
PHYSICAL REVIEW RESEARCH 4, 013085 (2022)

Bulk properties of honeycomb lattices of superconducting microwave resonators
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We have designed different honeycomb lattices for microwave photons in the 4 to 8 GHz band using
superconducting spiral resonators. Each lattice comprises a few hundred sites. Two designs have been studied,
one leading to two bands touching at the Dirac points and one where a gap opens at the Dirac points. Using
a scanning laser technique to image the eigenmodes of these photonic lattices, we are able to reconstruct their
band structure. The measured bands are in excellent agreement with ab initio models that combine numerical
simulations of the electromagnetic properties of the spiral resonator and analytical calculations.
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I. INTRODUCTION

Superconducting photonic lattices for microwave photons
hold the promise to simulate the behavior of strongly inter-
acting bosons in tailored 1D and 2D lattices [1–3]. In such
systems, microwave photons with a typical frequency of a
few GHz are stored in arrays of coupled superconducting
resonators with a high-quality factor. The main interest of this
platform is the possibility to reach the strongly interacting
regime using Josephson junctions as a nonlinear element. But,
Josephson junctions are prone to disorder, and the realization
of large disorder free nonlinear lattices remains a difficult task.
Nevertheless, many-body effects have already been demon-
strated in small uni-dimensional lattices [4–8].

Independently of controlling the interactions in the lattice,
experimental techniques must be developed to probe the prop-
erties of such large microwave circuits. In order to test these
techniques, it seems reasonable to first characterize lattices in
the linear regime and to quantitatively understand their prop-
erties [9,10]. This research direction, towards the realization
of engineered band structures for photons, catches up with
the rapidly growing field of photonic lattices and topological
photonics [11–13]. In comparison to other photonic systems,
the cryogenic environment and the low energy of the photons
bring some technical difficulties.

In this paper, we use a laser scanning imaging technique
in order to map the spatial distribution of the resonant modes
that appear in lattices with a few hundred sites, where each
site is a superconducting spiral resonator. This technique is
similar to the laser scanning microscopy developed to ob-
serve the current density in superconductor films [14] and has
already been used to characterize a single superconducting
resonator [15,16] or coupled resonators [17]. It is an alter-
native to the probe scanning technique developed in [9]. We
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apply this imaging method to three honeycomb lattices with
different designs, where the A and B sites in the unit cell
correspond to either identical or different resonators. From a
Fourier analysis of the spatial distribution of the modes, we
reconstruct the dispersion relation of the lattice bands. In the
case where the A and B sites are identical, we observe two
bands touching at the Dirac point, while in the other case, a
gap opens at the Dirac points. These properties of the bands
are similar to the ones for electrons in graphene and h-BN
respectively. In order to understand our lattices and pinpoint
the common features as well as the differences with electronic
systems, we have developed two theoretical approaches to
predict the properties of the lattice. The first approach con-
sists in projecting the Maxwell equations on the basis of the
resonator modes, which corresponds to a coupled mode theory
(CMT), a technique widely used in photonics [18]. The band
structure of the lattice is then obtained in terms of overlap
integrals between the electric and magnetic fields of neighbor-
ing resonators. The second approach relies on more intensive
numerical simulations to obtain an equivalent lumped element
circuit to the lattice, from which the band structure can be cal-
culated. These two ab initio approaches allow us to reproduce
the measured band structures with good accuracy.

The paper is organized as follows. In the first part, we
present the properties of the spiral resonator that is used as
the site of the different lattices. In the second part, we present
the measurement of the band structure of the different lattice
designs. And the last part details the two models that we
have developed to predict the band and mode structures of the
lattices.

II. SPIRAL RESONATOR PROPERTIES

The three different lattices studied in this paper are honey-
comb lattices, where each site consists of a superconducting
spiral resonator as shown in Fig. 1. The spiral is made of a
4.3-μm wide Nb wire that is winded in an hexagonal pattern
with an overall size of 300 μm. The lattices are patterned
through photo-lithography and reactive ion etching starting
from a ∼300−nm thick sputtered Nb layer on top of a silicon
wafer. The design of the spiral is adjusted through numerical
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(a)

(b)

(c)

FIG. 1. [(a),(b)] Design of the two spirals used as the sites of our
honeycomb lattices. The spiral shown in (a) consists of a 8.6 mm
long wire with a width of 4.3 μm and a gap between adjacent turns
of 8.6 μm. The length of the (b) spiral is shorter resulting in a
slightly higher resonance frequency. (c) Self-admittance of the two
spirals calculated for a port located at the inner end of the wire
with the Sonnet software [19]. The resonances correspond to the
zero crossings. The inset shows a zoom close to the fundamental
resonance around 6 GHz, the spacing between the two resonances
is 120 MHz.

simulations with the Sonnet software [19], such that the res-
onance frequency ω0 of the fundamental mode is close to
2 π × 6 GHz. This frequency can be finely tuned by adjusting
the length of the wire at the center of the spiral. For the
experiments shown in this paper, we use the two designs
shown in Figs. 1(a) and 1(b) that are chosen to obtain two
sites with slightly different ω0 spaced by 2 π × 120 MHz.
The Fig. 1(c) shows the simulated self-admittance of the two
designs, from which we deduce ω0 as well as the resonance
frequencies of the higher order modes. The second mode is
expected to resonate around 14 GHz and plays no role in
the experiments presented here, where all measurements are
performed between 5 and 7 GHz.

