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We show that corner Majorana zero modes in a two-dimensional p + id topological superconductor can
be controlled by the manipulation of the parent p-wave superconducting order. Assuming that the p-wave
superconducting order is in either a chiral or helical phase, we find that when a dx2−y2 wave superconducting
order is induced, the system exhibits quite different behavior depending on the nature of the parent p-wave
phase. In particular, we find that while in the helical phase, a localized Majorana mode appears at each of the
four corners, in the chiral phase, it is localized along only two of the four edges. We furthermore demonstrate that
the Majoranas can be directly controlled by the form of the edges, as we explicitly show in the case of circular
edges. We argue that the application of strain may provide additional means of fine-tuning the Majorana zero
modes in the system; in particular, it can partially gap them out. Our findings may be relevant for probing the
topology in two-dimensional mixed-pairing superconductors.
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I. INTRODUCTION

Majorana zero modes (MZMs) represent a hallmark fea-
ture of topological superconductivity with several interesting
properties [1–8]. In addition to their fundamental importance,
MZMs are fascinating because they exhibit non-Abelian
statistics, which manifests in braiding operations. This could
be of crucial importance for future applications, for instance,
in information technology [9–12], and has been the subject
of intense research [13–23]. MZMs appear as topologically
protected boundary states at interfaces where the topological
invariant changes, while the bulk remains gapped. Typically, a
topological superconductor (SC) features MZMs at interfaces
of codimension m = 1, imprinting the standard topological
bulk-boundary correspondence [3,4]. In a one-dimensional
finite system, they take the form of localized modes at the
ends, while in two and three dimensions they are realized as,
respectively, edge and surface states.

New platforms for the realization of MZMs have re-
cently appeared with the advent of higher-order topological
states [24–34] which generalize the standard bulk-boundary
correspondence. Within this class of states, higher-order topo-
logical SCs can localize MZMs at interfaces of codimension
m > 1. In particular, two- (three-) dimensional second- (third-
) order topological SCs may host corner MZMs [35–68]
with codimension m = d in d spatial dimensions. In a two-
dimensional (2D) topological state with an insulating or
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superconducting bulk gap, the corner zero modes can be ob-
tained by gapping out the first-order edge states with a mass
term that features a domain wall in momentum space, realiz-
ing a special case of the hierarchy of higher-order topological
states [31,69]. In this respect, several concrete ways to realize
corner MZMs in two dimensions have been proposed so far,
for instance, by inducing a superconducting gap for the edge
states of a topological insulator, either intrinsically [55] or
via the proximity effect [35,38,40,56,58–60]. It has also been
shown that they may emerge when pairing of an appropriate
symmetry is combined with a spin-dependent field, such as
spin-orbit coupling [41,61,62]. Furthermore, several works
recently proposed means by which the order of a topological
superconductor may be manipulated, along with the position
of the resulting corner MZMs. Indeed, a first-order topological
SC may be promoted to second order by the application of a
magnetic field, with the location of the corner modes deter-
mined by the orientation of the field [39,50,63]. It has also
been theoretically shown that second-order topological su-
perconductivity can emerge in Josephson junctions, in which
case the phase difference between the SCs provides additional
means of manipulation [64,65].

We here consider a different scenario in which a variety
of MZMs can be generated solely by manipulating the parent
p-wave superconducting order in a mixed-parity p + id 2D
SC. We assume that the p-wave superconducting order, in the
absence of any other pairing, hosts a first-order topological
state and exists in either a chiral or helical phase, referring
to whether it breaks or preserves time-reversal symmetry, re-
spectively. We show that when a dx2−y2 -wave superconducting
order is induced, e.g., via the proximity effect, the system
exhibits quite different behavior depending on the parent p-
wave phase. In particular, we find that in the helical phase, a
localized Majorana mode appears at each of the four corners,
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as shown in Fig. 1. In the chiral phase, on the other hand,
no corner modes appear. Instead, a gap emerges in two out
of the four edge modes (Fig. 2). Therefore, the behavior of
the Majorana modes can be tuned solely by manipulating the
pairing symmetry of the parent topological SC. As we show,
the edge geometry can also be relevant in this regard; see
Fig. 3 where we display the Majorana states for a circular
edge geometry. Finally, we demonstrate that the application
of strain may drive a topological phase transition when the
parent phase is chiral. As a result, the strain gaps out two out
of the four edges, as displayed in Fig. 4.

