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Supersolid edge and bulk phases of a dipolar quantum gas in a box
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We investigate the novel density distributions acquired by a dipolar Bose-Einstein condensed gas confined in
a box potential, with special focus on the effects of supersolidity. Different from the case of harmonic trapping,
the ground-state density reveals a strong depletion in the bulk region and an accumulation of atoms near the
walls, well separated from the bulk, as a consequence of the competition between the attractive and the repulsive
nature of the dipolar force. In a quasi-two-dimensional geometry characterized by cylindrical box trapping, we
observe the emergence of a ringlike configuration near the boundary of the box, revealing peculiar supersolid
and crystal effects in a useful range of parameters. In the case of square box trapping, the density oscillations
along the edges, caused by the enhanced accumulation of atoms near the vertices, exhibit interesting analogies
with the case of box-trapped quasi-one-dimensional configurations. For sufficiently large values of the atom
number, the bulk region can also exhibit supersolidity, the resulting geometry reflecting the symmetry of the
confining potential even for large systems.
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I. INTRODUCTION

Bose-Einstein-condensed atomic gases have proved to be
an invaluable tool for the study of the physics of many-
body systems. However, while typical many-body problems
consider translationally invariant systems in the thermody-
namic limit, Bose-Einstein condensates (BECs) are ordinarily
realized in small, inhomogeneous samples confined by har-
monic potentials [1]. Although harmonic trapping allows the
study of relevant properties of these many-body systems (e.g.,
collective excitations [2,3], superfluid properties [4–6], and
quantized vortices [7–9]), other important properties, like
sound propagation or critical behaviors, can be better studied
in uniform systems. For these reasons, Bose-Einstein con-
densation in “box” potentials has been an emerging topic of
research in recent years, leading to the realization of uniform
BECs in gases of alkali atoms and first important mea-
surements in both three-dimensional and two-dimensional
configurations [10–17].

The achievement of BECs of magnetic atoms in harmonic
traps [18–21] opened the way to the study of the very pe-
culiar physics of dipolar BECs, which includes a geometry
dependence of phase diagram stability [22], a rotonized ex-
citation spectrum [23–26], quantum droplets [27–30], and,
more recently, supersolidity [31–36]. Supersolidity in dilute
atomic gases was first experimentally achieved in BEC gases
confined in optical resonators [37] and in spin-orbit-coupled
gases [38]. While most of the theories for supersolidity are
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developed for infinite systems, all the experiments have been
so far conducted in trapped systems.

The natural question that arises is, therefore, how a dipo-
lar gas behaves in a box potential and to what extent its
configurations mimic their thermodynamic counterparts. First
theoretical investigations carried out in the deep superfluid
phase [39] have pointed out the peculiar phenomenon of
accumulation of the density distribution near the boundary
as a consequence of the repulsive behavior of the aligned
dipoles. This effect is strongly reduced in the presence of
transverse harmonic trapping because of the high energetic
cost for dipoles to move away from the center of the trap.
The present work is based on a proper generalization of the
Gross-Pitaevskii equation (GPE) which contains the terms due
to the Lee-Huang-Yang (LHY) correction to the mean-field
equation of state, and it mainly focuses on the new super-
solid features exhibited by the system in the presence of the
box. We find that in quasi-two-dimensional geometries the
accumulation along the border is enhanced in the regimes
where the LHY correction is relevant, creating edges pretty
well separated from the bulk. For a relatively small number
of atoms, the bulk remains in a low-density superfluid phase,
while the edges can show typical supersolid or droplet crystal
structures (see Fig. 1). Increasing the atom density leads to
a supersolid bulk region, while the edges can be found to
be in a high-density superfluid phase (see Fig. 5). Moreover,
the lattice emerging in the bulk has not been in general a
triangular (or honeycomb) pattern, as expected for an infinite
system [40], but its structure is dictated by the shape of the
confining box potential even for relatively large systems.

II. THE MODEL

We start our exploration by considering the case of a
quasi-two-dimensional dipolar BEC, obtained by imposing
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FIG. 1. Ground-state integrated density profiles n(x, y) =∫
dz|�(x, y, z)|2 for a gas of 105 atoms of 164Dy confined in

the polarization direction by a harmonic potential of frequency
ωz = (2π )100 Hz, and by a box potential in the x-y plane, with the
shape of a circle of radius R = 10.185 μm. The value of εdd for
panels (a–c) is, respectively, 1.32, 1.404, and 1.467. The height of
the box is fixed to V0 = 100 h̄ωz

a harmonic confinement only in the polarization direction
(z axis). At zero temperature, the dipolar BEC is described by
a macroscopic wave function �(r, t ), whose square modulus
gives the local density of the system and which obeys to the
so-called extended Gross-Pitaevskii equation (eGPE) [41,42],

ih̄
∂�(r, t )

