device does not function with binary
algebra; each positive term only adds more energy to the final

state. Therefore each polynomial pi(�x) has to be given in
its NNF. This transformation can be obtained by recursively
applying the change

(xi + x j ) −→ xi + x j − 2xi · x j (3)

to the original ANF equations, where, with abuse of notation,
the symbol + on the left is the addition over F2, while the
symbols + and − on the right are the regular addition and sub-
traction over the integer ring. This transformation introduces
multiqubit interaction terms (i.e., terms of degree greater than
1) that were not present in the ANF of pi(�x). In general, all
combination of monomials present in the ANF of pi(�x) will
appear in the NNF. Keep in mind that, in a binary field, it
holds that x2 = x (since the values of the variables xi are either
0 or 1); there are no powers in the monomials of the ANF or
the NNF.

This transformation gives rise to a different issue: The chip
architecture of currently available quantum annealers only
allows for two-qubit interactions. Thus, to run a quantum
annealing protocol on a real device, the interactions of the
Hamiltonian have to be reduced. For a general many-body
Hamiltonian, its interactions can be reduced to two-body in-
teractions using perturbation theory by adding ancilla qubits
[40–42]. If all the problem Hamiltonian parts share the same
basis, as is the case for a classical Hamiltonian such as ours,
the reduction can be performed without perturbation theory
[43,44]. This reduction method yields a new Hamiltonian with
a different energy spectrum but equal ground state and energy,
therefore not altering the solution of the problem, and is the
one we follow for the direct embedding.

The method consists of exchanging a two-qubit interaction
for an ancilla, reducing by 1 the order of the interaction. A
penalty function is then introduced into the Hamiltonian that
adds energy when the value of the ancilla is not equal to the
product of the original two qubits. The penalty function can
be written as

s(xi, x j, xi j ) = 3xi j + xix j − 2xixi j − 2x jxi j, (4)

where xi j is the label given to the ancillary qubit that is
substituted. It can be seen that s(xi, x j, xi j ) = 0 if xix j = xi j

and s(xi, x j, xi j ) � 1 otherwise. This keeps the ground state
and energy unchanged.

Furthermore, a single ancilla xi j can be used for all terms in
the Hamiltonian, where the term xix j appears. This is achieved
by applying the substitution∑

K

αi jK xix jxK

−→
∑

K

(αi jK xi jxK + (1 + |αi jK |)s(xi, x j, xi j )), (5)

where the index K is the product of multiple other variables in
all terms where xix j is present. It can be shown that this trans-
formation also yields a Hamiltonian with the same ground
state [44].

When this procedure is used to reduce large multiqubit
terms, the resulting final Hamiltonian will have large coeffi-
cients. This introduces a problem for real-life implementation
since the machine precision for coefficients of quantum an-
nealing devices such as D-Wave’s is limited. The quantum
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annealer developed by D-Wave scales the given coefficients
between [−1, 1] when introducing them to the machine, so
small coefficients can vanish when translated into weights in
the presence of other large parameters.

An alternative transformation is proposed in Ref. [44] with
the aim of reducing the precision needed for the control of the
device. Introducing the term

δi j = max

⎛
⎝ ∑

K,αi jK >0

αi jK ,
∑

K,αi jK <0

−αi jK

⎞
⎠, (6)

the substitution given in Eq. (5) can be rewritten as∑
K

αi jK xix jxK −→
∑

K

αi jK xi jxK + (1 + δi j )s(xi, x j, xi j ),

(7)

while still keeping the desired ground state. This reduces, but
does not completely solve, the precision problem.

If a given n-qubit Hamiltonian contains multiqubit inter-
actions involving all of its constituents, that is, an n-qubit
Hamiltonian with up to n-body terms, one would require
2

n+2
2 − 2 total qubits to reduce all possible combinations of

qubit interactions to two-body terms for an even n (3 × 2
n−1

2 −
2 for odd n). This can be achieved by dividing the total qubit
register into two fully connected graphs using ancillary vari-
ables and connecting both graphs with another ancillary qubit.
Unfortunately, this will be the case for a general conversion
from ANF to NNF due to the fact that an n-term sum in ANF
will generally require

n∑
k=1

(
n

k

)
= 2n − 1 (8)

terms for the equivalent NNF equation. Therefore one would
need an exponential amount of quantum resources, ancillary
qubits in this case, to encode the ground state into a Hamilto-
nian following this first direct approach.

