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Remote asymmetric Einstein-Podolsky-Rosen steering of magnons via a single
pathway of Bogoliubov dissipation
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We propose a scheme to generate remote asymmetric Einstein-Podolsky-Rosen (EPR) steering of two magnon
modes in a hybrid ferromagnet-superconductor system. In our scheme, the indirect coherent coupling between
two distant magnons and a �-type superconducting atom is established via exchange of virtual photons in two
dispersive cavities. As a consequence, the artificial atom acting as a reservoir can produce asymmetrical magnon-
magnon steering via a single dissipation channel. Interestingly, we find that the steering directivity is determined
by cooling either Bogoliubov mode selectively rather than increasing the extra noise as in conventional schemes.
This provides a novel idea to prepare remote EPR steering in solid devices, which may find potential applications
in quantum information processing.
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I. INTRODUCTION

Magnons, i.e., quanta of collective spin excitations in mag-
netic materials, have become ideal candidates for studies of
macroscopic quantum effects. Thanks to the high spin density
of ferromagnetic systems, the magnon mode in a ferromag-
netic sphere can strongly couple to the microwave photons
via magnetic dipole interaction [1–9]. Many interesting phe-
nomena have been explored in cavity-magnon system, such
as magnon dark modes [10], exceptional points [11,12], bista-
bility of cavity-magnon polaritons [13], optical cooling of
magnons [14], and nonreciprocity and unidirectional invisibil-
ity [15]. Moreover, the magnonic system shows an excellent
ability to coherently coupled to diverse quantum systems,
including phonons [16,17], optical photons [18–21], and su-
perconducting qubits [22–25]. There are also many novel
physical phenomena revealed in hybrid systems based on
magnons, ranging from the nonclassical states [26], quantum
blockade [27–29], quantum sensing [24,25], and quantum
entanglement [30,31]. Notably, due to the unprecedented con-
trollability and scalability of the ferromagnet-superconductor
system, it provides a fertile platform to study fundamen-
tal quantum physics [27–29,31] and quantum technology
[22,24,25].

Einstein-Podolsky-Rosen (EPR) steering, initially intro-
duced by Schrödinger [32] in response to the famous EPR
paradox [33], describes the ability of one party to remotely
control the other party’s states through local measurements.
As a strict subset of entanglement and superset of Bell non-

*junxu@ccnu.edu.cn
†xmhu@ccnu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

locality [34,35], EPR steering is intrinsically distinct from
entanglement and Bell nonlocality due to its asymmetric char-
acteristics. Especially, one-way EPR steering [36,37] shows
that the entangled state may be steerable in one direction
but not in the other, which provides potential practical ap-
plications, e.g., one-sided device-independent quantum cryp-
tography [38–41], quantum secret sharing [42–44], one-way
quantum computing [45], no-cloning quantum teleportation
[46–48], subchannel discrimination [49], and other related
protocols. Recently, genuine photon-magnon-phonon EPR
steering [50] and asymmetric steering transfer between pho-
tons, magnon, and phonon [51] have been realized in a cavity-
magnomechanical system. The EPR entanglement and steer-
ing between a macroscopic mechanical oscillator and a distant
magnon have also been achieved theoretically [52]. In addi-
tion, Zheng et al. [53] studied the EPR steering between two
macroscopic magnons in a hybrid ferrimagnet-light system
and showed strong two-way asymmetric steering between two
magnons with equal dissipation. However, it is worthwhile to
note that this scheme is confined to the ferrimagnet system,
in which the two types of magnons on the two adjacent sub-
lattices are initially entangled. Furthermore, Yang et al. [54]
implemented stationary one-way quantum steering between
two independent magnons, but the involved microwave cavity
must be driven by a squeezed vacuum field generated via a
flux-driven Josephson parameter amplifier and the magnons
are not distant from each other. Therefore, it is worth to fur-
ther investigate asymmetric EPR steering between two distant
magnons by the asymmetry of intrinsic mechanism, rather
than through the asymmetry from the external environment.

Long-distance quantum manipulation between macro-
scopic objects is of crucial importance to various quantum
information schemes, especially in the proposals of quantum
communication, quantum cryptography, quantum sensing,
etc. [55]. Unfortunately, quantum correlation is typically
fragile due to the notorious effect of environment-induced de-
coherence [56]. The search for optimal physical mechanisms
that permit robust against decoherence has never ceased.
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The dissipation effects were recently explored to prepare the
squeezed and entangled states in different schemes [57–64].
There are two main merits for the dissipation mechanisms.
First, the squeezing and entanglement by dissipation do not
require the preparation of a system in a particular initial state.
Second, the squeezing and entanglement can last for an arbi-
trarily long time and be robust against various random noises.
For the four-wave mixing in the two-level atomic system
[58,60], a single pathway of Bogoliubov dissipation, in which
the only one of a pair of squeeze-transformed modes is medi-
ated into interaction with the atoms and the other is decoupled
from the atoms, can lead to the two-mode field squeez-
ing of 50%. To overcome this difficulty, Hu et al. [59,62]
proposed a two-pathway Bogoliubov dissipation mechanism
in a three-level atomic system to enhance the two-mode
squeezing to 100%. Although the two-channel dissipation
mechanism can effectively improve squeezing and entan-
glement, it is detrimental to the generation of asymmetric
correlation.