∂t
=

[
− h̄2∇2

2m
+ Vext (r) + g|�(r, t )|2

+
∫

dr′Vdd (r − r′)|�(r′, t )|2 + γ (εdd )|�(r, t )|3
]
�(r, t ),

(1)

where Vext (r) is the trapping potential, g = 4π h̄2a/m is the
coupling constant fixed by the s-wave scattering length a,
and Vdd (r) = μ0μ

2

4π
1−3 cos2 θ

|r|3 is the dipole-dipole interaction be-
tween two identical magnetic dipoles μ aligned along the z
axis (θ is the angle between r and the z axis). A key dimen-
sionless parameter is εdd , defined as

εdd = μ0μ
2

3g
, (2)

which measures the relative strength of the dipolar and the
contact interaction. Experimentally, the parameter εdd is tuned
by changing the value of the s-wave scattering length a, thanks
to the occurrence of a Feshbach resonance. The last term in the
eGPE equation is the local-density approximation of the LHY
correction to the ground-state energy of the system [41,42],
with

γ (εdd ) = 16ga
3
2

3
√

π
Re

[∫ π

0
dθ sin(θ )[1 + εdd (3 cos2 θ − 1)]

5
2

]
.

(3)
The eGPE Eq. (1) provides a reliable description of the

available experimental phenomenology. In the absence of con-
finement in the transverse direction, this model predicts that
for a certain value of the density and of εdd , a phase transition
between a uniform superfluid and a supersolid occurs. In the
thermodynamic limit, the supersolid lattice is predicted to be
triangular or honeycomb [40]. The occurrence of such a lattice
symmetry has been also predicted for the case of transverse,
radially symmetric, harmonic trapping [32,43]. Very recently,

the possible existence of other exotic configurations in har-
monic traps has been proposed [44,45].

III. CIRCULAR BOX POTENTIAL

We first consider the case where the transverse confinement
in the x-y plane is provided by a circular box, while the
confinement along the polarization direction (z axis) is of a
harmonic nature. The case of a square box in the x-y plane, as
well as the properties of a quasi-one-dimensional box, will be
discussed later. We always fix the height of the box potential
to a value large enough to ensure that the density practically
goes to zero at the border. Similar configurations have been
already experimentally realized to trap alkali atoms [13–15].
In Fig. 1 we show examples of the ground-state density pro-
files [obtained by propagating Eq. (1) in imaginary time]
of N = 105 atoms of 164Dy for different values of εdd . As
already anticipated, most of the atoms accumulate at the edge
of the confining potential, forming a quasi-one-dimensional
ring structure well separated from the atoms in the bulk. For
small values of εdd , both the edge and the bulk remain in
the superfluid phase; while increasing εdd (i.e., increasing the
effect of the dipolar force), the edge region clearly undergoes
a phase transition to a supersolid phase, where the density
peaks near the boundary of the box exhibit a finite overlap,
ensuring global phase coherence. The overlap between the
density peaks disappears for even larger values of εdd , the
system forming a sort of one-dimensional ring crystal.

The emergent edge ring geometry allows us to estimate the
superfluid density in terms of the Leggett variational expres-
sion [46,47]. To this purpose we write the ground-state density
in cylindrical coordinates ρ(r, θ, z), so that the Leggett’s esti-
mate for the superfluid density can be written as

nS

n
= 2π

n

(∫
dθ∫

drdzρ(r, θ, z)

)−1

, (4)

where the integration over the radial coordinate is performed
only in the edge region, identified by the density minima
that appear both at the border of the box (where the density
goes to zero) and at the interface between the edge and the
bulk. In the case of the (extended) GPE, the estimate (4) for
the superfluid density has been verified to coincide with the
result obtained by imposing the twisted boundary condition
to a one-dimensional array of droplets [48]. Remarkably, in
Ref. [49] it has been shown that Leggett’s estimate coincides
with the exact superfluid density also in the case of peculiar
stationary nonground-state solutions (cnoidal wave solution)
which exhibit a periodic density modulation.

