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Correlation engineering via nonlocal dissipation
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Controlling the spread of correlations in quantum many-body systems is a key challenge at the heart of
quantum science and technology. Correlations are usually destroyed by dissipation arising from coupling
between a system and its environment. Here, we show that dissipation can instead be used to engineer a
wide variety of spatiotemporal correlation profiles in an easily tunable manner. We describe how dissipation
with any translationally invariant spatial profile can be realized in cold atoms trapped in an optical cavity.
A uniform external field and the choice of spatial profile can be used to design when and how dissipation
creates or destroys correlations. We demonstrate this control by generating entanglement preferentially sensitive
to a desired spatial component of a magnetic field. We thus establish nonlocal dissipation as a route toward
engineering the far-from-equilibrium dynamics of quantum information, with potential applications in quantum
metrology, state preparation, and transport.
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I. INTRODUCTION

Correlations in many-body systems allow us to monitor the
dynamics of quantum information by giving insight, for exam-
ple, into the growth of quantum fluctuations and entanglement
[1–3]. While dissipation usually decoheres the system, it can
also be used to prepare correlated quantum states that are a
powerful resource for quantum information processing [4–9].
Compared to the conventional use of unitary processes to
manipulate a system, the irreversiblity of dissipative dynamics
makes it more robust to variations in the initial state and
allows for simpler control protocols.

Realizing the potential of dissipation engineering has been
challenging, with experiments thus far using a combination
of unitary operations and dissipation to produce and stabi-
lize entangled states of a small number of qubits [10–12].
Purely nonunitary preparation of correlated states typically
requires dissipation that is nonlocal in space and can lock
the phases of two or more adjacent particles [4]. Correla-
tions generated by such dissipation, even with spatial profiles
involving only neighboring particles, can endow a system
with exotic character such as nontrivial topological properties
[7,13–16], quantum critical points without equilibrium coun-
terparts [5,8,17,18], and integrability revival in the presence
of a drive [19,20]. Experimental implementations of nonlocal
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dissipation with long-range spatial profiles have been pro-
posed in atomic platforms [21,22], but with limited tunability
of the profile, and thereby of the generated correlations and
accessible effects. For example, dissipation with a power-law
spatial profile may enable the realization of exotic phenomena
such as purely nonunitary many-body quantum synchroniza-
tion [23,24] or novel nonequilibrium critical states that would
be otherwise inaccessible [25]. The ability to easily tune the
spatial profile of dissipative channels would therefore open
new avenues and applications of dissipation engineering.

Our work demonstrates a practical route toward dissipa-
tive quantum information processing, showing that dissipation
with a fully customizable spatial profile is readily realizable
in systems of cold atoms trapped in a single-mode cavity, and
furthermore that the behavior of this dissipative channel can
be modulated via a uniform external field. Control over the
spatial profile and uniform field can be exploited to engineer
the profile of correlations in the system, which we show by
tailoring the spatiotemporal window over which correlations
are present, creating oscillating packets of correlations, and
sending the system toward an increasingly squeezed state.
The ability to shape correlations enables the manipulation of
entanglement dynamics, which we demonstrate by generating
entanglement that preferentially enhances metrological sensi-
tivity to a desired spatial mode of an external field.

II. NON-LOCAL DISSIPATION

We first illustrate the novel dynamics enabled by non-
local dissipation. Consider a translationally invariant, one-
dimensional many-body quantum system undergoing both
unitary dynamics and Markovian dissipation. The state of the
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FIG. 1. Experimental realization. Spin degrees of freedom are
encoded in the internal states of atoms trapped in a leaky optical
cavity. A magnetic field gradient, �B(n), and a classical Raman beam,
�(t ), with multiple sidebands (inset) are used to generate a desired
spatial profile, f (|n − m|), of nonlocal dissipation.

system, ρ, evolves according to the quantum master equation
in Lindblad form,

ρ̇ = i[ρ, Ĥ ] + κ
∑
n,m

fn,m
(
L̂nρL̂†

m − 1
2 {L̂†

mL̂n, ρ}), (1)

where Ĥ is the Hamiltonian characterizing unitary evolution,
L̂n is the jump operator characterizing the loss channel, and
n, m = 1, . . . , N index the sites of the chain. Here, fn,m is
the spatial profile of the dissipation and only depends on
the difference |n − m|. Independent dissipation, correspond-
ing to fn,m = δn,m, and collective dissipation, corresponding
to fn,m = 1, are the two commonly considered scenarios. The
former is a common source of decoherence in experiments,
while the latter can generate collective entanglement useful
for quantum metrology [26–32]. Both these loss channels are
spatially homogeneous and therefore cannot cause correla-
tions to spread in space.

The case of tunably nonlocal dissipation can be understood
as interpolating between independent and collective loss.
For example, consider a short-range spatial profile, fn,m =
e−|n−m|/χ , where χ is the length scale of the profile. If the
system is composed of atoms coupled to a common cavity
mode, with dissipation arising from photons leaking out of
the cavity, detection of a leaked photon does not allow one to
discern which specific atom emitted the photon. Instead, such
a photon can only be traced back to a neighborhood of atoms
composed of approximately χ sites. As χ is decreased or
increased, we recover independent and collective dissipation,
respectively.

Figure 1 schematically depicts how to realize nonlocal
dissipation of spin-1/2 systems using cold atoms trapped in
a single-mode optical cavity. The spin states are encoded
in the hyperfine levels of the atoms and the cavity photon
mode allows the atoms to communicate with each other,
through both coherent interactions and nonlocal dissipation.
There are three key components to this construction. First,
a magnetic field gradient makes the energy of the hyperfine
levels site-dependent and thereby endows the system with
spatial resolution [33–35]. Second, a classical Raman beam
with multiple sidebands provides control over atomic transi-
tions between different spin states [33,36]. The frequencies of
the sidebands can be chosen so that communication between

atoms via the cavity mode only depends on the distance be-
tween atoms, thereby enforcing translational invariance. The
amplitudes of the sidebands determine the rate of internal
atomic transitions and dictate the likelihood that two atoms
a fixed distance apart communicate with each other, thereby
setting the spatial profile of the dynamical channel. Third,
cavity photon losses are large enough that the coherent spin-
exchange contribution to dynamics is negligible and only
dissipative dynamics remains. The three ingredients described
above can be used to construct nonlocal dissipation channels
with a variety of jump operators L̂n. Experiments will gen-
erally suffer from additional local dissipation arising from
spontaneous scattering of individual atoms into free space; we
derive conditions for the robustness of our setup to such losses
in Appendix C.