When two spirals are approached at a distance d as shown
in Fig. 2, the fundamental modes couple, giving rise to two
resonances at frequencies ω− and ω+. If the coupling is not
too strong, the coupled modes can be expressed as a linear
combination of the uncoupled modes. This approach that con-
sists in using a reduced set of well chosen modes as a basis
is known as the coupled mode theory (CMT) [20–22]. Here,
we use a basic CMT with only one mode per resonator. The
Maxwell equations projected in this basis lead to a linear
system, whose eigenvalues correspond to the resonance fre-
quencies ω− and ω+. If the two resonators are identical with
equal ω0, one obtains:

ω± =
√

1 ± κe

1 ± κm
ω0, (1)

where κe (κm) is the electric (magnetic) coupling constant.
These coupling constants are proportional to the overlap of
the electric (magnetic) fields of the two resonators. We define

Di j =
∫

ε(r) Ei(r) · E j (r)d3r, (2)

Gi j =
∫

μ0 Hi(r) · H j (r)d3r, (3)

(a) (b)

FIG. 2. Coupling between two spiral resonators as shown in
Fig. 1(a). (a) Electric and magnetic coupling constants (see main
text) as a function of d . (b) Resonance frequencies ω+ and ω− of
the two coupled resonators as a function of d . Red dots correspond
to the result of a numerical simulation that computes the admittance
matrix of the two coupled resonators using. The coupled mode theory
prediction only uses the simulation of the electric and magnetic field
created by a single resonator. It fails at short distances, where the
resonator field is perturbed by the presence of the other resonator.

where Ei (Hi) is the electric (magnetic) field of the mode asso-
ciated with the i = 1, 2 resonator. We assume these functions
to be real and explain in Appendix A how we compute the
overlap integrals from the charge and current distribution in
the spiral that is obtained from the numerical simulation of
a single resonator. In particular, one has to take into account
charge and current images due to the dielectric interface at
the surface of the sample and to the metallic ground plane
below the sample. The coupling constants are then given
by κe = D12/D11 and κm = G12/G11. Figure 2(a) shows the
evolution of κe and κm as a function of d for two spirals
shown in Fig. 1(a). Because κe > 0 and κm < 0, the magnetic
and the electric couplings add up to increase the mode split-
ting, while the mean frequency (ω+ − ω−)/2 remains close
to ω0. At large distances (d > 100 µm), the magnetic cou-
pling dominates, while at short distances both couplings are
important.

We compare the CMT predictions to a full numerical sim-
ulation of the two coupled resonators. From the simulation,
we obtain the 2 × 2 admittance matrix Y (ω), which corre-
sponds to the admittance matrix for two ports located at the
inner ends of each spiral. The two resonances ω+ and ω− are
then obtained as the zeros of det Y (ω). The CMT predictions
coincide with the ones of the full numerical simulation at
large distances (d > 20 µm) but fails at short distances as
shown in Fig. 2(b). This is because, at short distances, the
coupling is too strong and the coupled modes are not linear
superposition of the uncoupled modes. In the following, we
show results for lattices where d = 5 µm or d = 30 µm. We
therefore expect lattices with d = 30 µm to be well described
by the CMT method, while lattices with d = 5 µm will require
a more advanced model including the simulation of coupled
sites. The half splitting (ω+ − ω−)/2 obtained from the ad-
mittance matrix method is 2 π × 200MHz for d = 5 µm and
2 π × 120 MHz for d = 30 µm. These values give an estimate
of the nearest-neighbor coupling amplitude in a tight-binding
description of the lattice.
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FIG. 3. Design of the three different honeycomb lattices studied in this article. Colored regions correspond to metal and white regions to
the bare silicon. In the G design, all the sites are identical, while in the SI and SII designs, the A and B sites of the lattice correspond to two
different resonators. The resonators correspond to the ones shown in Fig. 1 with the same coloring. Four coplanar waveguides, labeled 1 to 4,
are connected to single sites located at the edges of the lattice to probe the sample.

III. LATTICE DESIGNS AND MEASUREMENTS

Honeycomb lattices consisting of a few hundred spiral
resonators are micro-fabricated on a 20 × 10 mm2 sample,
which is then mounted on the Still (1 K) stage of a dry
dilution fridge. Three designs of honeycomb lattice labeled
G, SI, and SII, (see Fig. 3) have been characterized. The
distance between two site is denoted by a. The G design
corresponds to the situation where all sites are identical, as in
graphene, and are occupied by the spiral shown in Fig. 1(a).
The other two designs, SI and SII, correspond to the more
general situation where the two nonequivalent A and B sites of
the honeycomb lattice are occupied by the two different spirals
shown in Figs. 1(a) and 1(b). Because, to first approximation,
the sites only differ by their on-site frequency, the SI and SII
designs realize a so-called Semenoff insulator [23]. In the
graphene case, the expected band structure consists of two
bands touching at the two Dirac points, while in the Semenoff
case a gap opens at the Dirac points. The value of the gap is
given by the difference between the resonance frequencies of
the A and B sites. In the two Semenoff designs, a horizontal
boundary divides the sample in two halves: The A (B) sites
in the lower half are occupied by the resonators that occupy
the B (A) sites in the upper half. The two halves correspond
to the same infinite lattice and therefore have the same bulk
properties. The role of this boundary is to create valley Hall
boundary states as discussed in [24].