The estimate 4, reported in Fig. 2 (blue squares), reveals
a critical dependence on εdd , emphasizing the emergence of
a phase transition between the superfluid and the supersolid
phase at εdd = 1.4 and a transition between the supersolid
and the crystal phase, characterized by the vanishing of nS

[50] at εdd = 1.55. These values are very close to the critical
values calculated for one-dimensional tubular configurations
imposing periodic boundary conditions [24] after taking into
account that in the edge configuration discussed here the
number of atoms occupying the ring increases with εdd , as
shown in the same figure (red circles). While such a num-
ber is practically constant in the superfluid phase (although
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FIG. 2. Estimate of the superfluid fraction of the edge region as
a function of εdd , based on Leggett’s variational formula 4 (blue
squares), applied to the configuration described in Fig. 1. Red circles
represent the ratio between the number of atoms that settle on the
edge and the total number of atoms in the system

with a slight dependence on εdd as a consequence of small
changes in the size of the edge), such an increase is actually
particularly important in the supersolid phase as a conse-
quence of the reduced value of the chemical potential, which
favors the accumulation of dipoles on the density peaks, where
the interatomic dipolar interaction is mainly attractive. We
find here that the transition between the superfluid and the
supersolid edge phase is continuous, as expected for a quasi-
one-dimensional system, being characterized by the absence
of a jump in the superfluid fraction at the critical value of εdd .

The novel configuration emerging in the box of circular
shapes discussed above is particularly attractive because in
this case the boundary does not depend on the azimuthal
coordinate and takes the form of a ring, where the dipolar
particles form a one-dimensional structure, well separated
from the atoms in the bulk. This provides the interesting
possibility of exploring superfluid and supersolid features
in uniform one-dimensional-like configurations with periodic
boundary conditions, yielding an interesting alternative to
the use of toroidal traps, where the nature of the superfluid-
supersolid transition (continuous or discontinuous) depends
crucially also on the transverse confinement [51]. Moreover,
the presence of the low-density superfluid bulk paves the
way to study interaction effects at the interface between a
supersolid edge and a superfluid bulk. For instance, an inter-
esting problem concerns the possibility of identifying stable
modes, like sound waves or solitons, propagating only at the
edge. Moreover, the superfluid-supersolid interface provides
an ideal platform for the study of the so-called ”crystallization
waves,” extensively studied at the liquid-solid interface in
helium-4 [52]. In our case, due to the existence of a supersolid
(not only a solid), one expects a very different behavior and
possibly anomalous effects.

IV. SQUARE BOX POTENTIAL

It is interesting to consider other forms of boxes like, for
example, the most familiar square box. This case was con-
sidered in Ref. [39] in the deep superfluid phase and in the
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FIG. 3. Ground-state integrated density profiles n(x, y) =∫
dz|�(x, y, z)|2 for a gas of 105 atoms of 164Dy confined in

the polarization direction by a harmonic potential of frequency
ωz = (2π )100 Hz and by a box potential in the x-y plane, with the
shape of a square of side L = 16 μ m. The value of εdd for (a)–(c) is,
respectively, 1.32, 1.404, and 1.467. The height of the box is fixed to
V0 = 100 h̄ωz

absence of beyond-mean-field effects. Here we consider also
regimes where the mean-field approach would yield instabil-
ity and the LHY correction allows for the emergence of the
supersolid and crystal phases.

The results for the density profiles in the case of a two-
dimensional square box are reported in Fig. 3 and reveal
the same mechanism of accumulation of the density near the
boundary already discussed in the case of a circular box. A
major difference concerns the behavior of the density profile
along the edge of the box. In fact the vertices of the square
box become points of strong accumulation of dipoles, caus-
ing density modulations along the sides of the square, even
for small values of εdd [see Fig. 3(a)] when the system is
in the superfluid phase, thereby preventing the possibility of
realizing uniform one dimensional superfluid configurations.
The behavior of the density along each edge of the square
configuration actually shares interesting analogies with the
behavior exhibited by a quasi-one-dimensional gas confined
by a box potential.

In order to obtain a deeper insight on this behavior, we
compare the edge configurations in the case of the square box
potential with a quasi-one-dimensional configuration confined
by a box potential in the elongated direction and by a har-
monic trap in the transverse direction. Typical density profiles
for different values of εdd are reported in Figs. 4(a)–4(c),
where we also report the density profiles calculated impos-
ing, instead of a box potential, periodic boundary conditions
at the edges of the simulation cell [panels (d)–(f)] as well
as the corresponding excitation spectra [insets (g) and (h)]
calculated in the uniform phase by solving the Bogoliubov
equations. The latter are obtained by linearizing the time-
dependent eGPE around the ground states (details on the
procedure for dipolar gases described by the eGPE can be
found in Refs. [24,53,54]). The configurations [panels (d)
and (e)] correspond to a superfluid phase, the latter being
characterized by a pronounced roton minimum, precursor of
the instability to a periodically modulated density (supersolid
phase) for larger values of εdd [panel (f)]. In the presence of
the box, atoms accumulate close to the walls even for small
values of εdd [weakly interacting dipolar case; panels (a), (d),
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FIG. 4. Ground-state integrated density profiles n(x) =∫
dydz|�(x, y, z)|2 of N = 4 × 104 atoms of 164Dy in a transverse