The rest of this paper is organized as follows. In Sec. II
we introduce the model for the p + id topological SC we
consider. Next, we present analytical arguments for the be-
havior of the resulting edge states in Sec. III, before moving
on to discussing the numerical results in Sec. IV. Finally,
we analyze the effect of strain in Sec. V and present our
conclusions together with an outlook in Sec. VI.

II. MODEL

We employ the standard Bogoliubov–de Gennes formalism
to study the system, with the Hamiltonian given as

H = 1

2

∑
k

ψ
†
kĤ (k)ψk, (1)

where the corresponding Nambu spinor is ψk =
(ck↑ ck↓ c†

−k↑ c†
−k↓)

�
, with ck↑ (c†

k↓) being the
annihilation (creation) operator for the quasiparticle with
spin up (down) and momentum k. Here,

Ĥ =
(

h(k) �(k)
−�∗(−k) −h∗(−k)

)
, (2)

with the blocks describing the normal (nonsuperconducting)
state and the pairing given by, respectively,

h(k) =
(

h̄2k2

2m
− μ

)
σ0 ≡ ξkσ0, (3)

�(k) =
[
�p

kF
g(k) · σ + i�d

k2
F

(
k2

x − k2
y

)]
iσ2, (4)

where μ is the chemical potential, m is the quasiparticle mass,
and the Pauli matrices σ and the unit 2 × 2 matrix σ0 act in the
spin space, kF is the Fermi momentum. Here, �p and �d are
the amplitudes of the p- and d-wave superconducting orders.
For the latter we choose the dx2−y2 component ∼ (k2

x − k2
y ) as

it features domain walls along the diagonals in momentum
space, located at kx = ±ky, where it changes sign, thereby
partially gapping out the edge states [70]. We also include
a relative phase of π/2 between the two order parameters,
implying that the mixed-pairing state breaks time-reversal
symmetry. Notice, however, that the d-wave component pre-
serves the product of the C4 rotational and time-reversal (T )
symmetries, C4T = C4T , implying that the resulting p + id
superconducting state may feature the same composite sym-
metry. This, indeed, occurs when the p-wave component is
helical (see below), in which case also a Z2 topological invari-
ant protects the resulting second-order topological SC [35].
The vector g(k) parametrizes the triplet p-wave superconduct-

ing paring and takes the form

g(k) = cos θ k × ẑ + sin θ (kx + iky)ẑ, (5)

where ẑ is the unit vector pointing in the z direction, assumed
to be normal to the 2D plane. The helical phase is found
by setting θ = 0 and represents a time-reversal invariant SC,
featuring a pair of counterpropagating gapless Majorana edge
modes. On the other hand, the chiral phase, which breaks
the time-reversal symmetry, is found for θ = π/2. In the
following we are interested only in these two special cases and
also refer to the mixed p + id state as either chiral or helical
depending upon the phase of the parent p-wave component.
Since we consider only the topological regime, we do not
include the s-wave pairing in the Hamiltonian in Eq. (2).

The bulk spectrum of the Hamiltonian in Eqs. (2)–(4) is
given as

E (k) = ±
√

ξ 2
k + a+�2

p + a2−�2
d ± 2�p

ky

kF
b(θ ), (6)

with a± ≡ a±(k) = (k2
x ± k2

y )/k2
F, and

b(θ ) = sin θ

√
a2−�2

d + a+�2
p cos2 θ.

The spectrum for the helical (θ = 0) and chiral (θ = π/2)
phases thus reduces to

E (k) =
⎧⎨
⎩

±
√

ξ 2
k + a+�2

p + a2−�2
d , θ = 0,

±
√

ξ 2
k + k2

x

k2
F
�2

p + (
a−�d ± ky

kF
�p

)2
, θ = π

2 .