In this work, we consider the case of an L̂n = Ŝ−
n dissi-

pation channel with Ŝ−
n being the spin-lowering operator on

site n. Details of the experimental implementation for this
channel and the construction a desired spatial profile fn,m are
given in Appendices A and B. Here, we first examine the
purely dissipative dynamics arising from Eq. (1) with Ĥ = 0.
We start the system in a coherent spin state in the northern
hemisphere of the collective spin Bloch sphere, parametrized
by the initial polar and azimuthal angles θ (t = 0) = 0.4π and
φ(t = 0) = 0, and compute the dynamics of the equal-time
connected correlation function

Czz(r, t ) = 〈
Ŝz

n(t )Ŝz
n+r (t )

〉 − 〈
Ŝz

n(t )
〉〈

Ŝz
n+r (t )

〉
, (2)

which is sensitive to the action of spin losses gener-
ated by L̂n = Ŝ−

n and directly measurable in experiment
via state-selective fluorescence imaging [37]. We also track
the evolution of the collective spin, 〈Ŝ〉 = 〈∑n Ŝn〉, and
the Kitagawa squeezing parameter, ξ 2

0 = 4
N mine⊥〈�(e⊥ · Ŝ)2〉

[38,39], with minimization over directions e⊥ perpendicular
to the mean spin direction es. We compute the dynamics of
these quantities for a thermodynamically large number of
sites by extending the time-dependent self-consistent Hartree
theory of spin waves developed in Refs. [40–42] to the case
of Lindblad channels [43], and ensure that the total density
of spin waves remains sufficiently small at every instant of
time to ensure accuracy of the method. The dynamics for
both long-range and short-range spatial profiles is shown in
Fig. 2. They share the same qualitative features; correlations
spread for a period of time before contracting back toward an
uncorrelated state as the collective spin crosses the equator of
the Bloch sphere and eventually reaches the south pole. The
squeezing parameter drops below 1 over the course of this
motion thereby signifying entanglement in the system [44].
The main difference between long- and short-range profiles is
that the short-range profile generates correlations that decay
more quickly in space at any given time. These dynamics, and
the time-dependent spin-wave theory used to compute them,
are further characterized in Ref. [43].

The spread and contraction of correlations is reminiscent
of dynamical signatures of confinement in purely unitary
spin systems [45–48]. There, correlations are confined due
to bound states in the spectrum of the Hamiltonian which
arise from an effective attractive potential for low-lying ex-
citations. Here, however, confinement of correlations is an
inherently nonequilibrium phenomenon stemming from the
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FIG. 2. Dynamical confinement via dissipation. Panels (a)–(c) correspond to a long-range spatial profile with α = 1.25. Panels (d)–(f)
correspond to a short-range spatial profile with χ = 2.0. For both cases, we choose κ = 1 and initialize the system in a spin coherent state
pointing in the direction θ (t = 0) = 0.4π , φ(t = 0) = 0. (a), (d) Motion of the collective spin on the Bloch sphere. (b), (e) Squeezing of
the collective spin. (c), (f) Connected correlation function Czz(r, t ). Correlations spread and then contract in accordance to the motion of the
collective spin. Upper bounds are imposed on the color scales to visually highlight correlation profiles both here and in Fig. 3; adjacent sites
numerically take on values of order 10−2 to 10−1.

fact that nonlocal dissipation channels can both create and
destroy correlations.

Intuition for this property can be gained by examining
the dynamics of the L̂n = Ŝ−

n channel with long-range profile
fn,m = (|n − m| + 1)−α , depicted in Figs. 2(a)–2(c). In the
thermodynamic limit, the system behaves qualitatively as if
α = 0 for any α � 1 and exhibits collective dynamics which
is fully captured by the motion of the collective spin on a
Bloch sphere [40]. For α just above 1, the system is well
described by a collective spin moving along with spin-wave
excitations generated on top of it by the spatially dependent
spin-lowering jump operator. When the collective spin is in
the northern hemisphere of the Bloch sphere, the average mag-
netization of the system is positive and the jump operator Ŝ−

n
creates spin waves by lowering the magnetization away from
that of a spin-coherent state which is fully polarized upward.
When the collective spin is in the southern hemisphere of
the Bloch sphere, the average magnetization of the system is
negative and the jump operator destroys spin waves by lower-
ing the average magnetization toward that of a spin-coherent
state which is fully polarized downward. The collective
spin therefore acts as a mobile vacuum for excitations and
its position controls whether the dissipation channel pre-

dominantly creates or destroys correlations carried by these
excitations.

III. ENGINEERING CORRELATIONS

A uniform external field which guides the motion of the
collective spin, and thereby influences when dissipation cre-
ates or destroys excitations, can be used to modulate the
spatiotemporal correlation pattern created by the L̂n = Ŝ−

n dis-
sipation channel. We demonstrate this control using a field of
magnitude ωF and direction ϕ described by the Hamiltonian
Ĥ = ωF (cos ϕŜx + sin ϕŜz ), which generates the coherent
part of dynamics in Eq. (1).

In Figs. 3(a)–3(d), we show how the long-range confine-
ment pattern of Figs. 2(a)–2(c) can be modified. Figure 3(b)
shows temporal control over the correlation pattern. The win-
dow of time during which the system remains correlated
before decaying to an uncorrelated state is extended by a
factor of approximately 5.

Figure 3(d) shows that the confinement pattern can be
modulated to exhibit oscillating correlations, which resembles
a dissipation-induced limit cycle dressed by quantum fluctu-
ations. This behavior, however, is metastable and the system
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FIG. 3. Modulating correlations via a uniform field. We initialize the system in a spin coherent state pointing in the direction θ (t = 0) =
0.4π , φ(t = 0) = 0 for all panels. (a), (b) Collective spin motion and connected correlation function Czz(r, t ) for a long-range spatial profile
with α = 1.25. System parameters are κ = 0.8, ωF = 1.0, and ϕ = 0.25π . (c), (d) Collective spin motion and connected correlation function
Czz(r, t ) for a long-range spatial profile with α = 1.1. System parameters are κ = 0.95, ωF = 1.0, and ϕ = 0.1π . (e), (f) Squeezing parameter
and connected correlation function Czz(r, t ) for a short-range spatial profile with χ = 3.0. System parameters are κ = 1.2, ωF = 1.0, and
ϕ = 0.

reaches a nonoscillatory steady state. For parameters α � 1,
ϕ = 0, and ωF � κ , the system is fully described by the
classical motion of the collective spin and exhibits persistent
oscillations [49]. However, for α > 1, we find that these oscil-
lations are eventually washed out by many-body fluctuations.

In Figs. 3(e)–3(f), we manipulate the short-range con-
finement pattern of Figs. 2(d)–2(f) via the uniform field.
Specifically, we send the system to an increasingly correlated
state at late times in a fashion reminiscent of traditional dissi-
pative state preparation schemes [4].