A. Transmission and density of states

We probe the transmission through the lattice using four
microwave ports that are connected to four coplanar waveg-
uides. Each waveguide is coupled to a single site located on
one edge of the lattice (see Fig. 3). We first characterize the
bulk properties of the lattice by estimating the density of states
(DOS) that we deduce from transmission measurements. Fig-
ure 4 shows a typical transmission spectrum obtained through
a lattice of type SII. The lattice modes are visible as sharp

resonant peaks. Depending on the sample, we identify be-
tween 43% (G design) and 80% (SI design) of the expected

(a)

(b) (c) (d)

FIG. 4. (a) Transmission |S41|2 of the SI sample. The microwave
setup used is detailed in Fig. S1 of the Supplemental Material [28].
The lattice modes appear as sharp resonant peaks. The transmission
on resonance is below one indicating that the modes are under cou-
pled: intrinsic loss dominate the coupling loss to the measurement
waveguides. [(b),(c),(d)] The blue data show the estimated DOS from
transmission spectra similar as the one shown in a for the three
samples G, SI, and SII, respectively. The data are compared to the
predictions of the two ab initio models detailed in Sec. IV. The
discrepancy with our data is due to the fact that we miss some peaks
and underestimate the DOS.
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resonances. This number is limited by our signal to noise
ratio and by the finite width of the peaks. Peaks that are too
weakly coupled to the measurement ports are not identified as
resonances and peaks too close in frequency are counted as a
single peak. By counting the number of peaks in a frequency
window of 15 MHz for the design G and 10 MHz for the
design SI and SII, we can estimate the DOS as shown in Fig. 4.
As expected, we observe two bands for all three samples, with
a clear gap for the SI and SII samples. We can also identify the
two van Hove singularities corresponding to the two maxima
in the DOS of each band.

The two ab initio models to which we compare our data
in the Fig. 4 are detailed in Sec. IV. The only adjustable
parameter in the models is a global frequency offset. The
frequencies of the remarkable points observed in the DOS
(band minima, maxima and Dirac point) are well reproduced,
but the measured DOS is not in quantitative agreement with
the model predictions because a significant fraction of the
modes is missing from the data.

B. Mode imaging and dispersion relation

In order to further characterize the lattice, we use a laser
scanning technique to map the spatial variation of the modes
identified in the transmission spectra. The measurement con-
sists in monitoring the transmission of one (or many) mode
while scanning a laser spot across the lattice. The optical setup
(see Fig. 5) is designed to obtain a laser waist on the sample
of 60 µm, which is much larger than the size of the spiral
wire width and spacing, but smaller than the overall resonator
size. This allows us to average the mode distribution over each
site, while keeping sufficient resolution to resolve adjacent
sites. We observe that the main effect of the laser is to induce
dissipation on the illuminated site as observed in [15,25].
Because the modes are undercoupled to the probe ports, the
loss increase induced by the laser results in a decrease of the
mode transmission. To first order, the transmission drop for
a given mode is proportional to the mode squared amplitude
averaged over the illuminated area. In order to get rid of slow
drifts and improve the signal to noise ratio, the laser intensity
is modulated at a few kHz. We then digitally demodulate
the transmitted signal measured with a VNA and record the
amplitude of the in phase signal as a function of the laser
position.

Figure 5(d) shows a fine scan of one lattice site, which
appears as a blurred hexagon with a central dip. This is consis-
tent with the fact that the laser induced loss is maximal where
the current density is large [25] as shown by the simulation in
Fig. 5(e). We attribute a single value for the mode intensity
per site by averaging over a few measurement points well
inside the hexagon surrounding one site. We have checked
that the final result is insensitive to the details of the averaging
procedure. In order to optimize the acquisition time, different
scanning techniques have been tested, continuous or raster.
We obtain best results with a raster scan consisting of six mea-
surement points per site, while we monitor the transmission
change of all the peaks in a frequency window of about 1 GHz.
This method allows us to image tens of modes in a single scan
through the lattice.