It is clear that for θ = 0, the bulk band structure always
features a gap, as long as �p �= 0. The same holds for θ = π

2 ,
except for the critical value of �d = �p, where the gap closes.
We furthermore note that both of the gapped regions �d < �p

and �d > �p are topologically nontrivial and feature gapless
edge states, which will be evident in the following.

III. ANALYTICAL RESULTS

To understand the effects of the d-wave superconducting
order on the edge states present in this system, we introduce an
interface which is oriented with an angle α with respect to the
horizontal (x) principal crystalline axis. The Hamiltonian in
this rotated coordinate system, k = (kx, ky) → k′ = (k||, k⊥),
is given by

Ĥ ′(k′) = R̂Ĥ (R−1k′)R̂†, (7)

where

R̂(α) =
(

R(α) 0
0 R∗(α)

)
(8)

is the rotation operator in the Nambu basis defined in Eq. (1)
and R = exp[iασ3/2] represents the operator of the rotation
by the angle α about the z axis in the spin-1/2 representation.
The momenta k′ and k are related by a rotation about the z
axis with the same angle α, k′ = R(α)k, with the rotational
matrix given by

R(α) =
(

cos α sin α

− sin α cos α

)
. (9)
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The corresponding edge Hamiltonian is then obtained by pro-
jecting a part of the rotated bulk Hamiltonian Ĥ ′(k′) [Eq. (7)]
not used to obtain the zero modes onto the subspace spanned
by the zero-energy edge modes.

In the following, we assume that both �p and �d are much
smaller than the Fermi energy (weak-pairing limit), which we
set equal to the chemical potential, μ = h̄2k2

F/2m. In addition,
we assume that the wave vector parallel to the interface is
much smaller than the Fermi momentum, k|| � kF. To find
the form of the edge Hamiltonian, as previously announced,
we first perform the rotation in Eq. (7) and then solve for
the zero-energy modes in the absence of the d-wave pairing.
To this end, in the rotated Hamiltonian (2), we isolate a part
that is proportional to �p and depends on k⊥, the wave vector
orthogonal to the interface. The total Hamiltonian therefore
acquires the form

Ĥ ′(k′) = Ĥ ′
0(k⊥) + Ĥ ′

1(k‖) + Ĥ ′
2(k⊥, k‖), (10)

with

Ĥ ′
0(k⊥) � h̄2

2m

(
k2
⊥ − k2

F

)
τ3σ0

− k⊥
kF

�p(τ2σ0 cos θ − eiατ3σ0τ1σ1 sin θ ), (11)

Ĥ ′
1(k‖) = k||

kF
�p(τ1σ3 cos θ − eiατ3σ0τ2σ1 sin θ ), (12)

Ĥ ′
2(k⊥, k‖) = −�d

k2
F

[(k2
|| − k2

⊥) cos 2α − 2k||k⊥ sin 2α]τ1σ2.

(13)

Here, τaσb ≡ τa ⊗ σb is a Kronecker product between Pauli
matrices in Nambu and spin space. Since the edge breaks
translation invariance, we make the substitution k⊥ → −i∂r⊥ ,
where r⊥ is the direction orthogonal to the edge, and solve the
resulting differential equation with the boundary conditions
ψ (r⊥ = 0) = ψ (r⊥ = ∞) = 0. The unperturbed Hamilto-
nian, given by Eq. (11), admits two degenerate zero-energy
eigenstates of the form

ψa(r⊥) =
√

2κ e−κr⊥ sin kFr⊥ ϕa, (14)

with a = 1, 2, the spinors

ϕ1 = (−i cos θ eiα sin θ −i 0)�,

ϕ2 = (eiα sin θ −i cos θ 0 −i)�,

and κ = m�p/(h̄2kF ). The effective Hamiltonian for the edge
states is thus found, to first order in the perturbation expan-
sion, as the projection

He
ab(θ ) =

∫ ∞

0
dr⊥ ψ†

a (r⊥)(Ĥ ′
1 + Ĥ ′

2)ψb(r⊥), (15)

which gives

He(θ ) = −�p
k||
kF

(
1 − i

2 eiα sin 2θ
i
2 e−iα sin 2θ − cos 2θ

)