In this article, we propose a scheme for establishing a
single pathway of Bogoliubov dissipation [61,64] to gener-
ate remote asymmetric EPR steering between two magnon
modes in a hybrid ferromagnet-superconductor system. Pre-
cisely, two ferromagnetic spheres are remotely placed inside
two microwave cavities, respectively, and each ferromagnetic
sphere is coupled to a cavity mode via linear beam-splitter
interaction. Simultaneously, the two microwave cavity fields
couple to a �-type artificial atom [65] driven by a classical
field. When the magnon modes are tuned nearly resonant with
the Rabi sidebands of the dressed atom and far-detuned from
the microwave cavity fields, the effective coherent coupling
between two magnon modes and the superconducting artifi-
cial atom can be achieved after adiabatically eliminating the
microwave cavity fields. We find that only one of a pair of
squeeze-transformed modes on two magnon modes is medi-
ated into interaction with the artificial atom and the other is
decoupled. When the coupled Bogoliubov mode is cooled by
the artificial atom, the corresponding magnon mode can be
steered by the other one, but not vice versa. If the coupled
Bogoliubov mode is heated, there will be no steering be-
tween the two magnon modes. The direction of the steering is
determined by the cooled Bogoliubov mode, which is distin-
guished from conventional approaches by adding unbalanced
losses or noises on the two parties. Compared with other
schemes, our scheme has the following striking features: (i)
The asymmetric EPR steering does not require the asymmetry
from the external environment but utilizes the asymmetry of
intrinsic mechanism. (ii) The obtained asymmetric quantum
correlations by one-channel Bogoliubov dissipation are im-
mune to environmental decoherence, and do not require the
initial preparation of nonclassical states. (iii) The direction of
one-way magnon steering can be easily controlled due to the
flexible mouldability of the magnons and the superconducting
artificial atom.

The remaining part of this article is organized as follows.
In Sec. II, we describe the model of the system and obtain
the virtual-photon-mediated interaction between the magnons
and the dressed atom. In Sec. III, we present the numerical
results and then perform the physical analysis and give the
corresponding conditions for the quantum correlations of the

FIG. 1. (a) Sketch of the ferromagnet-superconductor quantum
system. The superconducting artificial atom locates at the intersec-
tion of two cavities, and the two ferromagnetic (FM) spheres are
placed in two different cavity arms, respectively. (b) Interactions
of the two cavity fields al with the �-type artificial atom, which
is driven by an external classical field with the Rabi frequency �,
and the interactions of al with the magnon ml (l = 1, 2). The thick
and thin blue solid lines represent the ground and excited states of
the magnon, and the difference represents the frequency of magnon
modes.

two magnon modes. The article ends with a conclusion in
Sec. IV.

II. MODEL AND EQUATIONS

As shown in Fig. 1, we consider a hybrid ferromagnet-
superconductor quantum system consisting of a cross-cavity,
two ferromagnetic spheres and a �-type superconducting
artificial atom. The superconducting atom located at the inter-
section of two cavity arms strongly couples to two microwave
cavity modes through the capacitances. Meanwhile, a classi-
cal dressing field is applied to the atom. Two ferromagnetic
spheres are placed remotely in different cavity arms and
strongly coupled to the microwave cavity modes via magnetic-
dipole interaction, respectively. The two cavity arms of the
cross-cavity are along the x and y directions, respectively. The
bias magnetic fields B are applied locally to the ferromagnetic
spheres along the z direction. The two cavity magnetic fields
are both perpendicular to the bias magnetic fields, and the two
cavity electric fields are parallel to the bias magnetic fields,
similar to the experiment scheme as in Ref. [22,66].
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In the static limit, the spin-wave modes correspond to
magnetostatic modes, where the long-range dipole-dipole in-
teractions between spins are dominant over the short-range
exchange interactions [23]. Assuming that the cavity magnetic
fields are uniform throughout the ferromagnetic spheres, the
magnetic dipole coupling vanishes except for the uniform
magnetostatic modes, i.e., the Kittel modes [67]. The Hamil-
tonian of the hybrid ferromagnet-superconductor system is
(h̄ = 1)