Our platform has potential utility for applications in quan-
tum metrology and state preparation, which we explore by
examining the the finite wave vector squeezing parameter

(
ξ

(W)
k

)2 = mine⊥

{
2δk �=0 N〈�(e⊥ · Re{Ŝk})2〉

|〈es · Ŝtot〉|2
}
, (3)

where Ŝk = ∑
n e−iknŜn and δk �=0 = 1 if k �= 0 and 0 other-

wise. In Appendix D, we show that ξ
(W)
k is a generalization

of the Wineland collective squeezing parameter [39,50], and
quantifies metrologically useful entanglement when sensing a
particular spatial mode of a spatially varying field.

Figure 3(e) shows that different wave vectors exhibit
varying amounts of squeezing depending on the Fourier trans-

form of the spatial profile, given by �k = ∑
r=n−m eikr f (|r|).

Modes with larger �k will get squeezed more at short times.
This fact can be exploited to preferentially squeeze a target
mode k∗.

We demonstrate this control in Fig. 4, where we show
the dynamics of ξ

(W)
k for a spatial profile fn,m = cos(k∗|n −

m|)e−|n−m|/χ with k∗ = 0.3π . The figure inset shows that
�k is a Lorentzian of width χ peaked at k∗. We see that
the k = k∗ mode is squeezed more than other modes, in-
cluding the collective k = 0 mode which witnesses pairwise
entanglement. Furthermore, squeezing at k∗ seems to anti-
squeeze other modes.

IV. DISCUSSION

In this article, we have demonstrated a practical route
toward the investigation of dissipative quantum information
processing. Compared to purely unitary strategies, dissipative
protocols may hold unique advantages in a variety of appli-
cations as irreversible dynamics is stable to variations in the
initial state. We have checked, for instance, that the dynamical
features shown in Fig. 2 and Fig. 3 do not depend qualita-
tively on the choice of initial state. In contrast, the dynamical
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FIG. 4. Preferentially squeezing a target wave vector. Spa-
tial squeezing parameter for a spatial profile fn,m = cos(k∗|n −
m|)e−|n−m|/χ with χ = 50 and k∗ = 0.3π . System parameters are
κ = 0.8, ωF = 1.0, and ϕ = 0. The system is initialized in a spin co-
herent state pointing in the direction θ (t = 0) = 0.4π , φ(t = 0) = 0.
The figure inset shows that the Fourier transform of the spatial profile
is peaked around k∗.

confinement of correlations in long-range interacting unitary
quantum simulators requires careful preparation of the initial
state [45–48].

The spread of correlations in unitary long-range simula-
tors has proven a fruitful area of inquiry for understanding
entanglement dynamics in many-body systems [51–53].
By choosing a spatial profile fn,m = (|n − m| + 1)−α , our
platform turns into a non-Hermitian analog of such systems,
thus opening an opportunity to explore how the purely dissi-
pative character of dynamics affects entanglement spreading.

The correlation function in Eq. (2) can be experimentally
measured by state-selective fluorescence imaging [37]. Ini-
tially preparing a spin texture alternatively allows one to track
the dynamics of the system with direct measurements of the
local magnetization [54], potentially revealing novel transport
mechanisms assisted by nonlocal dissipation. Our platform
also offers the prospect of studying quantum information
scrambling [55,56] and novel phase transitions [25] in purely
dissipative cavity QED simulators.

Furthermore, the ability to squeeze the system at desired
wave vectors may be useful for spatially resolved magnetom-
etry, thus providing an advantage over systems employing
homogeneous, collective dissipation [30], which can only
squeeze the collective spin mode. Realizing our platform’s
potential for spatial magnetometry requires optimizing the
choice of profile, fn,m, and jump operator, L̂n, characterizing
the nonlocal dissipation channel to maximally decrease the
value of ξ

(W)
k within the Heisenberg limit (see Appendix D).

Feedback conditioned on emitted photons and use of ensem-
bles of atoms may offer additional routes toward increased
metrological sensitivity [54,57–60].
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APPENDIX A: NONLOCAL LOSSES

In these appendices, we give an experimental construction
of a nonlocal dissipator corresponding to a L̂n = Ŝ−

n loss chan-
nel with a translationally invariant spatial profile f (|n − m|),
as described in Eq. (1) of the main text. Our proposal is
motivated by experiments employing clouds of 87Rb atoms
coupled to a single-photon mode in an optical cavity. In previ-
ous works, the cavity mode can be employed as a resource to
mediate spin-exchange coherent interactions among the atoms
[54,61], which can be accompanied by collective dissipation
depending on the cooperativity of the cavity. Here we work in
a complementary limit and engineer incoherent spin emission
with spatial resolution. The premise of our construction is to
take a chain of atoms, each with three hyperfine levels out of
which two are degenerate, trap them inside an optical cavity,
and then apply a magnetic field gradient and a Raman beam
to the system with several sidebands of tunable frequency
and amplitude (see Ref. [36] for a related implementation in
photonic waveguides). The magnetic field gradient splits the
degeneracy of each atom such that its energy levels form a
� configuration; the energies are site-dependent and make
the atoms spatially distinct. The Raman beam couples one
leg of the � configuration, while the cavity mode couples
the other. The cavity mode mediates communication between
atoms at different sites, allowing for both coherent atom-atom
interactions as well as indistinguishable atomic losses. The
choice of frequencies and amplitudes of the sidebands com-
prising the Raman beam dictates the probability that atoms
at different sites communicate with each other through the
cavity photon, thereby setting the spatial profile which shapes
both coherent interactions and losses. If the cavity is made to
be sufficiently leaky, the coherent interactions are washed out
and only dissipative dynamics with the desired spatial profile
remains.

We now give a detailed construction of the experimental
implementation. We consider a one-dimensional chain of N
atoms labeled by lattice index n = 1, . . . , N . Each atom has
two internal states |g̃〉n and |e〉n. The state |g̃〉n belongs to
a degenerate hyperfine manifold which, under application of
an external field, splits as |g̃〉n → {|s〉n , |g〉n}. We encode the
spin-1/2 Hilbert space {|↑〉n , |↓〉n} in this ground-state man-
ifold. We take |s〉n to be the lower energy state and set its
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energy to zero without loss of generality. The energy differ-
ence between |s〉n and |g〉n is given as ωg,n and we will refer
to the energy difference between |s〉n and |e〉n as ωe,n. These
energies are position-dependent since they inherit spatial de-
pendence from the external applied magnetic field gradient. In
terms of the operators σ̂ n

ab = |a〉n 〈b|n, with a, b ∈ {s, g, e}, the
bare atomic Hamiltonian reads

Ĥa =
∑

n

(
ωe,nσ̂

n
ee + ωg,nσ̂

n
gg

)
. (A1)