− �d cos 2α

(
sin θ cos α i cos θ

−i cos θ − sin θ cos α

)
, (16)

where we have kept only the leading term in Eq. (13). The
term ∼k‖ in Eq. (13) vanishes identically after taking the

(a) (b)

(c)

FIG. 1. Local density of states at zero energy ν(0) in the helical
phase (θ = 0), with the d-wave order parameter set to (a) �d = 0,
(b) �d = 0.1�p, and (c) �d = 0.2�p. The dot size at a particular
point indicates the size of ν(0) at that point. In all plots, we use the
Hamiltonian in Eq. (19) and set μ = 2t , �p = t = 1, and a = 1. The
system size is 100 × 100 sites.

projection (15), and we have neglected the term ∼k2
‖ as being

less relevant by power counting than the leading one in the
low-energy edge Hamiltonian. Note that this term can be, in
principle, included in this Hamiltonian following the outlined
procedure.

The first term in Eq. (16) describes the Majorana edge
modes, having a characteristic nodal structure in k‖ in the
absence of the d-wave pairing. These modes are, in turn,
gapped by the d-wave pairing term. For θ = 0 (the helical
phase), one thus obtains

He(θ = 0) =
(

−�p
k||
kF

i�d cos 2α

−i�d cos 2α �p
k||
kF

)
. (17)

Clearly, a mass term proportional to cos 2α appears, having
domain walls along the two diagonals, located at α = ±π/4.
Hence, the edge modes are gapped out, and only the corner
modes remain, in agreement with Refs. [35,36]. These corner
MZMs are protected by the composite C4T symmetry and a Z2

topological invariant [see also the discussion after Eq. (4)].
In the chiral phase, for θ = π/2, we do not have a band

crossing which may turn into an anticrossing and open up a
gap at the edge. In this case Eq. (16) takes the form

He
(
θ = π

2

)
= −�p

k||
kF

σ0 − �d cos α cos 2α σ3, (18)

which suggests that the presence of the d wave order param-
eter has only a trivial effect on the edge states in the regime
�d < �p. However, the closing of the bulk gap at �d = �p
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signals a possible phase transition, and therefore, something
interesting may occur also in this system. It turns out that a
selective gapping of the edge states is possible for �d > �p,
as can already be seen from Eq. (18). Namely, by taking
the values of the angle α = 0 (α = π/2), corresponding to
horizontal (vertical) edge, we find that the horizontal and ver-
tical edges should be gapped and gapless, respectively. This
is exactly what we find by numerical means, as shown in the
next section.

IV. NUMERICAL ANALYSIS

In addition to the analytical analysis presented in the
previous section, we also numerically study the p + id SC
described by Eqs. (2)–(4). The corresponding square-lattice
Hamiltonian reads

H = 1

2

∑
jl

ψ
†
j Ĥ jlψl , (19)

with the Nambu vector at lattice site j, ψ j =
(c j↑ c j↓ c†

j↑ c†
j↓)

�
, and Ĥ = Ĥ0 + Ĥp + Ĥd , where

Ĥ0 =[−t (δx̂ + δ−x̂ + δŷ + δ−ŷ) + (4t − μ)δ jl ]τ3σ0, (20)

Ĥp = �p

2ikFa
{[(δŷ − δ−ŷ)τ1σ3 − (δx̂ − δ−x̂ )τ2σ0] cos θ

+ [(δx̂ − δ−x̂ )τ1σ1 − (δŷ − δ−ŷ)τ2σ1] sin θ}, (21)

Ĥd = �d

k2
Fa2

[δx̂ + δ−x̂ − δŷ − δ−ŷ]τ1σ2. (22)

In the above, t = h̄2/2ma2, and we use the shorthand notation
δn̂ ≡ δ j+n̂,l . We furthermore remark that the momentum space
representation of the above lattice Hamiltonian with periodic
boundary conditions is found from Eqs. (2)–(4) by replacing

ξk → −2t (cos kxa + cos kya) + 4t − μ, k → 1

a
sin(ka)

and substituting

k2
x − k2

y → 2

a2
(cos kxa − cos kya)

in the d-wave component of the superconducting order pa-
rameter. This has the effect of shifting the location at which
the bulk gap closes, which is a characteristic feature of the
chiral phase, to

�d = �p

√
1 − μ

4t
≡ �c

d . (23)

Furthermore, with μ/t = k2
Fa2, it is clear that the above

discretized model becomes equivalent to its continuum coun-
terpart in the limit kFa � 1.