(a)

(c)

(d) (e)

(b)

FIG. 5. [(a),(b),(c)] Laser scanning setup for mode imaging. A
collimated laser beam is mounted on a motorized mirror mount
outside the dry refrigerator (a). The beam is relayed by two lenses
to pass through openings in the 50 K and the 4 K shields (b). A
final lens focuses the beam onto the sample that is clamped on the
1 K stage (c). The tilt motion of the outer mirror mount results
in a translation of the focused laser spot on the sample. [(d),(e)]
Image of a single resonator in the lattice. The image in (d) shows
the measured transmission of one resonant peak as a function of the
laser position. The scanned area is centered around one site of the
lattice. (e) The resulting image is well reproduced by the convolution
of the simulated current intensity in the spiral with a Gaussian having
a waist of 60 μm, as expected from the design of the optical setup.

Figures 6 and 7 show the results of the mode imaging
technique applied to modes of the G, SI, and SII samples.
In order to attribute a wave vector to each measured mode,
we first use a sign reconstruction technique to deduce the
signed mode amplitude from the measured intensity. The sign
reconstruction is based on the assumption that the mode is
a linear combination of M known basis modes. As a basis,
we take the modes of a lattice having the same geometry as
the sample and assume a tight-binding model with nearest-
neighbor coupling only. We then look for the combination
that matches best the measured mode intensity and use its
sign to attribute a sign to the data. We have checked that
the results are independent of M when M � 3. Details of
the method are given in Appendix B. In a second step, the
Fourier transform of the reconstructed signed mode amplitude
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FIG. 6. Measured mode spatial dependence for the G sample. The black and white images show the raw data corresponding to the measured
transmission change at the frequency of the mode indicated above each image. The grey scale is proportional to the mode intensity: white region
correspond to large mode weight whereas dark region correspond to small mode weight. The corresponding red and blue image shows the
reconstructed signed mode amplitude (see main text and Appendix B). Dark blue (red) indicates a large negative (positive) amplitude.

is calculated. In the reciprocal space, several peaks lying on a
circle are observed. This allows us to attribute a single value
k, corresponding to the norm of a wave vector, to each mode.
Figure 8 shows the dispersion relation ω(k) that we obtain
through this analysis for the G and SI samples. It corresponds
to the radial projection of the 2D band structure. The measured
dispersion for the SII sample is almost identical to the one
of the SI sample and is not shown here. We recover the two
asymmetric bands observed in the DOS estimation. The mode
dispersion is quadratic at small |k| leading to an effective
mass for the photons in the lattice. At larger k, the dispersion
relation clearly deviates from a quadratic behavior. For the G
sample, we expect a linear dispersion around the Dirac points,

but we are not able to image sufficiently many modes in this
region to clearly reproduce this behavior. This is due to the
finite size of the sample and also to the radial averaging over
the direction of the wave vector. For the SI sample, we observe
that the two bands curve in the opposite direction close to the
Dirac points.

IV. LATTICE MODELS

In comparison to the DOS, the measured dispersion shown
in Fig. 8 is less affected by the fact that we are not able to
probe all the modes. It allows us to precisely compare our
data with two ab initio models. Following the analysis of the
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FIG. 7. Measured mode spatial dependence for the SI and SII samples. Here, we only show the reconstructed signed mode amplitudes (see
Fig. 6). The frequency of the mode is indicated above each image.

coupling of two spiral resonators, we extend the CMT and the
admittance matrix model to the case of an infinite lattice. The
two models have no free parameters and differ in the following
way: the CMT model solely relies on the simulation of the
charge and current distribution of a single spiral at resonance,
while the admittance matrix model simulates the admittance
matrix of a cluster of a few coupled sites. As explained in
Sec. II, the CMT model gives a clear physical picture of the
coupling in the lattice in terms of overlap integrals between
the different sites but fails when the coupling is too strong.
As a consequence, the band structure of the SI or SII lattice
is well predicted by the CMT but observe a discrepancy for
the G lattice, which is more pronounced for the lower band.
The Y matrix calculation gives a more exact description of the
lattice at any coupling but requires a more intensive numerical
computation. In both models, we consider the coupling be-
tween one site and its nearest neighbours, up to the 3rd-nearest
neighbours as shown in Fig. 9.

A. Coupled mode theory

We follow the derivation of [22] and adapt it to the specific
case of coupled superconducting resonators. We only consider
one mode per resonator and look for a solution to the Maxwell
equations at a frequency ω as

E(r, t ) =
∑

i

ai(t )Ei(r),

H(r, t ) =
∑

i

bi(t )Hi(r),

where Ei(r) [Hi(r)] is the electric [magnetic] field of the mode
associated to the resonator at site i. The two fields satisfy:

∇ × Ei = μ0ωiHi,

∇ × Hi = ε0ωiEi + Ji,

where ωi is the resonance frequency of the mode at site i and
Ji the associated current density. In addition to the overlap
integrals defined in Eq. (3), we consider the integral

Mi j =
∫

S
[Ei(r) × H j (r)] · dS,

where the surface S corresponds to all the metallic boundaries
in the circuit, which consists of the resonators and the walls of
the box enclosing the sample. This integral can be rewritten in
terms of the overlap integrals Di j and Gi j assuming that

Mi j ≈
∫

Si∪S j

[Ei(r) × H j (r)] · dS,

where Si is the surface of the resonator at site i. The integral
over Si is null because Ei(r) is normal to the surface of the
resonator. Using that the current density in the resonator at
site j is given by J j (r) = n × H j (r), where n is the normal to
the resonator surface, we obtain

Mi j ≈
∫

Ei(r) · J j (r) d3r.