B. Truncated embedding

This problem can be circumvented by partitioning the orig-
inal polynomials pi(�x) into smaller pieces with k-bounded
length using ancillary variables. It is straightforward to see
that a sum of ni monomials can be reduced to sums of up to k
terms by adding ancillae in the form

x1 + · · · + xni = 0 → x1 + · · · + xk−1 + a1 = 0

→ a1 + xk + · · · + x2k−2 + a2 = 0

· · ·
→ al + xni−k+1 · · · + xni = 0, (9)

at the cost of expanding the number of equations to ni−2
k−2

using l = ni−2
k−2 − 1 = ni−k

k−2 ancilla variables we have labeled
ai. A similar technique can also be used when encoding
the MQ problem as a Boolean satisfiability problem (SAT)
instance [45].

To have more precise control of the total number of ancil-
lary qubits added to decompose the multiqubit terms, we need
to ensure that the parameter k is also the maximum number of
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FIG. 1. Number of logical qubits needed to embed an MQ prob-
lem into the ground state of a Hamiltonian for the direct and truncated
approaches. It can be seen how the direct approach, while more
resource efficient in small systems, quickly outpaces the truncated
approach. The inset shows the scaling for a larger number of vari-
ables. Note also that the optimal value for the cutoff variable is k = 4.

multibody interactions. For that reason, we first introduce an-
cilla variables to substitute the two-qubit terms in the original
ANF representation adding the required penalty functions. In
the worst-case scenario, where all combinations of two-body
interactions appear, we will need to add (n

2) = n(n − 1)/2
ancillary variables. This, however, does not change the total
number of monomials in the truncated system of equations.

The maximum number of qubits needed to represent an
MQ problem with m equations involving n variables as a
two-body Hamiltonian will then be

m∑
i=1

[
ni − 2

k − 2
(2

k+2
2 − 2 − k) + ni − k

k − 2

]
+

(
n

2

)
+ n, (10)

where ni is the number of monomials in each pi(�x) of Eq. (1)
and k (even) is the length of the partitions.

The differences in scaling between the truncated approach
with different values for k and the direct embedding can be
seen in Fig. 1. While the direct approach is more efficient
when the number of variables is small, its exponential scaling
quickly makes it unfeasible when compared with the truncated
approach. For the polynomial approach, the cutoff variable
k defines its scaling. We note that the scaling is optimal for
k = 4. Additionally, the precision issues raised in the substi-
tution scheme will be significantly attenuated in the truncated
embedding since now the nonlocality of the ancillae is gov-
erned by k and not the total number of variables.

A partition length of k = 4 minimizes the total number of
ancillae since the exponential term 2

k+2
2 dominates and the

truncation of the original equation means that half the number
of parameters are needed than are needed for k = 3. Precisely,
a four-term sum will only need two extra ancillary variables
to reduce it to up to two-body terms. Fixing the value for k,
the total number of qubits needed reads

n2

2
+ n

2
− 4m + 3

2

m∑
i=1

ni. (11)
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TABLE I. Summary of Boolean operations and their penalty function implementation in a quantum annealer as only constant, single-qubit,
and two-qubit monomials appear in MQ problems. The result is saved in the qubit corresponding to the variable z, while the variable x
corresponds to other qubits involved in the Boolean operation. The subscripts c, t , and a correspond to control, target, and ancilla, respectively.

Gate Boolean operation Penalty function

NOT z = x 2xz − x − z + 1
Controlled-NOT z = xcxt 2xcxt − 2(xc + xt )z − 4(xc + xt )xa + 4zxa + xc + xt + z + 4xa

Toffoli z = xc1xc2xt −4xa1xa2 + 4xa1z − 4xa1xt − 2xa1xc1 − 2xa2xc22xa2z + 2xa2xt + xc1xc2 − 2xt z + 4xa1 + 4xa2 + z + xt

We encounter now a polynomial scaling with the number of
parameters under the condition that the total number of terms
in the system of equations scales reasonably with the number
of variables.