harmonic confinement of frequencies ωy = ωz = (2π )100 Hz
confined by a one-dimensional box potential of height V0 = 100 h̄ωz

at positions x = ±12 μ m [(a)–(c)] or with periodic boundary
conditions at x = ±12 μ m [(d)–(f)]. Insets (g) and (h) show the
excitation spectrum calculated by solving the Bogolyubov-de
Gennes equations for the configurations of panels (d) and (e). The
profiles reported in panels (a) and (d) [respectively, (b), (e), and (c),
(f)] are calculated by fixing εdd=1.32 (respectively, 1.39 and 1.46).

and inset (g)] when the excitation spectrum of the uniform
phase does not show a roton minimum.

Due to the long range and anisotropic nature of the dipolar
force, even in this case the density profile deeply differs from
the results holding for a one-dimensional BEC interacting
with a short-range potential. In the latter case the density pro-
file, near a hard wall located at x = 0, is fixed by the healing
length ξ =

√
h̄2/2mgn according to n(x) = n tanh2(x/

√
2ξ )

where n is the bulk density away from the edge of the box
[1]. The concept of healing length is not easily applicable to
the case of a dipolar gas, whose different behavior is due to the
long-range nature of the force, the presence, for large values
of εdd , of rotonic oscillations, and, of course, the emergence
of spontaneous density modulations characterizing the super-
solid and the crystal phases. The emergence of the rotonic
oscillations is reminiscent of a similar effect characterizing
the density profile in the vicinity of a quantized vortex [55].
This effect, originally theoretically investigated for quantized
vortices in superfluid helium, is a direct consequence of the
presence of the roton in the excitation spectrum [56–58]. The
qualitatively similar behavior observed along each edge of the
square box potential shown in Fig. 3 suggests that such edge
configurations host, between two vertices of the confining
potential, localized excitations corresponding to those that
naturally occur in quasi-one-dimensional configurations.

The above discussion reveals that the presence of the
square box makes the identification of the transition between
the superfluid, the supersolid, and the crystal phases of the
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FIG. 5. Ground-state integrated density profiles n(x, y) =∫
dz|�(x, y, z)|2 for a gas of 2 × 106 atoms of 164Dy confined in

the polarization direction by a harmonic potential of frequency
ωz = (2π )100 Hz and by a box potential in the x-y plane with
the shape of a triangle of side L = 58.58 μ m (a), a square of
side L = 45.84 μ m (b), a pentagon of side L = 38.33 μ m (c),
a hexagon of side L = 33.82 μm (d), and a circle of radius
R = 21.75 μ m (e). The value of εdd = 1.36 is the same for all the
configurations, which also have the same area.

dipolar gas on the edge of the box more difficult than in the
case of the circular box.

V. BULK SUPERSOLIDITY

The configurations discussed so far do not reveal the emer-
gence of supersolid effects in the bulk region because of the
small value of the bulk density caused by the accumulation
of dipoles near the boundary. In order to observe bulk su-
persolidity, one consequently needs to increase significantly
the atom density in such a way that the density in the central
region remains large enough to ensure the appearance of a
crystal quantum phase. In Fig. 5, we consider configurations
containing N = 2 × 106 atoms confined by a box potential in
the transverse direction, with the shape of regular polygons
[panels (a)–(d)] or circular [panel (e)], all with the same area
(and hence the same number of atoms per unit surface). For
the same value of εdd = 1.36, these configurations exhibit a
supersolid structure in the bulk, characterized by the typical
overlap between neighboring density peaks, well separated
from the edge region by a density dip. Despite the number
of atoms and system size considered, resulting in a large
number of droplets (� 60), the symmetry of the supersolid
lattice reflects one of the confining potentials, implying that
surface effects hinder the possibility of reaching the thermo-
dynamic limit where the lattice is expected to be triangular
or honeycomb [40]. This can be qualitatively understood as
a consequence of the long-range nature of the dipolar force
and the formation of the edge. In fact, since the dipoles are in
a mainly repulsive configuration, they tend to expand toward
the edge where they acquire a density profile with the same
shape of the confining potential; the droplets that form in
the bulk also tend to repel each other, but their expansion is
stopped by the repulsion of the edge so that they are forced to
arrange in lines parallel to the sides of the edge. This behavior
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(2π )100 Hz, with periodic boundary conditions along the x axis, as
function of the linear density n = N/L, where N is the number of
atoms and L is the length of the simulation cell along x and of εdd .
The blue dots correspond, from bottom to top, to the configurations
of Figs. 4(d)–4(f), while the white empty square corresponds to the
ring edge of the configuration shown in Fig. 5(e) (circular transverse
confinement). The dark area corresponds to configurations in which
the roton mode, calculated starting from a uniform configuration, is
unstable and where spontaneous density modulations of supersolid or
crystal nature are formed. The green, horizontal dashed line is a guide
to the eye showing that, for fixed εdd , starting from a low-density
superfluid, increasing the density results in a phase transition to a
supersolid (and eventually to a droplet crystal), while at even higher
densities, the system turns superfluid again.