Using this approximation and considering the volume integral
of ∇ · (Ei × H j ), one obtains

2Mi j = ωiGi j − ω jDi j .
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FIG. 8. Band structure of the G and SI samples. For a given
resonance frequency, the corresponding norm k of the wave vector
associated to the mode is obtained from the Fourier analysis of
the measured spatial dependence as shown in Figs. 6 and 7. The
measured dispersion relation is compared to the predictions of the
two ab initio models detailed in Sec. IV. The theoretical predictions
are plotted as shaded areas, because, for a given k, the models predict
different resonance frequencies depending on the orientation of the
wave vector.

FIG. 9. We choose the primitive vectors of the lattice a1 and a2

as shown in the bottom-left corner. The different circles indicate the
1st, 2nd, and 3rd neighbor sites that we include in the calculation of
the overlap of the electric and magnetic fields in the CMT model, or
in the computation of the admittance matrix of the equivalent circuit
describing the lattice.

In matrix form, the last equation writes

2M = �G − D�, (4)

where � is the diagonal matrix with elements �ii = ωi. In the
same way, the volume integrals of ∇ · (Hi × E) and ∇ · (Ei ×
H) lead to the following two equations

Gḃ = −�Da, (5)

2Mb = �Gb − ωDȧ. (6)

Using the approximation from Eq. (4) for M and eliminating
b, we look for periodic solutions at frequency ω and obtain the
following eigenvalue problem

ω2a = �G−1�Da. (7)

In the case of two resonators only, we recover the result
given in Eq. (1). The matrices G, �, and D are real symmet-
ric matrices, but, in general, �G−1�D is not symmetric. Its
eigenvalues are real and positive with, in general, nonorthog-
onal eigenvectors.

Equation (7) can be used to find the coupled mode frequen-
cies of any ensemble of coupled resonators. In order to take
advantage of the lattice periodicity, we relabel the ai and bi

amplitudes in a given lattice cell as aμ(R) and bμ(R), where
R is the Bravais lattice vector identifying the position of the
cell in the lattice and the μ index distinguishes the A from
the B sites. Using the same notation, we define the following
overlap integrals between two sites spaced by R in the lattice

〈EμEν〉R =
∫

ε(r) Eμ(r) · Eν (r − R) d3r,

〈HμHν〉R =
∫

μ0 Hμ(r) · Hν (r − R) d3r.

We now look for periodic solutions over the lattice as

aμ(R) = eik·Raμ(k) bμ(R) = eik·Rbμ(k),

and define the Fourier transform of the D and G overlap
matrices

Dμν (k) =
∑

R

eik·R〈EμEν〉R, (8)

Gμν (k) =
∑

R

eik·R〈HμHν〉R. (9)

We suppose that the lattice contains N cells and we look
for solutions with periodic boundary conditions such that∑

R eik·R = Nδk,0, where k can take N values in the first
Brillouin zone. Equations (5) and (6) then lead to

�G−1(k)�D(k)a(k) = ω2(k)a(k), (10)

where � is now the 2 × 2 diagonal matrix with the resonance
frequencies of the A and B sites. The resulting eigenvalue
problem in Eq. (10) gives the dispersion of the two bands as
a function of k. We compute the band structure by including
all couplings up to the third-neighbor coupling (see Fig. 9) in
Eqs. (8) and (9). The results are shown in Fig. 8.

In order to compare the photonic band structure with the
one of a tight-binding model with the same range of coupling,
we consider the case of the G lattice where the A and B sites
have the same resonance frequency. In order to obtain a simple
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analytical formula, we neglect the dependence of the overlap
integrals with the direction of separation, e.g., we suppose that
〈EBEA〉0 = 〈EBEA〉a1 = 〈EBEA〉a2 . With this approximation,
a straightforward calculation gives that D(k) and G(k) are
diagonal in the same basis, leading to the following dispersion
relation ω±(k):

ω±(k) =
√√√√1 + κ

(2)
e f2(k) ± ∣∣κ (1)

e f1(k) + κ
(3)
e f3(k)

∣∣
1 + κ

(2)
m f2(k) ± ∣∣κ (1)

m f1(k) + κ
(3)
m f3(k)

∣∣ ω0,

(11)
where the electric coupling constants are given by

κ (1)
e = 〈EAEB〉0/〈EAEA〉0,

κ (2)
e = 〈EAEA〉a1/〈EAEA〉0,

κ (3)
e = 〈EAEA〉a1+a2/〈EAEA〉0.

The magnetic couplings κ (i)
m are given by the same expressions

in terms of magnetic field overlaps and the link functions fi(k)
correspond to

f1(k) = 1 + eik·a1 + eik·a2 ,

f2(k) = 2[ cos k · a1 + cos k · a2 + cos k · (a1 − a2) ],

f3(k) = eik·(a1+a2 ) + 2 cos k · (a1 − a2).