We now dipole-couple the states |s〉n and |e〉n using a
Raman driving field �̃(t ) = ∑mp−1

α=0 �αeiωαt , where ωα rep-
resents each of the mp different drive frequencies and �α

represents the Rabi frequency (beam amplitude) associated
with those frequencies. We can define the frequency ωL ≡
ωα=0 as the main frequency and rewrite the driving field in
terms of the detunings ω̃α ≡ ωα − ωL as �̃(t ) = �(t )eiωLt ,
where �(t ) ≡ ∑mp−1

α=0 �αeiω̃αt . Note that ω̃α = 0 by definition.
The dipole coupling between |s〉n and |e〉n is then described by
the Hamiltonian

Ĥd =
∑

n

(
�(t )

2
eiωLt σ̂ n

se + �∗(t )

2
e−iωLt σ̂ n

es

)
. (A2)

We now consider an optical cavity mode that dipole-couples
|g〉n and |e〉n. The photon mode, represented by the opera-
tor â, has a frequency ωc and couples to atom n through
the single-photon coupling g. The bare photon Hamiltonian
and the light-matter coupling between atoms and photons are
given respectively by

Ĥp = ωcâ†â, (A3)

Ĥlm =
∑

n

(
gâσ̂ n

eg + g∗â†σ̂ n
ge

)
. (A4)

The total density matrix of the system has dynamics given by
the quantum master equation in Lindblad form

d

dt
ρ = −i[Ĥ , ρ] + Dleak(ρ). (A5)

The last term is the dissipator corresponding to photon losses
occurring with rate γ :

Dleak(ρ) = γ
(
â†ρâ − 1

2 {ââ†, ρ}). (A6)

When the excited state |e〉 is largely detuned by � = |ωe −
ωL| from the other atomic and photonic energy scales (� 

�α, g), one can use a Schrieffer-Wolff transformation to elim-
inate the state and write an effective Hamiltonian for the
remaining atomic Hilbert space. The light-matter interaction
coupling at leading order in 1/� then becomes

Ĥlm = −
∑

n

(
g�(t )

�
âσ̂ n

sgei(ωL−ωc−ωg,n )t

+ g∗�∗(t )

�
â†σ̂ n

gse
−i(ωL−ωc−ωg,n )t

)
. (A7)

Defining ηα ≡ �αg
�

and δα,n ≡ ωα − ωg,n − ωc, the interaction
Hamiltonian can be written as

Ĥlm = −
∑
n,α

[
ηα âσ̂ n

sgeiδα,nt + H.c.
]
. (A8)

The cavity mode mediates communication between atoms.
We now assume that the cavity photon loss is large enough
that

γ 
 ηα, γ 
 δα,n, (A9)

and therefore the cavity photon loss occurs on a timescale
much faster than the effective dynamics of the spins. The
light field can then be adiabatically eliminated and becomes
enslaved to atomic operators [62]. The Heisenberg evolution
of the light field can then be expanded in powers of ε, with
ε = ηα/γ or ε = δα,n/γ :

â(t ) = i2
∑
n,α

(
η∗

α

γ
σ̂ n

gse
−iδα,nt

)

+ 2
∑
n,α

(
δα,nη

∗
α

γ 2
σ̂ n

gse
−iδα,nt

)
+ O(ε3). (A10)

Before using the above expression to replace the light field
in the full Lindblad equation, Eq. (A5), we can gain insight
into the effective dynamics of the system after elimination of
the light field by performing this substitution for the equation
of motion of a single spin operator:

d

dt
σ̂ n

gs = iâ σ̂ n
z

∑
α

ηαeiδα,nt → −σ̂ n
z

∑
m,α,β

(γeff )α,β

(
1−i

δβ,m

γ

)

× ei(δα,n−δβ,m )t σ̂ m
gs + O(ε3), (A11)

where we have defined (γeff )α,β ≡ 2η∗
αηβ/γ . We see that the

motion of the nth atom is conditioned by the motion of the
mth one, with (γeff )α,β setting the effective coupling rate.
The leading order contribution to the motion is dissipative
dynamics with rate (γeff )α,β , with the subleading contribution
being coherent dynamics with frequency (γeff )α,β

δβ,m

γ
. When

the effective coupling constant, (γeff )α,β , is much smaller
than the minimum detuning between the atomic transition
frequencies, we can ignore the off-resonant couplings and
only consider the interaction between atoms n and m for which
δα,n − δβ,m = 0. Specifically, we require

(γeff )α,β � min{δα,n − δβ,m}, (A12)

where the minimization means the smallest nonzero value
of δα,n − δβ,m. Formally, Eq. (A12) is derived by taking the
long-time average of (A11), and then applying the Sokhotski-
Plemelj lemma to extract the singular part of the time
integral (resonant process) and the regular part (off-resonant
processes). The contribution of the off-resonant term be-
comes negligible when the condition (A12) is satisfied (see
Ref. [36]). We can then safely restrict the dynamics to the
resonance shell δα,n = δβ,m, which can be restated as

ωg,m − ωg,n = ω̃β − ω̃α. (A13)

In order to introduce spatial addressability in the system, we
choose the site-dependent energy shifts as ωg,n = μn, which is
implemented via an externally imposed linear magnetic field.
We also choose the sideband detunings as ω̃α = μα. After
our choice of sideband detunings, the resonance condition
Eq. (A13) reads

(α − β ) = (n − m). (A14)
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This selection rule makes pairs of atoms at distance n −
m apart interact. The dynamics of a single spin, given by
Eq. (A11), then becomes

d

dt
σ̂ n

gs ≈→ −σ̂ n
z

∑
m,β

(γeff )β+(n−m),β

(
1 − i

δβ,m

γ

)
σ̂ m

gs , (A15)

and we see that the effective coupling rate, (γeff )β+(n−m),β ,
depends only on the distance between atoms n and m. The
leading order term, corresponding to dissipative dynamics,
is therefore translationally invariant. The subleading coherent
term, proportional to δβ,m/γ , however, does have explicit po-
sition dependence. We note that if the condition in Eq. (A12)
is violated, then atoms on multiple sites can communicate
and even the dissipative dynamics will not be translationally
invariant.