We now consider the edge states in a square-lattice system.
We compute the local density of states at site position j as

ν j (E ) =
∑

n

|vn, j |2δ(E − En)

� 1√
πλ

∑
n

|vn, j |2e−(E−En )2/λ, (24)

(a) (b)

FIG. 2. The local density of states in the chiral phase (θ = π

2 ) in
the two regimes separated by the critical value of the d-wave order
parameter �c

d , at which the bulk gap closes. In (a) �d = 0.5�c
d ,

whereas in (b) �d = 1.5�c
d . The dot size at a particular point in-

dicates the size of ν(0) at that point. In both plots, we use the
Hamiltonian in Eq. (19) and set μ = 2t , �p = t = 1, and a = 1. The
system size is 100 × 100 sites.

where En are the eigenvalues of the Hamiltonian and vn, j are
the values of the corresponding eigenvectors at j. The broad-
ening parameter λ is set to 5 × 10−3. In the helical phase, as
shown in Fig. 1, the edge states quickly vanish with increasing
�d , becoming completely gapped out at �d = 0.2�p and thus
leaving only the corner modes.

We turn to the chiral phase, where the gap closing at
�d = �c

d separates two regions of interest. The region with
�d < �c

d is topologically equivalent to the case where �d =
0, and we thus expect that the results from Eq. (16) apply here,
implying that the d-wave order parameter does not gap out
the chiral edge states. This is indeed found to be the case in
our numerical analysis, as illustrated in Fig. 2(a), in which
the local density of states at �d = t/2

√
2 = 0.5�c

d is shown.
In contrast, for �d = 3t/2

√
2 = 1.5�c

d , shown in Fig. 2(b),
the behavior is different. In that case the horizontal edges are
gapped out, but the vertical edge states remain gapless, in
agreement with Eq. (18). We furthermore note that a phase
shift of π/2 in the relative phase between �d and �p would
amount to a π/2 rotation of the result in Fig. 2(b). Therefore,
the relative phase between the two pairing order parame-
ters translates into the pattern of the gap at the edge of the
system.

We now investigate the edge states in the case of a disk ge-
ometry. This is relevant because the behavior of the edge states
for any polygonal geometry may immediately be deduced
by comparing the corner opening angles with corresponding
points on the circle. The modeling of the disk is performed
by creating a square grid and discarding all nodes which fall
outside a selected radius, here chosen to be 60 nodes. The
results are shown in Fig. 3 for increasing values of �d above
the critical value �c

d . Below �c
d (not shown), the edge states

are uniformly distributed around the entire edge, as expected.
Immediately after crossing the critical value, a gap is opened
up in the edge states at angles around γ = {π/2, 3π/2}, as
shown in Fig. 3(a) for �d = 1.5�c

d , and γ is the polar angle
of the circle. This is consistent with the partial gapping of
the edge states observed in Fig. 2(b), which probes the same
angles, along with the angles {0, π}, which are gapless. A
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FIG. 3. The edge states in a circular geometry when the system is
in the chiral phase for increasing values of the d-wave order param-
eter, equal to (a) �d = 1.5�c

d , (b) �d = 3�c
d , (c) �d = 4.5�c

d , and
(d) �d = 6�c

d . The squares in (a) indicate the opening angles probed
by the square geometry shown in Fig. 2. The dot size at a particular
point indicates the size of ν(0) at that point. In all plots we have set
μ = 2t , �p = t = 1, and a = 1 in the Hamiltonian in Eq. (19). The
system consists of a disk with a radius of 60 sites.

further increase in �d increases the modulation of the den-
sity of states along the edge and produces additional gapped
regions, as can be seen in Figs. 3(b)–3(d), which correspond
to �d/�

c
d = 3, 4.5, and 6, respectively. Furthermore, the

gapped circle sector surrounding γ = {π/2, 3π/2} is seen to
narrow as �d becomes larger but never closes completely,
consistent with the domain wall structure of the dx2−y2 -wave
pairing.