H = H1 + H2, (1)

where the first part

H1 =
∑
l=1,2

ωal a
†
l al +

∑
i=2,3

ωi1σii

+ (
ga1 a1σ21 + ga2 a2σ32 + �σ31e−iωd t + H.c

)
,

(2)

denotes the interaction of the superconducting artificial atom
with the cavity fields and the classical dressing field. al and
a†

l are the annihilation and creation operators of the cavity
mode at the frequency ωal . ωi1 is the atomic transition |i〉 →
|1〉 frequency. σ jk = | j〉〈k|( j, k = 1, 2, 3) are the projection
operators for j = k and the spin-flip operators for j �= k. �

describes the Rabi frequency between artificial atom and the
dressing field with the oscillating frequency ωd . The second
term can be expressed as [1]

H2 =
∑
l=1,2

[−gμBBSz
l + gsl

(
alS

−
l + a†

l S+
l

)]
, (3)

which describes the Zeeman effect between the bias magnetic
fields and the ferromagnetic spheres, and the magnetic dipole
interactions between the cavity fields and the ferromagnetic
spheres. g is the g factor, μB is the Bohr magneton, and
B = |B| is the amplitude of the bias magnetic fields. Sl ≡
(Sx

l , Sy
l , Sz

l ) stands for the collective spin operator of the two
ferromagnetic spheres, gsl denotes the coupling strength be-
tween the macrospin and the cavity mode, and S±

l ≡ Sx
l ± iSy

l
are the raising and lowering operators of the macrospin, re-
spectively.

The macrospin operators are related to the magnon
operators via Holstein-Primakoff transformation [68], S+

l =
(
√

2S − m†
l ml )ml , S−

l = m†
l (

√
2S − m†

l ml ),Sz
l = S − m†

l ml ,

where S is the total spin number of the macrospin operator
and m†

l (ml ) is the creation (annihilation) operator of the
magnon. For the low-lying excitations with 〈m†

l ml〉 � 2S,
one has S+

l ≈ ml

√
2S, and S−

l ≈ m†
l

√
2S. In this case, the

Hamiltonian (3) can be written as

H2 =
∑
l=1,2

[ωml m
†
l ml + gml (alm

†
l + a†

l ml )], (4)

where ωml = gμBB is the magnon frequency determined
by the bias magnetic field, and gml = √

2Sgsl denotes the
magnon-photon coupling strength.

In the rotating frame Hr = ωdσ33 + ω21(σ22 + a†
1a1 +

m†
1m1) + (ωd − ω21)(a†

2a2 + m†
2m2), the total Hamiltonian

can be rewritten as

H = H0 + Hd + HI, (5)

where the first part

H0 = −
∑
l=1,2

(
�al a

†
l al + �ml m

†
l ml

)
(6)

is the free part for both the cavity fields and the magnon
modes, �a1,m1 = ω21 − ωa1,m1 , �a2,m2 = ωd − ω21 − ωa2,m2 .
The second term,

Hd = �31σ33 + �(σ13 + σ31), (7)

denotes the interaction of the superconducting artificial atom
with the classical dressing field, where �31 = ω31 − ωd is the
detuning of atomic transition frequency ω31 from the dressing
field frequency. The last term,

HI =ga1 a1σ21+ga2 a2σ32+gm1 a1m†
1+gm2 a2m†

2+H.c, (8)

describes the interactions of the cavity fields with both the
atom and the magnons through the electric dipole interaction
and the magnetic dipole interaction [70]. No direct interaction
happens between the superconducting artificial atom and the
magnons. Our purpose is to establish the interaction between
them by utilizing ancillary dispersive cavities. By transferring
the phases of gal , gml and �, respectively, to field operators al ,
the magnon operators ml , and the atomic spin-flip operators
σ jk , we take real values for gal = |gal |, gml = |gml | and � =
|�| (l = 1, 2; j, k = 1, 2, 3 and j �= k).

The master equation for the density operator ρ of the
ferromagnet-superconductor system is written as [70,71]

d

dt
ρ = −i[H, ρ] + Lcρ + Lmρ + Laρ. (9)

The damping terms in the master equation take the form

Lcρ =
∑
l=1,2

κal

2
(2alρa†

l − a†
l alρ − ρa†

l al ),

Lmρ =
∑
l=1,2

κml

2
(2mlρm†

l − m†
l mlρ − ρm†

l ml ),

Laρ =
∑
j�k

γ jk

2
(2σk jρσ jk − σ jkσk jρ − ρσ jkσk j ),

(10)

where Lcρ describes the cavity decays with rates κal , Lmρ de-
scribes the magnon damping with rates κml , and Laρ describes
the artificial atomic decays from states | j〉 to |k〉 with rates γ jk

( j, k = 1, 2, 3) for j �= k, and the dephasing damping for the
levels | j〉 with rates γ j j (γ11 = 0), respectively.