In order to obtain a qubit scaling that only depends on the
number of variables n, we can use average values for both
m and ni. Generally, we will encounter as many equations as
variables in the system, m = n, each with an average num-
ber of monomials given by the total possible combinations
of terms with two-body interactions, ni ∼ (n + (n

2))/2 = (n +
n2)/4. These two approximations yield the new scaling

3
8 n3 + 7

8 n2 − 7
8 n, (12)

a polynomial of degree 3 in the number of variables of the
problem.

C. Penalty embedding

An alternative way to embed the ground state of the MQ
problem is to model the equations in their ANF using logical
quantum gates such as CNOT or Toffoli gates which natively
act over the F2 field and then reproduce that circuit as an adi-
abatic evolution using penalty functions. To be more precise,
we model the MQ problem equations as Boolean operations
on an output quantum register; that is, the actions of +xi and
+xix j can be modeled to CNOT and Toffoli gates targeting
the output qubit and controlled by qubits {xi} and {xi, x j},
respectively. Then a Hamiltonian is constructed with a ground
state that follows the correct gate-by-gate implementation of
the resulting circuit.

This method of circuit-to-Hamiltonian encoding using
penalty functions is reminiscent of Feynman’s Hamiltonian
clock [46], where in order to create a Hamiltonian that faith-
fully represents the actions of a logical quantum circuit one
would use an extra clock register where the time step of each
applied quantum gate is stored. In this implementation, an
ancillary output qubit register is added, which stores the result
of the output qubit after each gate application.

The penalty functions needed to map the solution of an MQ
problem into the ground state of a Hamiltonian are displayed
in Table I. The output ancilla qubit z used in the penalty
function of a given quantum gate will be used as the target
qubit xt in the penalty function of the immediately following
gate. These penalty functions contribute with positive energy
if the state of the qubits involved does not match the logical
Boolean operation that they map. Additionally, the qubits used
to initialize the output ancilla register are penalized if they are
in the |1〉 state as we assume an initial state of the output qubit
of |0〉. The same thing is applied to the output ancillae where
the final result of applying each equation pi(�x) in Eq. (1) is

stored as we are interested in the solution where the output is
zero.

It is straightforward to see that the quantum resources
needed to apply this implementation are governed by the
number of monomials present in the equations of a given
MQ problem, as they will dictate the number of gates that
are to be implemented. As discussed in Sec. III B above, the
average number of monomials appearing in a given problem
will scale as O(n3), and the ancilla overhead needed for the
implementation of each CNOT or Toffoli gate, an extra one or
two ancillae, respectively, will not change the overall scaling.
Therefore, up to the particularities of each implementation,
both the truncated and the penalty function embedding will
scale similarly, and in large system sizes outclass the direct
embedding.

However, it is crucial to mention the number of physical
qubits needed for the implementation when assessing the ac-
tual quantum resources. Due to chip architecture constraints,
mapping a Hamiltonian into a real quantum annealing device
will require an overhead to account for nonlocal interactions.
The D-Wave application programming interface (API) pro-
vides the automatic solver MINORMINER [47] to find a good
embedding into their architecture. Highly nonlocal Hamilto-
nians will require a large number of physical qubits in order
to represent each logical variable. Moreover, the amount of
required physical qubits can change the scaling of a particular
method, giving an edge to a more local embedding with more
logical variables.

We show in Table II the comparison between both the trun-
cated and penalty embeddings in terms of physical and logical
qubits required for their implementation into the Advantage
D-Wave machine. For different instances up to 12 logical
variables, we show the amount of required physical quantum
resources for both the truncated and the penalty embed-
ding. Each embedding has been averaged over ten instances
in order to reduce the uncertainty due to the minimization
method provided by D-Wave. We note that both the truncated

TABLE II. Number of logical and physical qubits needed to
map the truncated and penalty embedding for different numbers of
variables. Physical qubit values are averaged over ten instances of
the MINORMINER algorithm provided by the D-Wave API [47].