We now perform this same adiabatic elimination of the
cavity photon on the full Lindblad equation, Eq. (A5), by
replacing â with the expression in Eq. (A10). Keeping terms
up to O(ε2) in Eq. (A10), the dissipator given by Eq. (A6)
becomes

Dleak(ρ) ≈ 2
∑

n,m,α,β

(γeff )α,β

(
1 + i

(δα,n − δβ,m)

γ

)

× ei(δα,n−δβ,m )t

(
σ̂ m

gsρσ̂ n
sg − 1

2

{
σ̂ n

sgσ̂
m
gs , ρ

})
, (A16)

while the coherent light-matter interaction, given by Eq. (A8),
becomes

Ĥlm ≈ −i2
∑

n,m,α,β

(γeff )α,βei(δα,n−δβ,m )t
(
σ̂ n

sgσ̂
m
gs − σ̂ n

sgσ̂
m
gs

)

− 2
∑

n,m,α,β

(γeff )α,β

δβ,m

γ
ei(δα,n−δβ,m )t σ̂ n

sgσ̂
m
gs . (A17)

We see that the first term in the above equation vanishes
and we are left with

Ĥlm ≈ −2
∑

n,m,α,β

(γeff )α,β

δβ,m

γ
ei(δα,n−δβ,m )t σ̂ n

sgσ̂
m
gs . (A18)

The master equation for the density matrix describing the
system can thus be written as

d

dt
ρ ≈ 2

∑
n,m,α,β

(γeff )α,β

(
1 + i

(δα,n − δβ,m)

γ

)

× ei(δα,n−δβ,m )t

(
σ̂ m

gsρσ̂ n
sg − 1

2

{
σ̂ n

sgσ̂
m
gs , ρ

})

+ i2
∑

n,m,α,β

(γeff )α,β

δβ,m

γ
ei(δα,n−δβ,m )t

[
σ̂ n

sgσ̂
m
gs , ρ

]
.

(A19)

If the condition Eq. (A12) is satisfied, then we can restrict
dynamics to the resonance shell defined by Eq. (A13) and the
resulting Lindblad equation is

d

dt
ρ ≈

(
4|g|2�2

M

γ�2

) ∑
n,m

fn,m

(
σ̂ m

gsρσ̂ n
sg − 1

2

{
σ̂ n

sgσ̂
m
gs , ρ

})

+ i

(
4|g|2�2

M

γ�2

) ∑
n,m

[
f̃n,mσ̂ n

sgσ̂
m
gs , ρ

]
, (A20)

where

fn,m =
∑

(α,β );(α−β )=(n−m)

�α�∗
β

�2
M

,

f̃n,m =
∑

(α,β );(α−β )=(n−m)

δβ,m

γ

�α�∗
β

�2
M

. (A21)

In the above equation, we define �M as the largest Raman
sideband amplitude and choose it as a representative scale for
the drive. Note that the term in Eq. (A19) that is proportional
to δα,n exactly cancels the term proportional to δβ,m when we
satisfy the two-atom resonance condition Eq. (A13).

Collating the conditions, Eq. (A9) and Eq. (A12), for adia-
batically eliminating the cavity photon, we have

ηα � γ , δα,n � γ ,
ηαη∗

β

min{δα,n − δβ,m} � γ . (A22)

Recall that in the third condition above, the denomina-
tor, min{δα,n − δβ,m}, is a minimization over processes with
δα,n �= δβ,m. For any fixed ηα and δα,n, a sufficiently large
cavity decay γ allows all three conditions to be simultane-
ously satisfied. Later, we show that these conditions can be
consistently satisfied by providing numerical estimates using
parameters from cavity QED experiments. We note that the
condition δα,n � γ is satisfied by choosing a large cavity
decay, γ , and a nonzero δα,n. In fact, we require that δα,n �= 0
in order to preserve spatial structure in the dynamics. We can
see this by setting δα,n = 0 in Eq. (A10) to get â(t ) = iζ σ̂gs,
where σ̂gs = ∑

n σ̂ n
gs and ζ = 2

γ

∑
α η∗

α . Single-atom resonant
processes, characterized by δα,n = 0, therefore only lead to
collective dissipation of all spins in the system, arising from
collective emission of the cavity photon, rather than nonlocal
dissipation with spatial structure.

Physically, we can interpret the setup resulting in Eq. (A20)
as follows. Both nonlocal dissipation and coherent interac-
tions among the spins are mediated by nonresonant virtual
photons, corresponding to δα,n �= 0, which satisfy the two-
atom resonance condition δα,n = δβ,m. The spatial profile of
the resulting nonlocal dissipation, fn,m, is translationally in-
variant and represents leakage of a cavity photon without
certainty about which of the two atoms, n or m, it came from.
The spatial profile of the coherent interaction, f̃n,m, represents
a spin exchange between the atoms which is suppressed by a
factor δβ,m/γ due to the highly lossy cavity. The conditions
in Eq. (A22) represent a regime where the cavity loss, γ ,
is large enough that (i) the effective dynamics of each indi-
vidual spin, occurring through a � process in the atom with
rate ηα , occurs slowly compared to the cavity photon loss so
the photon only serves to mediate coherent interactions and
nonlocal emission from pairs of spins, (ii) coherent interac-
tions of the spins are suppressed, and (iii) the timescale of
the effective nonlocal emission from pairs of spins, set by
τ = 1/(γeff )α,β ∝ γ /η∗

αηβ , is slow enough that off-resonant
two-atom processes (δα,n �= δβ,m) average to zero and only the
resonant two-atom process remains. This resonant two-atom
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process is a translationally invariant nonlocal emission from
pairs of atoms.

The quantity fn,m = f (|n − m|) only depends on the dif-
ference n − m and sets the spatial profile of the nonlocal
dissipation. We can design the desired translationally invariant
profile fn,m = f (|n − m|) of the dissipator by exactly solv-
ing f (|n − m|) = ∑

(α,β );(α−β )=(n−m) �α�∗
β/�2

M . Later, we
explicitly show how to numerically invert this equation.
Defining κ = |g|2�2

M/(γ�2) and relabeling the projection
operators as Ŝ−

n = σ̂ n
gs/2 and Ŝ+

n = σ̂ n
sg/2, we have

d

dt
ρ ≈ κ

∑
n,m

f (|n − m|)
(

Ŝ−
m ρŜ+

n − 1

2

{
Ŝ+

n Ŝ−
m , ρ

})

+ i

[
κ

∑
n,m

f̃n,mŜ−
n Ŝ+

m , ρ

]
. (A23)

The first term in Eq. (A23) is the desired nonlocal dissipa-
tion while the second term represents coherent spin-exchange
interactions mediated by a virtual photon emitted in the � pro-
cess within one atom and absorbed via the reverse � process
in a second atom a distance |n − m| away [33,36]. Compar-
ing the expressions for f̃n,m and fn,m in Eq. (A21), we see
that the coherent dynamics are subleading to the dissipative
dynamics. Therefore, when the cavity decay is large enough
that γ 
 δβ,m, the coherent dynamics vanishes and we are
left with purely dissipative dynamics with a spatial profile
f (|n − m|):

d

dt
ρ = κ

∑
n,m

f (|n − m|)
(

Ŝ−
n ρŜ+

m − 1

2

{
Ŝ+

m Ŝ−
n , ρ

})
, (A24)

which is the nonlocal L̂n = Ŝ−
n loss channel we aimed to

construct. The positivity of this Lindblad map is guaran-
teed by the positivity of the Raman sideband amplitudes �β

that determine f (|n − m|); we require f (|n − m| = 0) �= 0 to
ensure a positive Lindblad map, which is violated only when
all sideband amplitudes are zero and we have no dynamics.