To describe clearly the physical mechanisms and the corre-
sponding conditions for atomic reservoir effects, we transform
into the dressed atomic picture. By diagonalizing the Hamil-
tonian Hd under the conditions of � 
 γ jk, γ j j, κal , gal , we
obtain the dressed states that are expressed in terms of the
bare atomic states as [72]

|+〉 = cos θ |3〉 + sin θ |1〉,
|−〉 = − sin θ |3〉 + cos θ |1〉, (11)

where we have defined cos θ = √
(d + �)/2d , sin θ =√

(d − �)/2d , d = √
�2 + 4�2, and �31 = �. These

dressed states |±〉 have their eigenenergies λ± = (� ± d )/2,
respectively. Now, the Hamiltonian Hd becomes the free form
in the dressed-state picture, i.e., Hd = h̄(λ+σ++ + λ−σ−−),
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FIG. 2. The atomic dressed state populations as function of the
normalized detuning �/�. We have chosen the parameters similar to
those in Ref. [69]: γ31 = 2π × 8MHz, γ21 = 2π × 1.5MHZ, γ32 =
2π × 3MHz, γ22 = 2π × 2MHz, γ33 = 2π × 2MHz.

where we have defined σ jk = | j〉〈k|( j, k = +,−, 2) in terms
of the dressed atomic states for the projection ( j = k) and
spin-flip ( j �= k) operators.

Applying the dressed-state transformation to the artificial
atomic relaxation terms and neglecting the weak cavities
temporarily, we can obtain the steady dressed-state popula-
tions, which are listed in Appendix A. We numerically plot
the dressed state populations ρs

j j, ( j = +,−, 2) versus the
normalized detuning parameter �/� in Fig. 2. The steady
dressed-state population ρs

++ decreases slowly with an in-
crease of �/�, then decreases sharply, especially around
�/� = −0.72, and finally it slowly reduced to almost zero.
As the increase of �/�, ρs

22 first raises slowly to a maximal
value at �/� = 0 and then decreases gradually. It is also
noted that ρs

++ = ρs
22 at the point of �/� = −0.72, ρs

++ >

ρs
22 for �/� < −0.72, and ρs

++ < ρs
22 for �/� > −0.72.

The variation trends for ρs
−− and ρs

++ are completely opposite,
and they reach the same value at �/� = 0.

The dressed states are well separated from each other since
d 
 (γ ′s, κ ′s, g′s). We consider the system operates in the
dispersive regime, where cavity fields are far detuned from the
dressed atom (δ1,2 = �a1,2 ∓ λ+ 
 ga1,2 ) and magnon modes
(�1,2 = ωm1,2 − ωa1,2 
 gm1,2 ). Simultaneously, we tune the
magnon modes nearly resonant with the Rabi sideband
(�m1 ≈ −�m2 ≈ λ+). Using the second-order perturbation
theory and unitary transformation [73,74] (the detailed deriva-
tion is given in Appendix B), we can obtain the effective
Hamiltonian

Heff = (g1 sin θm1 − g2 cos θm†
2)σ2+ + H.c., (12)

where we have defined the effective coupling strength gl =
gal gml /|�l | (l = 1, 2). In recent experiments, the effec-
tive magnon-qubit coupling has already reached geff/2π ∼
10MHz [22]. As for the inevitable decays, the typical value for
YIG, ultralow damping of κm/2π ∼ 0.15 MHz is promising to
be realized since the magnon linewidth of κm/2π ∼ 0.6 MHz
with a temperature of 0.1 K< T <1 K has been reported
[3,26]. For the case of �m1 ≈ −�m2 ≈ λ−, it is treated in the

same way, and the dependencies of the quantum correlation
on �/� and g1/g2 are symmetrical to the case of �m1 ≈
−�m2 ≈ λ+.

Now it is seen from Hamiltonian (12) that the effective
coupling is established between the magnons and the dressed
atom. This is based on the simultaneous interactions of the
magnons and the atom with the cavity fields. The magnons
and atom are pulled into their interaction by adiabatically
eliminating the cavity fields, which are far detuned from both
the atom and the magnons.

III. ENTANGLEMENT AND STEERING

In this section, we discuss the entanglement and steering of
two magnon modes. We give the numerical results, physical
analysis, and experimental discussion in the respective three
subsections.