Expression (11) can be compared to the tight-binding disper-
sion relation

ωTB
± (k) = ω0 + t2 f2(k) ± |t1 f1(k) + t3 f3(k)|, (12)

which comes from the diagonalization of the tight-binding
Hamiltonian

HTB(k) =
(

ω0 + t2 f2(k) t1 f1(k) + t3 f3(k)

t1 f ∗
1 (k) + t3 f ∗

3 (k) ω0 + t2 f2(k)

)
.

The coupling ti corresponds to the ith nearest-neighbor
coupling. The dispersion relation equations (11) and (12)
match if one keeps only nearest-neighbor terms, performs
a first-order expansion in κ (1)

e and κ (1)
m and identifies t1 to

ω0(κe,1 − κm,1)/2. Including 2nd and 3rd nearest-neighbor
overlap integrals lead to a dispersion relation that cannot be
identified to its tight-binding counterpart with the same cou-
pling range.

As mentioned in the introduction, a strong motivation
to build lattices of superconducting resonators is to include
nonlinear elements in the lattice. For example, in the case
considered here, one could design spirals with an empty area
in the center, where a transmon might be inserted and cou-
pled each site. In this context, it is interesting to obtain the
Hamiltonian that describes the linear behavior of the lattice as
a starting point to write the non-linear Hamiltonian. Using the
CMT approach, we obtained the two equations of motion

ȧ = �b, Gḃ = −�Da.

And the total energy in the system is given by

H = 1
2 aT D a + 1

2 bT G b.

In order to identify a and b with the two quadratures of the
resonator modes, we normalize the basis fields to

Dii = Gii = h̄ωi.

With this definition, and in the absence of coupling between
the resonators (G = D = h̄�), the equations of motion coin-
cide with the Hamilton equations derived from H assuming
standard commutation rules between the mode quadratures,
[am, an] = 0, [bm, bn] = 0 and [am, bn] = ih̄δmn. In the fol-
lowing, we drop the h̄ factors and set h̄ = 1. When the overlap
between adjacent sites are nonzero, the equations of motion
do not coincide anymore with the naive Hamilton equations
obtained by considering that the a’s and b’s are conjugate vari-
ables. This comes from the fact that the basis used to project
the Maxwell equations is not orthonormal, which modifies the
commutation relations. This problem is well known in the cal-
culation of electronic band structure using the LCAO method.
In order to find an orthonormal basis, we adapt the Löwdin
procedure used for electrons [26]. We first apply the canonical
transformation a → �1/2a and b → �−1/2b to remove the �

dependence in the equation of motion, which transforms the
Hamiltonian to

H = 1
2 aT D̃ a + 1

2 bT G̃ b,

with D̃ = �1/2D�1/2 and G̃ = �−1/2G�−1/2. The equations
of motion become ȧ = b and Gḃ = −Da. We now apply the
Löwdin transformation a → G̃−1/2a and b → G̃−1/2b in order
to restore standard commutation relations. The Hamiltonian
becomes

H = 1
2 aT G̃−1/2D̃G̃−1/2 a + 1

2 bT b.

The equations of motion are modified to ȧ = b and ḃ =
−G̃−1/2D̃G̃−1/2a, which now correspond to the standard
Hamilton equations. We finally apply the canonical transfor-
mation a → �−1/2a and b → �1/2b, which reverses the effect
of the first transformation in order to explicitly restore the �

dependence. The final Hamiltonian is

H = 1
2 aT �−1/2G̃−1/2D̃G̃−1/2�−1/2 a + 1

2 bT � b.

We can now introduce the bosonic operators c = (a +
ib)/

√
2, which fulfill [cm, cn] = 0 and [cm, c†

n] = δmn. The
Hamiltonian H can be rewritten as

H = 1
2 (c†�c + c�c†) + 1

2 (c + c†)T J (c + c†), (13)

with 2J = �−1/2G̃−1/2D̃G̃−1/2�−1/2 − �. A rotating wave
approximation (RWA) can then be performed to transform
the last term to cT (J/2)c† + H.c. By construction, the normal
mode frequencies of the Hamiltonian Eq. (13) are the identical
to the ones obtained with the CMT. The RWA introduces a
negligible error, on the order of 0.1% for the SI or SII lattice.

In order to compute the matrix J for an infinite lattice, we
start from the expressions of D(k) and G(k) in the Fourier
space defined in Eqs. (8) and (9). The expression of J between
two lattice cells separated by a vector R is then given by

J (R) = − �

2
δR,0 + 1

2Ns

×
∑

k

e−ik·R �−1/2G̃(k)−1/2D̃(k)G̃(k)−1/2�−1/2,

(14)

where the D̃(k) and G̃(k) matrices are defined as

G̃ = �−1/2G(k)�−1/2,

D̃ = �1/2D(k)�1/2.