V. THE EFFECT OF STRAIN

We investigate strain as a potential means to manipulate the
edge states. We model its effects by introducing a small strain
field to the system,

ε =
(

εxx εxy

εyx εyy

)
. (25)

Here, εxx and εyy represent axial strain, defined as being pos-
itive for tensile strain, and εxy = εyx represents shear strain.
In the presence of such a strain field, the spatial coordinates
transform as r′

i = (δi j + εi j )r j , which implies that, to linear
order in the strain tensor, the momentum transforms as

k′
i = (δi j − εi j )k j . (26)

By replacing k → k′ in Eqs. (2)–(4), then inserting Eq. (26),
and retaining only terms up to first order in ε, we find that

(a)

(b) (c)

FIG. 4. The effect of strain on the zero-energy edge states in the
chiral phase. In (a) the local density of states at zero energy is shown
at �d = �c

d without any strain. In (b) and (c) the same system is
shown for an applied uniaxial strain of εxx = 10% and εyy = 10%,
respectively. The dot size at a particular point indicates the size of
ν(0) at that point. In all plots, we set μ = 2t , �p = t = 1, and a = 1
in the Hamiltonian in Eq. (19). The system size is 100 × 100 sites.

additional strain-dependent terms are introduced in the Hamil-
tonian, which may have an effect on the edge states. For
an edge with an arbitrary orientation α, the corresponding
Hamiltonian, after incorporating the effects of strain, reads

He = −�p�p(ε, α)
k||
kF

(
1 − i

2 eiα sin 2θ
i
2 e−iα sin 2θ − cos 2θ

)

− �d�d (ε, α)

(
sin θ cos α i cos θ

−i cos θ − sin θ cos α

)
, (27)

with

�p(ε, α) = 1 − ε̄ + 1

2
δε cos 2α + εxy sin 2α, (28)

�d (ε, α) = (1 − 2ε̄) cos 2α − δε, (29)

where ε̄ = (εxx + εyy)/2 and δε = εxx − εyy. We see that
strain produces an effective renormalization of the p- and d-
wave order parameters in the edge Hamiltonian by �p and �d ,
respectively. Furthermore, for anisotropic strain, �d acquires
a contribution independent of α. This implies that the corner
modes in the helical phase, given by Eq. (17), can be gapped
out by strain. This is also consistent with the breaking of
the C4T symmetry by strain, which protects the topological
state. However, the gapping occurs only once the mass domain
wall at the corners is removed, which requires rather large
strains. For instance, with a uniaxial tensile strain of εxx = ε,
the corner modes are gapped out for ε > 50%. This is much
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larger than the capacity of any known material, with graphene
being the closest contender, reported to sustain strains of up to
25% [71]. In any case, these levels of strain are certainly far
beyond the linear strain regime considered herein, implying
the stability of the corner modes against strains in the experi-
mentally realizable range.

In the chiral phase, we consider the effect of strain by
numerical means. To this end, we replace the lattice parameter
a with directionally dependent equivalents, ax and ay, satis-
fying ai = (1 + εii )a. We ignore shear strain. In the regime
�d > �c

d , we can conclude from Eq. (27) that �d and �p

are renormalized slightly differently by strain, which agrees
with the numerical analyses for �d < �c

d . Hence, strain may
be used to change the ratio between the amplitudes of the d-
and p-wave superconducting orders and thus cause a transi-
tion between the two phases exhibiting different behaviors of
the edge states, which agrees with our numerical analysis.
Setting �d = �c