A. Numerical results

Following the standard technique [75], we derive the quan-
tum Langevin equations as follows:

ṁ1 = −κ̃m1 m1 − iG1σ+2 + Fm1 ,

ṁ2 = −κ̃m2 m2 + iG2σ2+ + Fm2 ,

σ̇+2 = −
σ+2 + iG̃1m1 − iG̃2m†
2 + Fσ+2 ,

(13)

where we have used κ̃ml = κml /2, G1 = g1 sin θ ,
G2 = g2 cos θ , G̃l = Gl (ρs

22 − ρs
++), and 
 = [(γ31 + γ32 +

γ33) cos2 θ + γ21 + γ22]/2. The F ’s are noise terms with zero
means and correlations 〈FO(t )FO′ (t ′)〉 = 2DOO′δ(t − t ′),
where the nonzero diffusion coefficients are listed as
2Dml m

†
l
= κml , 2Dσ+2σ2+ = 2
ρs

++, 2Dσ2+σ+2 = 2
ρs
22

(l = 1, 2). At steady state 〈m1,2〉 = 〈σ+2〉 = 0, then
δml = ml and δσ+2 = σ+2. To quantify the entanglement and
steering of two magnon modes, we introduce the quadrature
components as δXj = (v j + v

†
j )/

√
2, δPj = −i(v j − v

†
j )/

√
2,

(v1 = m1, v2 = m2, v3 = σ+2), and the noise quadratures FXj

and FPj are defined in the same way. The quantum Langevin
equations of the quadrature fluctuations can be written as the
matrix form

u̇(t ) = −Au(t ) + ξ (t ), (14)

where the column vector for the fluctuation variables
is arranged as u(t ) = (δX1, δP1, δX2, δP2, δX3, δP3)T ,
the corresponding noise terms are listed as ξ (t ) =
(FX1 , FP1 , FX2 , FP2 , FX3 , FP3 )T , and the drift matrix
reads as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ̃m1 0 0 0 0 −G1

0 κ̃m1 0 0 G1 0

0 0 κ̃m2 0 0 −G2

0 0 0 κ̃m2 −G2 0

0 G̃1 0 G̃2 
 0

−G̃1 0 G̃2 0 0 


⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The system is stable only if all eigenvalues of the drift ma-
trix A have positive real parts, which can be derived from
the Routh-Hurwitz criterion [76]. In the present paper, the
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FIG. 3. Density plot of (a) entanglement EN , (b) steering G1→2 and (c) steering G2→1 vs the normalized detuning �/� and the ratio of
coupling strengths g1/g2. We have chosen κm = 0.1γ21 and g2/2π = 5 MHZ. The other parameters are the same as in Fig. 2. The shaded
regime shows the unstable region, and the white regimes represent the areas where entanglement and steering do not exist.

chosen parameters satisfy the stability condition. The steady
state of the system is a Gaussian state that can be entirely
characterized by a 8 × 8-covariance matrix (CM) C with
components Ci j (t, t ′) = 〈ui(t )u j (t ′) + u j (t ′)ui(t )〉/2, (i, j =
1, 2, ..., 6). The steady-state CM can be achieved by solving
the Lyapunov equation [77]

AC + CAT = D, (16)

where the diffusion matrix is given by D =
diag[κ̃m1 , κ̃m1 , κ̃m2 , κ̃m2 , 
̃, 
̃] with 
̃ = 
(ρs

22 + ρs
++). The

diffusion matrix D characterizing the stationary-noise
correlations has been defined through Di jδ(t − t ′) =
〈ξi(t )ξ j (t ′) + ξ j (t ′)ξi(t )〉/2.

We adopt the logarithmic negativity [78] to quantify the en-
tanglement between the two magnons. This has been proposed
as a reliable quantitative estimate of continuous-variable en-
tanglement [79]. The definition of EN is given by

EN = max[0,−ln2η−], (17)

where η− =
√

�(V ′) − [�(V ′)2 − 4 det V ′]1/2/
√

2 is the
smallest symplectic eigenvalue of the partially transposed
CM, with �(V ′) ≡ det V1 + det V2 − 2 det V12. Here we have
considered the reduced CM of two modes of interest

V ′ =
(

V1 V12

V T
12 V2

)
, (18)

where V1 and V2 are 2 × 2 block matrices corresponding to the
reduced states of the m1 and m2 modes, respectively. It is well
known that entanglement exists when EN > 0, and the larger
EN the higher the degree of the entanglement. Moreover, the
proposed measurements of the Gaussian quantum steerability
in different directions between mode m1 and mode m2 are [80]

G1→2 = max[0, S(2V1) − S(2V ′)],

G2→1 = max[0, S(2V2) − S(2V ′)],
(19)

with S(σ ) = ln det(σ )/2. G1→2 > 0 (G2→1 > 0) demonstrates
that the bipartite Gaussian state characterized by the covari-
ance matrix V ′ is steerable from mode m1 (m2) to mode m2

(m1) by Gaussian measurements on mode m1 (m2). The larger
value of G implies the stronger Gaussian steerability.