013085-8



BULK PROPERTIES OF HONEYCOMB LATTICES OF … PHYSICAL REVIEW RESEARCH 4, 013085 (2022)

The values of J (R) for the SI and SII samples are given
in the Appendix C. We obtain an average nearest-neighbour
coupling of 2π × 124 MHz and a, next nearest-neighbour
coupling of 2π × 18 MHz. Keeping only the NN coupling
in the computation of D(k) and G(k), we obtain a small,
2π × 4 MHz, but nonzero value as a result of the Löwdin
transform.

B. Admittance matrix

In order to model more accurately the G lattice, we extend
the admittance matrix method introduced in Sec. II to an
infinite lattice of resonators. We model the lattice by defining
M � 1 microwave ports inside each resonator, and introduce
the set of N complex vectors V (R), each with 2M compo-
nents, which correspond to the voltages at the 2M ports in
the lattice cell at position R. At a given frequency ω, the
Kirchhoff’s circuit laws describing the lattice can be written

∑
R

YR(ω)V (R) = 0,

where the sum over R is over the points of the Bravais lat-
tice. The matrix Y0(ω) corresponds to the admittance matrix
between the ports belonging to the same cell, while YR(ω) is
the admittance matrix between the ports in two cells separated
by R. The admittance matrices satisfy Y−R(ω) = Y T

R (ω). We
look for a periodic solution V (R) = V (k)eikR and obtain

∑
R

YR(ω)eikRV (k) = 0, (15)

where V (k) is a 2M element vector. The dispersion relation is
then obtained by numerically solving

det

(∑
R

YR(ω)eikR

)
= 0, (16)

for ω at a given k. The YR(ω) matrix is obtained from the
numerical simulation of a small lattice flake. The CMT calcu-
lations indicate that one should simulate a flake with enough
sites such that the central site is surrounded by at least its 3rd
nearest neighbours. We therefore choose the geometry shown
in Fig. 10(b) with 16 sites. In order for the sum over R to
converge rapidly, when the distance between sites increases,
the number of ports M and their location on the spiral must be
well chosen. We observe that M = 1 is not sufficient, while
results obtained for M > 2 and various port locations give
the same results. The results of the final simulations shown
in Fig. 8 are obtained with M = 3 ports located as shown in
Fig. 10(a).

Compared to the CMT model, the admittance matrix is nu-
merically more demanding because it requires the simulation
of a much larger number of sites. The dispersion obtained
for the SI and SII lattice confirms the prediction of the CMT
model, which were already in good agreement with our ex-
perimental data. For the G lattice, we observe a deviation
compared to the CMT model and a better agreement with the
measured dispersion.

(a) (b)

FIG. 10. (a) Location of the ports used to simulate the admittance
matrix describing the lattice. We use the Sonnet software in order to
obtain the admittance between all the ports of the small lattice shown
in b). The lattice flake is chosen so that the admittance between one
of the central site and its 1st, 2nd, and 3rd nearest neighbours can be
extracted from the simulation.

V. CONCLUSION

In conclusion, we have shown that a laser scanning tech-
nique may be used to image the modes that appear in relatively
large lattices of superconducting resonators. Here, the tech-
nique was applied to niobium resonators at a temperature
around 1 K, but we believe that the same method could be ex-
tended to characterize lattices or networks of superconducting
resonators at lower temperatures that may include Josephson
junctions. The mode images allowed us to reconstruct the
radial projection of the dispersion relation in the lattice. The
two different models that we present accurately reproduce the
measured dispersion. In particular, we show how to obtain a
tight-binding description from the knowledge of the electric
and magnetic couplings between the lattice sites. Such models
and their experimental validation are one of the prerequisite to
the simulation of interacting lattices in circuit QED systems.
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APPENDIX A: OVERLAP INTEGRALS

The overlap integral of the electric fields associated to the i
and j sites, as defined in Eq. (2), can be rewritten in terms
of the charge distribution ρi of the i site and the electric
potential φ j of the j site [27]. Similarly, the overlap between
the magnetic fields in Eq. (3) can be rewritten in terms of the
current distribution ji and vector potential A j . One obtains

EE =
∫

ε(r) Ei(r) · E j (r) d3r =
∫

ρi(r)φ j (r) d3r

EH =
∫

μ0 Hi(r) · H j (r) d3r =
∫

ji(r) · A j (r) d3r.
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In order to compute φ j and A j from ρ j and j j , the presence
of the dielectric substrate and of the metallic ground plane
located below the substrate must be taken into account using
image charges and currents. We obtain

EE = 1 − k

4πε0

∫
ρi(r)ρ j (r′) f (r, r′) d3r d3r′

with f (r, r′) =
(

1

|r − r′| +
M∑

n=1

(−1)nkn−1(1 + k)

|r − r′ + 2nez|

)

EH = μ0

4π

∫
ji(r) · j j (r′)g(r, r′) d3r d3r′

with g(r, r′) =
(

1

|r − r′| − 1

|r − r′ + 2ez|
)

where e is the wafer thickness, z is the unit vector normal to
the substrate, k = (εr − 1)/(εr + 1), εr ≈ 11.8 is the dielec-
tric constant of the silicon substrate, and M is the number of
image charges at which the sum is truncated. We use M = 4
for the simulations shown in the article. These expressions
neglect any propagation effect, which is well justified in our
situation. We numerically compute the last two integrals from
the knowledge of the charge and current distributions ρi and
ji that we obtain from the Sonnet simulation software.