APPENDIX B: ENGINEERING THE SPATIAL PROFILE

We now show how to construct a desired dissipation profile
f (|n − m|) by choosing the Raman sideband amplitudes {�β}
appropriately. In this section, we work in units where the
maximum sideband amplitude is normalized to 1 (�M = 1).
The equation we want to invert is

f (|n − m|) =
∑

α,β;(α−β )=(n−m)

�α�∗
β

=
∑

β

�β+(n−m)�
∗
β,

with r ≡ n − m. For a system of N spins, we have
r = −(N − 1),−(N − 2), . . . , 0, . . . , (N − 2), (N − 1). Re-
calling that f (|n − m|) = f (r) is a translationally invariant
profile, we have

f (r) =
∑

β

�β+r�
∗
β, (B1)

where we will need 2N − 1 sidebands corresponding
to the values that r can take; the sidebands {�β}

are indexed as β = −(N − 1),−(N − 2), . . . , 0, . . . , (N −
2), (N − 1). Note that Eq. (B1) shows that the profile f (r)
is simply the discrete autocorrelation of the sideband ampli-
tudes. We can thus make use of the convolution theorem to
take the discrete Fourier transform (DFT) of both sides:

f (k) = |�k|2, (B2)

where we define the DFT as f (k) = ∑
r e−ikr f (r) and

�k = ∑
β e−ikβ�β , introducing the inverse DFT as f (r) =

1
(2N−1)

∑
k eikr f (k) and �β = 1

(2N−1)

∑
k eikβ�k . We know

that any choice of f (|n − m|) which yields a physically valid
dissipator must be positive semidefinite, and therefore f (k)
must be real and non-negative. We can take its square root
and get

|�k| =
√

f (k). (B3)

Now, we can look for solutions with �k real, thus yielding

�β = 1

(2N − 1)

∑
k

eikβ
√

f (k), (B4)

which are the desired sideband amplitudes. One can numeri-
cally compute these amplitudes using a fast Fourier transform
and then check that the amplitudes yield the desired pro-
file by computing their autocorrelation [Eq. (B1)]. In Fig. 5,
we demonstrate this procedure for a long-range spatial pro-
file f (|n − m|) = 1

(|n−m|+1)α and a short-range spatial profile

f (|n − m|) = e−|n−m|/χ .

APPENDIX C: PARAMETER ESTIMATES FOR CAVITY
QED EXPERIMENTS

For the construction to hold, we require that the detuning,
�, and cavity loss rate, γ , are sufficiently large. Specifically,
we require that � 
 μN , � 
 ωL − ωc − ωg,n, and � 

�M, g. These conditions result in the excited atomic level
|e〉n having approximately the same energy along the entire
chain and only participating virtually in the dynamics. We
also require that γ 
 g�M/� and γ 
 δβ,m, which allow us
to adiabatically eliminate the photon and suppress coherent
spin-exchange interactions, respectively. Lastly, we require
that �2γ 
 g2�2

M/min|ωg,n − ωg,m| so that only the resonant
process Eq. (A13) takes place.

Below we provide estimates for the parameters involved
in the experiment of Refs. [54,61] and show that our con-
struction is accessible to current experimental systems. The
number of lattice sites is N ≈ 100 and it is comparable to
the number of sidebands ≈ 50–100 in the Raman beam.
The Raman beam Rabi frequency |�| and cavity mode cou-
pling g range are on the order of a few MHz. The carrier
frequency ωL is ≈ 384 THz, while the sideband frequen-
cies of the Raman beam satisfy max{|ω̃α − ω̃β |} ≈ 10 kHz.
The Zeeman splitting ωg,n = μn on each site is given by
a magnetic field μ · L ≈ 500 kHz, where L is the length of
the cloud. Finally, the cavity decay γ is in the range ≈
200 kHz to tens of MHz. Per these experimental parameters,
we can estimate that μN/� ∼ 10−5, (ωL − ωc − ωg,n)/� ∼
10−4, �M/� ∼ g/� ∼ 10−4, δβ,m/γ ∼ 10−1, g�M/(�γ ) ∼
10−4, and g2�2

M/(min|ωg,n − ωg,m|�2γ ) ∼ 10−1. The condi-
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FIG. 5. Sideband amplitude construction. (a) Sideband amplitudes required to construct a long-range spatial profile f (|n − m|) = (|n −
m| + 1)−α on a 100-site chain. (b) Spatial profile resulting from the amplitudes in (a). (c) Fourier transform of the long-range spatial profile.
(d) Sideband amplitudes required to construct a short-range spatial profile f (|n − m|) = e−|n−m|/χ on a 100-site chain. (e) Spatial profile
resulting from the amplitudes in (d). (f) Fourier transform of the short-range spatial profile.

tions for achieving the desired effective dynamics are thus
satisfied.

While we should safely be able to ignore the coherent
spin-exchange dynamics described in Eq. (A23), we can fur-
ther examine the robustness of our platform to subleading
effects. In Fig. 6, we plot the correlation dynamics when both
dissipative and coherent dynamics are present. As the relative
strength of the coherent dynamics is increased, the pattern
of correlations demonstrates a crossover between the dissi-
pative confinement pattern discussed in the main text and
correlation fronts characteristic of a purely coherent dynamics
arising from a spin-exchange Hamiltonian. The dissipative
confinement pattern survives even when the coherent dynam-
ics is one-fourth as strong as the dissipative dynamics; the
experimental estimate of δβ,m/γ ∼ 10−1 is well below this
threshold.

The subleading spin-exchange Hamiltonian rotates the col-
lective spin similar to a uniform external field and one may
consider using it to tune the correlation pattern. However, as
the spin-exchange dynamics also inherits a spatial profile, it
complicates the spread of correlations and therefore makes an
inconvenient tool to engineer a desired pattern arising from the
dissipative dynamics. A uniform external field cannot create
any spatial correlations, and therefore acts as a simple knob
that tunes dynamics arising from the dissipator.

We note that such a uniform external field requires an addi-
tion to the experimental construction. It can be implemented,
for example, by shining an additional multifrequency Raman
beam that directly couples the two lower atomic levels with
sideband frequencies corresponding to the change in energy
splittings on each site. The amplitude ωF characterizing the
strength of this effective magnetic field would be set by the
Rabi frequency �x of this additional Raman beam, which
typically takes on values between 1 kHz to 50 kHz in the
experiment referenced above.