For our system, the steady-state values 〈m2
1,2〉 = 0 and

〈m†
1m2〉 = 0, such that the conditions to satisfy EN > 0,

G1→2 > 0, and G2→1 > 0 can be also expressed in terms of
correlation-based inequalities, respectively [81,82],

|〈m1m2〉| >

√
〈m†

1m1〉〈m†
2m2〉,

|〈m1m2〉| >

√
〈m†

2m2〉(〈m†
1m1〉 + 1/2),

|〈m1m2〉| >

√
〈m†

1m1〉(〈m†
2m2〉 + 1/2). (20)

From the above equations, we can see that the conditions for
generating steering are more demanding than entanglement.
The magnon mode with more occupancies is more likely to
steer the magnon mode with less occupancies.

The logarithmic negativity EN and the asymmetric steering
quantities G1→2 and G2→1 are strongly dependent on two
parameters: the normalized detuning �/� and the coupling
strength ratio g1/g2, as shown in Figs. 3–5. The physical
reason is given in the following subsection. For directly driv-
ing the artificial atom, one may adopt the superconducting
microwave driving line connected by capacitors. In this case,

FIG. 4. The entanglement EN and steering (G1→2 and G2→1) vs
the normalized detuning �/� under different ratios of (a) g1/g2 = 2
and (b) g1/g2 = 0.3. The other parameters are the same as in Fig. 3.
In order to show the steering directivity clearly, we use the purple and
pink areas to depict the presence of one-way steering for m1 → m2

and m2 → m1 respectively, and the white area to describe the pres-
ence of no-way steering.
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FIG. 5. The entanglement EN and steering (G1→2 and G2→1) vs
the ratios of g1/g2 under different normalized detuning (a) �/� = 2
and (b) �/� = −3. The other parameters are the same as in Fig. 3.
The color areas represent the same meaning as in Fig. 4.

the normalized detuning �/� can be changed by adjusting
the frequency and intensity of the driving line. Moreover, the
flexible modulation of the effective magnon-atom coupling
strengths gl = gal gml /�l (l = 1, 2) can realize the control-
lability of the ratio of effective coupling strength without
replacing the material. There are three methods to adjust
effective coupling strengths: (i) The cavity-atom coupling
rates gal can be modified by controlling the magnetic flux
through the loop of superconducting quantum interference
device [69]. (ii) The cavity-magnon coupling rates gml can be
drastically changed when moving the position of YIG spheres
in the cross-shaped cavity [15], due to the inhomogeneity of
magnetic field intensity distribution. (iii) The cavity-magnon
detuning �l can be tuned by changing the strength of the bias
magnetic fields [23].

Plotted in Fig. 3 are the densities of the logarithmic neg-
ativity EN (a), the steering quantities G1→2 (b) and G2→1

(c) versus the above two parameters. Here we have chosen
the parameters as κm1,2 = κm = 0.1γ21, g2/2π = 5MHZ, the
other parameters are the same as in Fig. 2. From Fig. 3, we can
see that entanglement exists in most stable parameter regions
while steering exists only in a small part of the regime where
entanglement exists. This shows that the steering is a strict
subset of entanglement. Comparing Fig. 3(b) and Fig. 3(c),
it is obvious that the steering is asymmetric, and there is
one-way steering in some parameter regions. For example, in
the stable regimes of the upper right of Fig. 3(b) and Fig. 3(c),
the steering G1→2 has the nonzero values but the values of
G2→1 is all zero, so there is one-way steering of m1 → m2.
On the other hand, in the lower left of Fig. 3(b) and Fig. 3(c),
one-way steering of m2 → m1 exists because only G2→1 has
the nonzero values. This indicates that the implementation
and manipulation of one-way EPR steering of magnons can
be achieved by adjusting the normalized detuning �/� and
the ratio of coupling strengths g1/g2.

Given in Fig. 4 are the logarithmic negativity EN and the
steering quantities G1→2 and G2→1 versus the normalized de-
tuning �/� for different coupling strength ratio g1/g2. When
g1/g2 = 2, the EN first increases and then decreases slowly
with an increase of �/�. The steering G1→2 has similar varia-
tion trends as EN and reaches the maximum value at the same
position. On the contrary, the steering G2→1 remains zero.
When g1/g2 = 0.3, the steering G2→1 has nonzero values and
has a similar evolutionary trend as EN , but the steering G1→2

always remains zero. Similarly, Fig. 5 shows the entangle-
ment and steering versus the ratio g1/g2 under the different
values of �/�. For �/� = 2, the steering G2→1 disappears
completely, while there is still steering G1→2. When �/� =
−3, the steering G2→1 occurs while the steering G1→2 van-
ishes. By analyzing the above numerical results, our scheme
shows that the one-way steering with strong entanglement can
be achieved by tuning the ratio of g1/g2 or the normalized
detuning �/� under appropriate parameter conditions with
balanced magnon losses. The most potential application of
one-way EPR steering is that it provides security in one-sided
device-independent quantum key distribution (QKD) [38–41],
where the measurement apparatus of only one party is un-
trusted.