Variables 4 6 8 10 12

Truncated (logical) 30 90 231 451 718
Truncated (physical) 55.6 223.0 758.0 1627.8 2645.2

Penalty (logical) 61 150 345 645 1005
Penalty (physical) 105.1 309.4 864.1 1940.6 3436.5
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FIG. 2. Samples below 100 arb. units of energy after a 1000-sample execution on D-Wave’s Advantage machine for the different MQ
problem embeddings presented where the ground state was first observed. We have implemented problems with a similar number of physical
qubits required in the first embedding of the problem. The direct embedding (left) encodes a nine-variable problem in 46 logical qubits that
are mapped to 179 physical ones, the truncated (center) and penalty (right) embeddings both encode a five-variable problem, with 67 logical
qubits and 167 physical qubits for the truncated embedding and 114 logical qubits and 221 physical qubits for the penalty embedding. We
show four different iterations in our iterative method to highlight how the energy approaches the ground state as the system gets smaller both
in logical and physical qubits. The ground-state energy of this problem is 0, depicted as a gray dotted line.

embedding and the penalty embedding scale in a similar
manner when mapped into the physical qubits of a given
chip architecture with a worse, albeit still polynomial, overall
scaling.

IV. RESULTS

In this section, we encode some reduced MQ problem
instances using the methods presented in Sec. III in order to be
solved using D-Wave machines. We also propose an iterative
method to aid in finding a singular correct solution in large,
highly correlated, systems.

So far we have presented several ways to encode the solu-
tion of an MQ problem into the ground state of a Hamiltonian
that can be used for quantum annealing. The implementation
of such a protocol on a real quantum device, however, will
require adjusting to the specifics of the particular machine.
The problem Hamiltonian assumes the implementation of
all-to-all interaction. However, this is unrealistic because the
superconducting chips for quantum annealing provided by
D-Wave’s Advantage device support a Pegasus chip archi-
tecture [48] and therefore the qubits need to be mapped in
accordance with that restriction. The solution to this problem
is the introduction of qubit chains.

A logical qubit will be extended into a chain of qubits
when mapped into the physical chip of the quantum device.
This means that different physical qubits, which will repre-
sent the same variable, are bound together by an interaction
term, a chain strength, that penalizes members of the same
qubit chain for being in different quantum states. We leave

the mapping of the original variables to physical objects to
the built-in compiler provided by the D-Wave library [47]
and adjust the chain strength hyperparameter in order to not
overpower the variables of the problem while measuring as
few broken chains as possible. This mapping will result in
a more complex evolution, and consequently poorer results,
especially for Hamiltonians with a large number of nonlocal
qubit interactions.

We present the results of running the Hamiltonians pro-
posed in the different embedding schemes. The uppermost
graphs in Fig. 2 show the results of sampling the final state
of a quantum annealing evolved under each corresponding
Hamiltonian for the direct, penalty, and truncated embedding,
respectively. We state for each case the number of logical and
physical qubits the problem needed to be mapped to. We de-
cided to focus on a similar number of physical qubits needed;
therefore the direct embedding was able to reach a nine-
variable problem, while the truncated and penalty embeddings
are limited to five variables. We note that with a small number
of variables, the annealing process does not yield the exact
ground state that encodes the solution of the problem, the
quantum state with zero energy. Longer annealing times, more
precise control of the annealing schedule, or higher-quality
qubits are ways to improve the results. However, current quan-
tum annealers might not have the capabilities of tuning those
parameters to the required specifications of large problems.
In order to achieve the ground-state energy of the problem
in a machine-agnostic way, we propose an iterative algorithm
that closes in on a smaller, easier-to-solve, subspace where the
ground state might be located.
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As detailed in Sec. III, the proliferation of ancillary qubits
in the different proposed embedding options appears when
reducing the multiqubit interactions into at most two-qubit in-
teraction terms. This means that most of these added ancillae
will represent products of other variables and will therefore
have a stronger penalization than the original variables that
they represent. That is, the wrong state of certain ancillary
variables is penalized with a higher amount of energy than
others. The following is a heuristic iterative method where we
use that to our advantage.