APPENDIX B: SIGN RECONSTRUCTION OF
THE MODE AMPLITUDE

From the variation of the transmission at resonance as a
function of the laser position, we obtain the mode intensity
|�(r)|2, where r takes N discrete values over the sites of the
lattice. The mode is normalized such that

∑
r |�(r)|2 = 1. In

order to obtain �(r), we assume that the mode is a linear
combination of the modes that are expected for a lattice with
the same geometry as the measured one and nearest-neighbor
coupling only. In the case of the G lattice, the basis modes
φα (r) only depends on the lattice geometry. In the case of the
SI or SII lattice, the modes also depend on the ratio of the
nearest-neighbor hopping to the frequency imbalance between
the A and B sites. We set this ratio to the one obtained from
simulations of two coupled resonators.

We then search for the unit vector β such that

L(β ) =
∑

r

⎛
⎝|�(r)|2 −

∣∣∣∣∣
M∑

α=1

βαφα (r)

∣∣∣∣∣
2
⎞
⎠

2

(B1)

is minimal, where M is the number of modes used to recon-
struct �(r). The quantity L(β ) can be rewritten

L(β ) =
∑

r

∣∣∣∣∣
M∑

α=1

βαφα (r)

∣∣∣∣∣
4

− 2
∑

r

|�(r)|2
∣∣∣∣∣

M∑
α=1

βαφα (r)

∣∣∣∣∣
2

+
∑

r

|�(r)|4 (B2)

The last term is a constant and can be dropped out. We start
by minimizing the second term that corresponds to a quadratic

form:

−
∑

r

|�(r)|2
∣∣∣∣∣

M∑
α=1

βαφα (r)

∣∣∣∣∣
2

= −
M∑

γ=1

M∑
α=1

(∑
r

φγ (r)|�(r)|2φα (r)

)
βγ βα (B3)

Minimizing this quadratic form under the constraint ‖β‖ =
1 can be done exactly by taking the eigenvector associated to
the largest negative eigenvalue. This gives us a starting value
of β from which we minimize L(β ) through an iterative pro-
cedure. We define �̃(r) =

√
|�(r)|2 × sign[

∑
α βαφα (r)] and

look for β that minimizes the least square problem |�̃(r) −∑
α βαφα (r)|2. We iterate the procedure until the vector β

converges to a fixed point. We run this minimization proce-
dure for all the sets of M basis modes with adjacent energies
and keep the one that gives the overall smallest L(β ). We then
deduce �(r) as

�(r) = sign

[
M∑

α=1

βαφα (r)

]√
|�(r)|2 (B4)

We have tested the procedure for different values of M and
observe that the deduced sign does not change for M � 3 (see
Fig. S2 of the Supplemental Material [28]).

APPENDIX C: OVERLAP AND HOPPING RATES FOR THE
SI AND SII LATTICES

From the numerical simulations of the charge and current
distributions, we obtain the following overlap integrals

〈EμEν〉0 =
(

ωA 8.2 × 10−3ω̄AB

8.2 × 10−3ω̄AB ωB

)

〈EμEν〉a1 =
(

2.2 × 10−4ωA −1.9 × 10−6ω̄AB

6.7 × 10−3ω̄AB 2.3 × 10−4ωB

)

〈EμEν〉a2 =
(

2.1 × 10−4ωA −1.2 × 10−5ω̄AB

1.3 × 10−2ω̄AB 2.2 × 10−4ωB

)

〈EμEν〉a1−a2 =
(

1.4 × 10−4ωA 1.3 × 10−4ω̄AB

1.0 × 10−5ω̄AB 1.4 × 10−4ωB

)

〈HμHν〉0 =
(

ωA −3.1 × 10−2ω̄AB

−3.1 × 10−2ω̄AB ωB

)

〈HμHν〉a1 =
( −4.2 × 10−3ωA −8.3 × 10−4ω̄AB

−3.2 × 10−2ω̄AB −4.2 × 10−3ωB

)

〈HμHν〉a2 =
( −4.2 × 10−3ωA −8.4 × 10−4ω̄AB

−2.8 × 10−2ω̄AB −4.2 × 10−3ωB

)

〈HμHν〉a1−a2 =
( −4.2 × 10−3ωA −2.5 × 10−3ω̄AB

−2.6 × 10−3ω̄AB −4.2 × 10−3ωB

)

where ω̄AB = √
ωAωB and the μ and ν indices correspond

respectively to the line and column indices of the matrix.
Using ωA = 2π × 6.02 GHz and ωB = 2π × 6.13 GHz, we
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obtain the following coupling matrices using Eq. (14):

J (0) = 2π ×
(

12 123
123 12

)
MHz

J (a1) = 2π ×
(

18 3.7
121 18

)
MHz

J (a2) = 2π ×
(

18 3.8
128 18

)
MHz

J (a1 − a2) = 2π ×
(

18 10

10 18

)
MHz.
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