is suppressed in a harmonic trap where the expansion of the
gas is energetically unfavorable.

Notice that in our case the emergence of periodic density
modulations in the bulk region is the result of the interatomic
forces, which cause the spontaneous breaking of translational
invariance. This implies, for example, that, different from the
case of a lattice supersolid, the bulk supersolids with exotic
lattice structures described above can propagate sound via
lattice phonons.

It is worth noticing that the supersolid and crystal struc-
tures at the edge of the boundary, which are well visible in
the configurations of Figs. 1 and 3(b) and 3(c), have dis-
appeared in Fig. 5 as a consequence of the high density
acquired by the system near the boundary, caused by the
large value of N . This behavior reminds us once again the
case of a quasi-one-dimensional configuration characterized
by transverse harmonic confinement and periodic boundary
conditions along the elongated direction. In this case, the
value of the roton energy depends in a nonmonotonic way on
both the linear density n = N/L, where N is the total number
of atoms and L is the length of the simulation cell and εdd [51].
For a fixed external trapping in the y-z plane, the stability re-
gion of the roton in fact acquires a characteristic, asymmetric,
and inverse-bell shape, as shown in Fig. 6 (see also Ref. [51]).
This implies that, for a fixed value of εdd , increasing the
density starting from small values, the system first enters the
instability region of the roton mode [black region of Fig. 6(b)],

to come back to the stable region, characterized again by the
occurrence of a roton with a finite excitation energy, at larger
values of the density. The coexistence of a supersolid bulk and
a superfluid edge open another interesting possibility of ex-
ploring the physics of a superfluid-supersolid interface. This
effect can also be observed with a smaller number of atoms
by confining the atoms in properly designed box potentials
of smaller dimension. In fact, such density, although rela-
tively high (� 1015 cm−3 for the edge configurations shown in
Fig. 5), is still compatible with the usual stability conditions
imposed by three-body recombination, suggesting the possi-
bility of observing this effect in actual experiments.

We have finally checked that the results presented in this
work do not qualitatively change for different choices of the
parameters. In particular we have considered different values
of the confinement frequency in the polarization direction
in the interval (2π )50 Hz < ωz < (2π )150 Hz and of system
size and number of atoms. The actual choice of ωz can,
however, affect the value of the density in the central region,
the critical value of εdd for the superfluid-supersolid phase
transition, as well as the number of droplets which form in
the supersolid phase, their relative distance being sensitive to
the value of ωz [23].

Finally, we have checked that by properly tuning the inter-
action parameters and number of atoms, it is possible to obtain
also other bulk-edge interfaces beside the more interesting
hybrid superfluid-supersolid one. For example, for a fixed
number of atoms, in the configurations of Fig. 5, reducing εdd

below a certain critical value results in a superfluid-superfluid
interface, while increasing it above another critical value re-
sults in a configuration where both the bulk and the edge
spontaneously develop a periodic density modulation.

In conclusion, we have investigated the ground-state con-
figurations of a dipolar Bose-Einstein condensed gas confined
by a box potential. We have shown that the tendency of the
density to accumulate near the walls, as a consequence of
the repulsion between aligned dipoles, favors the formation
of novel quasi-one-dimensional configurations located at the
edge of the box and well separated from the atoms filling the
bulk region. In the case of quasi-two-dimensional boxes of
circular shape, the edge configuration takes the characteristic
form of a ring, revealing clear supersolid and crystal effects
in a useful range of parameters. We have also shown that
the geometry of the supersolid in the bulk region reflects the
shape of the confining potential even for very large systems,
therefore hindering the possibility of reaching the thermody-
namic limit of dipolar BECs using box potentials. A natural
extension of this work concerns the study of the nonequilib-
rium behavior exhibited by dipolar gases in the novel ring
configuration formed at the edge of the circular box.
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