After running an annealing protocol on a quantum device,
if no quantum state with zero energy has been found, we may
look at some of the low-energy configurations of the obtained
samples. If some qubits are found in the same result in all
of the lowest-energy states, we can assume that the Hamilto-
nian penalizes those variables more than the others. We can
narrow the subsequent search space by substituting that vari-
able in the original Hamiltonian by its, now known, preferred
value. The more the search space is reduced, the easier it is
for the quantum annealing device to find the lowest-energy
solution.

The amount of low-energy solutions to check for the same
value of the ancilla variables is a hyperparameter that can be
optimized. On the one hand, if we set the value too low, we
might be excluding the ground state from the reduced search
space by fixing ancillae to a wrong outcome. On the other
hand, if we set it too high, we might not find any variable
that lays in the same output for all low-energy configura-
tions. More sampling at each iteration will also enhance our
ability to fix ancillae but will impact the overall run time of
the algorithm. The number of fixed parameters per run will
depend on the problem, encoding, and quality of the quan-
tum device. We used a heuristic approach when tuning the
number of low-energy solutions checked. A method to check
whether the reduced subspace no longer contains the solution
can be devised. If the lowest-energy sample of the reduced
Hamiltonian is lower than its equivalent value in the original
Hamiltonian, adding back up the fixed variables of the original
setting, then we have excluded the original ground state from
the reduced subspace. The different rows in Fig. 2 show how
this iterative approach indeed helps in finding the ground state
of the problem. As more iterations go by and more ancillae are
fixed, the system starts finding lower-energy solutions until
the ground state with zero energy is reached.

The first row in Fig. 2 shows the initial run of the algo-
rithm. Then the following two rows are some snapshots of the
energy samples during the iterative algorithm, and the last row
showcases the first iteration where a state with zero energy
is reached. The direct embedding shows the result of having
a highly nonlinear Hamiltonian with large parameters. The
initial runs are very far away from the ground state, and it is
not until the more volatile variables are fixed that the ground
state can be found. The truncated and penalty embeddings
behave in a similar way to each other. It can be seen how after
each iteration the median energy gets closer and closer to the
ground energy until it is reached. We note that the penalty
embedding, in spite of requiring more qubits to embed the

problem Hamiltonian, reaches the ground state with fewer
iterations. This can be attributed to the lower coefficients that
are needed to map the problem, making it more suited to an
annealer machine such as the one provided by D-Wave.

V. CONCLUSION

Our work is a first step towards demonstrating the effi-
ciency of quantum annealing computations in solving the MQ
problem, using practical experiments on the existing D-Wave
quantum annealing platform. We show that we can construct
a Hamiltonian with a ground state encoding the solution of
the problem and subsequently find it using a quantum an-
nealer. We propose different methods for the embedding of
the problem into a Hamiltonian using a polynomial amount
of quantum resources. As quantum technology advances, we
foresee that the evolution of quantum annealing architectures
(e.g., support to n-body interactions or larger coherence times)
might provide a quantum advantage when solving such prob-
lems as the required numbers of ancilla qubits and required
quantum control would decrease.

We have introduced an algorithm that simplifies the prob-
lems by fixing ancillary qubits that are easy to find for the
quantum device in order to more reliably find the ground
state of the more complex qubits with finer parameters. This
method can help when dealing with large amounts of qubits
in near-term devices and could be applied in problems beyond
the scope of what is studied in this paper.

As an estimate of the quantum resources needed to solve
state-of-the-art MQ problems, we refer to the Fukuoka MQ
Challenge website [49], where the largest unsolved instances
of MQ problems can be found. The type I challenge problem
instance of 37 equations and 74 variables would require an
estimate of under 80 000 logical qubits for its solution to be
mapped into the ground state of a two-body Hamiltonian. For
the type IV challenge with 69 equations and 105 variables,
one would require under 300 000 logical qubits for the em-
bedding. Quantum annealers are still far away from being
able to tackle the problems at the edge of what is classically
solvable; however, quantum technologies are still emerging,
and new devices with more, and higher-quality, qubits are
being currently developed.

For a detailed implementation, we refer to our code made
available on GitHub [50].
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