d , which in the unstrained case is gapless,
as shown in Fig. 4(a), we perturb the system by applying a
uniaxial strain of 10% along the x and y directions, shown
in Figs. 4(b) and 4(c), respectively. In the former case, it can
be seen that the system is pushed into the state with uniform
gapless edge modes, whereas in the latter case, the selectively
gapped state is entered. Therefore, in the chiral phase, strain
can be used to tune the form and the localization of the edge
states.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the Majorana zero modes
in a 2D SC with mixed p- and d-wave pairings, consid-
ering both the helical and chiral p-wave phases. For the
parent helical p-wave order, we found that the effect of the
d-wave order parameter is to gap out the edge states, leav-
ing only zero-energy Majorana corner modes. In the case of
the parent chiral p-wave pairing, we showed that the edge
states can be partially gapped out above a critical value of
the d-wave order parameter. Therefore, the parent p-wave
phase can control the form of the Majorana modes in the
p + id topological SC. We found that the localization of the
Majorana modes can also be tuned by the geometry of the
edges, as implied by our results in the circular edge geome-
try. Moreover, the localization of the MZMs in a polygonal
geometry may be inferred by identifying the opening angle
of a given corner with a corresponding point on the circle.
We have also investigated the effect of strain and found that
the higher-order topological SC produced in the parent he-
lical phase is robust against strain up to the experimentally
reachable values. On the other hand, in the chiral phase,
we showed that strain can be used to induce a transition
between topologically distinct phases with gapless and par-
tially gapped edge states. Hence, the application of strain,
through the strain-induced topological phase transition, may
indeed provide a direct means of manipulating the Majorana
modes.

The experimental realization of such a superconducting
system is a challenging issue at present, but we will never-
theless indicate a few promising avenues. First, 2D p + id
second-order topological SCs may be hosted in doped second-
order topological insulators, as was recently advocated in

Ref. [48]. Another available route is to make use of the
proximity effect between a topological p-wave SC and a d-
wave SC. Typical examples of the latter are cuprates such as
YBa2Cu3O7−δ [72], while the former is more difficult to find.
Indeed, the leading candidate for topological p-wave super-
conductivity, Sr2RuO4, was recently shown to be most likely
not of p-wave nature [73,74]. Intensive research is, however,
still ongoing, and other potential candidates are uranium-
based heavy-fermion compounds, of which UTe2 seems to be
most promising one [75].

As we are concerned here with only 2D effects, we
do not have to rely on bulk superconducting properties.
This broadens the choice of materials somewhat. For in-
stance, topological superconductivity in surface states can
be achieved via the Fu-Kane construction [76], whereby a
conventional s-wave SC is placed in proximity with a topo-
logical insulator. Such a system can host edge states upon
breaking of time-reversal symmetry, e.g., by introducing a
magnetic vortex. This behavior was recently discovered to
occur at surfaces of some materials, such as the iron-based
SC FeTe1−xSex [77–82], and is anticipated in PbSaTe2 [83],
which thus makes these materials promising candidates for
our purposes. Hence, our Hamiltonian may effectively de-
scribe the Majorana bound states on the surface of such
materials when they are proximitized with a d-wave SC, either
as a bilayer or as a Josephson coupling, as was suggested
in Ref. [35]. We also point out that a proximity effect be-
tween niobium and graphene, through a single layer of chiral
molecules, was demonstrated to display signatures which may
be indicative of chiral p-wave superconductivity [84] and
might provide additional means of realizing the model we
studied here in the future.

Finally, we remark that a cuprate d-wave SC typically has
a significantly larger critical temperature than the p-wave SCs
discussed above. For instance, YBa2Cu3O7−δ may reach Tc ∼
100 K [85], whereas FeTe0.55Se0.45 has Tc ∼ 15 K [82], and
Tc is doping dependent in both cases. Hence, the relative sizes
of the two superconducting order parameters, �p and �d ,
might be tunable by changing the temperature and the doping.
In any case, we hope that our findings will motivate fur-
ther experimental efforts to demonstrate the tunability of the
MZMs in mixed-pairing topological SCs by both the parent p-
wave state and an external nonthermal tuning parameter, such
as strain. Our results should also motivate further searches
for material platforms where the proposed scenario can be
relevant.

In closing, we point out that our mechanism may also be
relevant for three-dimensional SCs which can be realized in
doped octupolar (third-order) Dirac insulators, hosting corner
MZMs [68]. This problem is, however, left for future investi-
gation.
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