Lastly, we consider the effect of local losses from spon-
taneous Raman scattering of the individual atoms into free
space. These incoherent spin losses are present in all experi-
ments and introduce undesired decohering effects that deplete
the total magnetization of the system. Following Ref. [27], we
estimate the number of spontaneous emission events after a
time t as N� � N�t�2

M/�2, with � being the decay rate and
N being the total number of excitations in the system. The
relevant timescale is set by the rate at which nonlocal dissipa-
tion generates correlations, given by t ∼ 1/κ ∼ γ�2/g2�2

M .
Correlations generated on this timescale are preserved if the
number of spontaneous emission events is small compared to
the number of atoms in the system: we require N� � N . To
satisfy this requirement, we need �γ/g2 � 1, which, together
with the above stated condition of leaky cavity γ 
 g�M/�,
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FIG. 6. Crossover between dissipative and coherent dynamics. We compute the correlation function Czz(r, t ) for a system whose dynamics
is composed of a long-range dissipation channel (L̂n = Ŝ−

n ) with strength κ and a long-range spin-exchange Hamiltonian with strength η. For
both generators, the spatial profile is f (|n − m|) = (|n − m| + 1)−α with α = 1.25. The system exhibits a crossover between η/κ = 0.25 and
η/κ = 0.5. (a) κ = 1.0, η = 0.0 (only dissipation). (b) κ = 1.0, η = 0.25. (c) κ = 1.0, η = 0.5. (d) κ = 1.0, η = 1.0. (e) κ = 1.0, η = 2.0.
(f) κ = 0.0, η = 1.0 (only Hamiltonian).

yields � � (�/�M )2γ . In the setup of Refs. [54,61], we
have �M/� ∼ 10−4, and as both � and γ are typically of
the order of a few MHz, correlations generated from nonlocal
dissipation are protected against scattering into free space for
a long window of time. We can alternatively combine the
conditions �γ/g2 � 1 and γ 
 g�M/� into g 
 ��M/�,
which states that the coupling between the atoms and the
cavity mode should be strong enough that coherent cavity-
mediated transitions between atomic energy levels should
be much more frequent than incoherent transitions due to
spontaneous emission. For the parameters of Refs. [54,61], g
and � are of the order of a few MHz and �M/� ∼ 10−4, so
this strong-coupling condition is satisfied.

APPENDIX D: FINITE WAVE VECTOR SQUEEZING
PARAMETER

Here, we show that the finite wave vector squeezing pa-
rameter described in the main text acts as a witness of
metrologically useful entanglement for the task of measuring
a spatial Fourier component of an external field. Consider a
spatially varying magnetic field �B(�r) = (0, 0, B(�r)) pointing
in the z direction of the coordinate system applied to a spin

chain of N spins represented by operators �̂Sn, where n indexes
the position of each spin. If the field is applied for a time t , the
effect on a system state ρ0 is

ρ0 → ρt ({Bn}) = Û (t )ρ0Û (t )†, (D1)

where Û (t ) = exp{iĤt}, Ĥ = ∑N
n=1 BnŜz

n, and Bn = B(�rn).
Letting �rn = na and setting the lattice constant as a = 1,
we can decompose the magnetic field in terms of Fourier
components as Bn = 2

N

∑
k Bk cos(kn) with k ∈ 2π

N {1, N}. The
Fourier components are given by the inverse transform Bk =∑

n Bn cos(kn). Our goal is to estimate Bk∗ for a desired wave
vector k = k∗ using M measurements performed on the state
ρt , given that the magnetic field strengths {Bn} are unknown
a priori. Estimating Bk∗ thus amounts to estimating a linear
function

f (α, θ) = α · θ (D2)

of unknown parameters θ = {Bn} and known coefficients
α = {cos(k∗n)}. The precision bounds, known as Cramer-Rao
bounds, for such multiparameter estimation tasks were de-
rived in Ref. [63]. Let �k∗ be the estimator of Bk∗ , with a
mean E[�k∗ ] and variance �(�k∗ )2. The lower bound on
the variance sets the maximum achievable precision of the
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estimator. If the initial state ρ0 has no entanglement, then
�(�k∗ )2 � �SQL(�k∗ )2, where

�SQL(�k∗ )2 = N

Mt2

1

2δk∗ �=0
(D3)

is known as the standard quantum limit (SQL). We have used
the shorthand δk∗ �=0 = 1 if k∗ �= 0 and zero otherwise. If we
allow entanglement in the initial state ρ0, then �(�k∗ )2 �
�HL(�k∗ )2, where

�HL(�k∗ )2 = 1

Mt2
(D4)

is known as the Heisenberg limit (HL). The key point is that
�SQL(�k∗ )2/�HL(�k∗ )2 ∝ N ; therefore entanglement allows
a factor N scaling improvement in the precision of the es-
timator. Importantly, as the generators {Ŝz

n} commute with
each other, the Heisenberg limit can in principle be saturated
with an optimal choice of initial state ρ0 and measurement
protocol.

In order to put the above expressions for the SQL and HL
in a more familiar context, consider the quantity φ0 = 1

N Bk∗=0

and its estimator �0. This quantity corresponds to measuring
the uniform component of the magnetic field and has precision
limits

�SQL(�0)2 = 1

NMt2
, (D5)

�HL(�0)2 = 1

N2Mt2
, (D6)

which are the usual expressions for the single-parameter es-
timation problem typically considered in quantum-enhanced
metrology.

We can similarly gain intuition for the k∗ �= 0 case by fram-
ing it as a single-parameter estimation problem. Let us define
the Fourier-transformed spin operators as Ŝk = ∑

n e−iknŜn,
with the inverse transform being Ŝn = 1

N

∑
k eiknŜk . Then,

we can write the Hamiltonian generating evolution due to
the magnetic field as Ĥ = 2

N

∑
k Bk Re{Ŝz

k}, where Re{Ŝk} =∑
n cos(kn)Ŝn. The variance of the estimator �k∗ is then

bounded by the generator of Bk∗ in Ĥ [63–65]. Specif-
ically, we have �(�k∗ )2 � �G(�k∗ )2, where �G(�k∗ )2 =
1/[Mt24�(Ĝk∗ )2] and Ĝk∗ = ∂Ĥ/∂Bk∗ = 2

N Re{Ŝz
k∗ }. This

yields the precision bound

�G(�k∗ )2 = �SQL(�k∗ )2 2δk∗ �=0

16

N

�
(

Re
{
Ŝz

k∗
})2 . (D7)

The bound in Eq. (D7) is typically looser than the one in
Eq. (D4), but provides intuition for how decreasing the vari-
ance of the operator Ŝz

k∗ increases the potential precision in the
estimate of Bk∗ .