B. Physical analysis

To understand the essential physics of the phenomena
presented in Figs. 4 and 5, we first introduce a pair of
Bogoliubov modes as b1 = m1 cosh r − m†

2 sinh r, b2 =
m2 cosh r − m†

1 sinh r [70,71]. Then we substitute modes b1,2

for m1,2 in Eq. (12), the system Hamiltonian (12) is rewritten
as

Heff = gb(b1σ2+ + b†
1σ+2) for

g1

g2
> cot θ,

Heff = −gb(b2σ+2 + b†
2σ2+) for

g1

g2
< cot θ,

(21)

the squeezing parameter r is defined through the hyperbolic
tangent function

tanh r = g2

g1
cot θ for

g1

g2
> cot θ,

tanh r = g1

g2
tan θ for

g1

g2
< cot θ,

(22)

where we have defined the corresponding coupling strength
gb =

√
|g2

1 sin2 θ − g2
2 cos2 θ |. Depending on the relation be-

tween g1/g2 and cot θ (i.e., �/�), the interactions between
the Bogoliubov modes of magnons and the dressed atom
behave differently. That is why we give the dependence on
them of the quantities of interest. Obviously, only one Bo-
goliubov mode b1 or b2 is included in Eq. (21). As a result,
the one-channel interaction occurs between the transformed
modes and the dressed atom. First we consider the ideal
case where environmental dissipation can be ignored. For the
case of g1/g2 > cot θ , the b2 mode is decoupled, and the
absorption process of b1 mode is dominant if ρs

++ > ρs
22 and

the Bogoliubov mode b1 is reduced to the vacuum state. In
contrast, if ρs

++ < ρs
22, the amplification process of b1 mode is

dominant, and the system is unstable. However, for the case of
g1/g2 < cot θ , the b1 mode is decoupled, and the absorption
process of b2 mode is dominant for ρs

++ < ρs
22 and the b2

mode evolves to the vacuum state. Especially for the case of
the Bogoliubov modes b1 or b2 in the vacuum state, the orig-
inal magnon modes m1,2 are in the two-mode squeezed state.
As we will see later, the one-channel dissipation established
in the present scheme is the key factor to realize the one-way
EPR steering.

Next, we include the vacuum environmental dissipation
and assume that the atomic variables decay much more rapidly
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than the magnons. Following the standard techniques as in
[70,71], we derive the master equation of motion for the
reduced density operator � = Tratomρ as

�̇ = A1Lb1� + B1Lb†
1
� + L′

m� for
g1

g2
> cot θ,

�̇ = A2Lb2� + B2Lb†
2
� + L′

m� for
g1

g2
< cot θ,

(23)

where LO� = (2OρO† − O†Oρ − ρO†O)/2 (O = bl , b†
l )

takes the standard form [70], the absorption (dissipation)
rates A1,2 and amplification rates B1,2 are expressed as
A1 = B2 = 2g2

bρ
s
++/
, A2 = B1 = 2g2

bρ
s
22/
. The magnon

decay term L′
m� has the form of

L′
m� =κ̃m

∑
l=1,2

[(1 + N )(bl�b†
l − b†

l bl�) + N (b†
l �bl − �blb

†
l )]

+ 2κ̃mM(b1�b2 + b2�b1 − �b1b2 − b1b2�) + H.c.,
(24)

where N = sinh2 r, M = sinh r cosh r.
The steady-state populations of the modes b1 and b2 are

obtained from the master equation (23) as

〈b†
1b1〉 = −(Ã1 − B̃1) + N, 〈b†

2b2〉 = N for
g1

g2
> cot θ,

〈b†
1b1〉 = N, 〈b†

2b2〉 = −(Ã2 − B̃2) + N for
g1

g2
< cot θ,

(25)

where the cooling and heating occupancies induced by atomic
reservoir are expressed as Ãl = AlN/ηl , B̃l = Bl (1 + N )/ηl ,
and Ãl − B̃l represent the net cooling occupancies. We have
defined ηl = Al − Bl + κm, and the stability conditions are
ηl > 0 (l = 1, 2). Imagining first that the interaction be-
tween the bright Bogoliubov mode and the dressed atom
excluded, the modes b1 and b2 will have a nonzero intrin-
sic occupancy N even in the vacuum environment, which
implies that vacuum noise driving the magnons acts as ef-
fective thermal noise for b1 and b2 [83]. In this case, the
modes b1 and b2 are in a two-mode squeezed vacuum state,
which leads to the original magnon modes m1 and m2 are
in the vacuum state. Obviously, there is no entanglement and
steering between two magnons. Now including the effects of
the interaction between the bright-mode b1 and the dressed
atom, the dark-mode b2 is unaffected, whereas the occupancy
of the bright-mode b1 is modified to 〈b†