We now give an example of an estimator that can exploit
squeezing of this variance to provide a metrological advan-
tage. Consider an experiment that makes M measurements
of an observable μ̂ on the state ρt (θ ) that depends on the
unknown parameter of interest, θ . Let the expected value of
this observable be μ̄ = Tr{μ̂ρt (θ )} ≡ f (θ ), where we have
made the dependence on θ explicit, and the sample average
of the measurements be μ̄M . The method of moments (MOM)
estimator is defined as the value of θ for which the expectation

value μ̄ equals the sample average: �mom = f −1(μ̄M ) [64].
We have μ̄M = f (�mom), and in the limit of many measure-
ments, the law of large numbers states that μ̄M ≈ μ̄ = f (θ ).
Therefore, we expect �mom ≈ θ and we can expand μ̄M =
f (�mom) around �mom = θ :

f (�mom) ≈ f (θ ) + ∂ f

∂θ

∣∣∣∣∣
θ

(�mom − θ ). (D8)

Plugging in μ̄M and μ̄, we have

μ̄M ≈ μ̄(θ ) + ∂μ̄

∂θ

∣∣∣∣∣
θ

(�mom − θ ). (D9)

The convenient aspect of the MOM estimator is that the value
�mom can be extracted directly from the experimental sam-
ple average μ̄M . Extracting the estimate, however, requires
knowledge of the functional form μ̄(θ ), or its inverse, as
is the case in the usual Ramsey metrology protocol where
typically μ̄(θ ) ∝ cos2(θ ). Alternatively, the MOM estimate
can be extracted using the above Taylor expansion if we know
a calibration value θc that is close to the true unknown value
θ , as well as μ̄(θc) and ∂μ̄

∂θ
|θc with high precision [65]:

μ̄M ≈ μ̄(θc) + ∂μ̄

∂θ

∣∣∣∣∣
θc

(�mom − θc). (D10)

In either case, the variance of the estimator can be calculated
in the limit of large M by identifying �(�mom)2 ≈ (�mom −
θ )2 and �[μ̄(�mom)]2 ≈ M[μ̄(�mom) − μ̄(θ )]2 in Eq. (D9),
or by replacing θ → θc in these expressions and then using
them with Eq. (D10). Letting Ĝθ = ∂Ĥ/∂θ , we have ∂μ̄

∂θ
|θc =

−itTr{[Ĝθ , μ̂]ρt (θ )}. The variance of the MOM estimator is
then

�(�mom)2 = 〈�(μ̂)2〉
Mt2|〈[Ĝθ , μ̂]〉|2 , (D11)

where 〈·〉 = Tr{·ρt (θ )}. For our problem to estimate θ = Bk∗ ,
we have Ĝθ = 2

N Re{Ŝz
k∗ }. We pick a measurement observable

μ̂ = e⊥ · Re{Ŝk∗ }, where e⊥ represents a unit vector in the
plane perpendicular to both the mean spin direction, es, and
the direction of the external magnetic field, ez. The variance
of our MOM estimate for Bk∗ is

�mom(�k∗ )2 = N

Mt2

N〈�(e⊥ · Re{Ŝk∗ })2〉
|〈es · Ŝtot〉 + 〈es · Re{Ŝ2k∗ }〉|2 (D12)

= N

Mt2

N〈�(e⊥ · Re{Ŝk∗ })2〉
4| ∑n cos2(k∗n)〈es · Ŝn〉|2

(D13)

� N

Mt2

N〈�(e⊥ · Re{Ŝk∗ })2〉
4|〈es · Ŝtot〉|2

, (D14)

where Ŝtot = Ŝk=0 = ∑
n Ŝn and we have used the fact that

spin operators satisfy the commutation relation [Ŝα
k , Ŝβ

k′ ] =
iεαβγ Ŝγ

k+k′ for α, β, γ ∈ {x, y, z}. We can thus upper-bound
the variance of the MOM estimator as

�ub
mom(�k∗ )2 = �SQL(�k∗ )2ξ 2

k∗ (D15)
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with

ξ 2
k∗ = 2δk∗ �=0 N〈�(e⊥ · Re{Ŝk∗ })2〉

|〈es · Ŝtot〉|2
. (D16)

For k∗ = 0, we get Wineland’s metrological squeezing param-
eter [64], and therefore Eq. (D16) serves as a generalization of
Wineland’s parameter to the case of sensing specific Fourier
components of a spatially varying field. If ξ 2

k∗ < 1, then a
MOM estimator can exploit entanglement in the system to
measure this Fourier component with a precision beyond
the standard quantum limit. The estimator requires that we
can measure 〈e⊥ · Re{Ŝk∗ }〉. Using the Fourier decomposition
of Ŝk∗ , this requires computing 〈e⊥ · Ŝn〉, which can easily
be extracted from simultaneous projective measurements of
〈Ŝz

n〉 of each spin after rotation of e⊥ to the ez basis. Such
measurements are routinely performed in cold atom systems
using fluorescence imaging to determine the occupation of the
atoms in each of their internal states (corresponding to spin up
and spin down).

In general, if we are trying to characterize the metrological
utility of a state ρ0 with a fixed mean spin direction es, we can
presume control over the direction of the external magnetic
field �B(na) that is being sensed and align it for greatest sensi-
tivity. The metrological gain to sense a Fourier component at

wave vector k of the field can then be quantified via the finite
wave vector squeezing parameter

(
ξ

(W)
k

)2 = mine⊥

{
2δk �=0 N〈�(e⊥ · Re{Ŝk})2〉

|〈es · Ŝtot〉|2
}
, (D17)

where the minimization is performed over all directions e⊥
that are perpendicular to the mean spin direction es. One
should be careful in the interpretation of the above general-
ized squeezing parameter. The spin operators at a given wave
vector k do not form a closed spin algebra, and therefore there
is no single Bloch sphere that can be associated with this spin
mode. Therefore, the usual intuition of squeezing a quadrature
of the spin on its Bloch sphere does not hold. Nonetheless,
Eq. (D17) does quantify the amount of metrological gain
that can be achieved due to entanglement in the state using
projective measurements of local spin operators (e.g., 〈Ŝz

n〉).
The reason is that reducing the variance of the generator of
the estimated parameter helps increase the precision of the
estimate, as described in Eq. (D7). In general, the precision
of this MOM estimator is worse than the optimal precision
set by Eq. (D4), but one may hope to find squeezing values,
(ξ (W)

k )2, which scale as 1/N and therefore provide the same
scaling advantage. More optimal estimators can saturate the
bound of Eq. (D4) [63,66–69].
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