1b1〉 = −(Ã1 − B̃1) +
N for g1/g2 > cot θ . If Ã1 > B̃1, the cooling (absorption)
process of the the bright-mode b1 is dominant, which means
that the one-channel dissipation process is established and it
can drive b1 into the state with little population. As we all
know, the linear absorption does not contribute more noise
than the vacuum noise to the coupled m1,2 modes. Since
no spontaneous emission noise enters the m1,2 modes, the
strong quantum correlation is established through the non-
linearity. So the steady-state asymmetric EPR steering can
be achieved via the one-channel dissipation process. On the
contrary, for the case of Ã1 < B̃1, the effective gain is larger
than absorption, the heating (amplification) process is domi-
nant, and the b1 evolve into the state with more population.
The linear amplification contributes not only linear gain but

FIG. 6. The net cooling occupancies Ã1 − B̃1 (red line) and Ã2 −
B̃2 (blue line) vs the normalized detuning �/�. When Ãl − B̃l > 0,
the cooling (absorption) process is dominant as shown in main maps.
On the contrary, for the case of Ãl − B̃l < 0, the heating (amplifica-
tion) process is dominant as shown in inset maps. The parameters are
the same as in Fig. 4.

also extra noise (i.e., spontaneous emission noise) to the m1,2

modes. Therefore, the amplifying process contributes to the
m1,2 modes more noise than the vacuum noise. It is the very
spontaneous noise that weakens the quantum correlation be-
tween the m1,2 modes established through the nonlinearity.
Although the quantum correlation generated by amplification
process may produce entanglement, but it is too weak to
produce steering. Likewise, when we include the effects of the
coupling between the bright-mode b2 and the dressed atom
for g1/g2 < cot θ , the dark-mode b1 is unaffected, whereas
the occupancy of the bright-mode b2 is modified to 〈b†

2b2〉 =
−(Ã2 − B̃2) + N , and the physical analysis is similar to the
above case. For clearness, we present the above two cases in
Tables I, II.

Figures 6 and 7 displays the net cooling occupancies Ãl −
B̃l versus the normalized detuning �/� and the radio g1/g2,
which have chosen the same parameters as in Figs. 4 and 5,
respectively. In Fig. 6 it is clear that the atomic reservoir plays
different cooling or heating roles for b1,2 modes in different
regions of �/�. In the case of g1/g2 = 2, the b1 mode is cou-
pled with the atom, and the b2 mode is decoupled if �/� <

1.5. But in this case, the bright-mode b1 is heated in the stable
region, due to Ã1 − B̃1 < 0 from the inset in Fig. 6(a). When
�/� > 1.5, the b2 mode is cooled with Ã2 − B̃2 > 0 in the
stable region, and the dark-mode b1 is decoupled, as shown in
Fig. 6(a). On the contrary, when g1/g2 = 0.3, the b2 mode is
decoupled, and the b1 mode is cooled with Ã1 − B̃1 > 0 for
�/� < −3.03. The b1 mode is decoupled and the b2 mode
is heated with Ã2 − B̃2 < 0 for �/� > −3.03 in the stable

FIG. 7. The net cooling occupancies Ã1 − B̃1 (red line) and Ã2 −
B̃2 (blue line) vs the ratio of coupling strengths g1/g2. The parameters
are the same as in Fig. 5.
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TABLE I. One-way EPR steering for g1/g2 > cot θ .

Coupling Induced occupancies Cooling Heating Populations One-way steering

b1 Ã1 > B̃1 Yes No 〈b†
1b1〉 < 〈b†

2b2〉 m2 → m1

b1 Ã1 < B̃1 No Yes 〈b†
1b1〉 > 〈b†

2b2〉 No

region [Fig. 6(b)]. Similarly, Fig. 7 shows the net cooling oc-
cupancy Ãl − B̃l as a function of g1/g2 for fixed �/�. When
�/� = 2, the b2 mode is cooled with Ã2 − B̃2 > 0 in the
stable region for g1/g2 < 2.41. Conversely, for g1/g2 > 2.41,
the b1 mode is coupled with the dressed atom and heated,
and since the system at this time is unstable in most regions,
we did not draw the graphs of these intervals [Fig. 7(a)].
However, if �/� = −3, as shown in Fig. 7(b), the b1 mode
is cooled due to Ã1 − B̃1 > 0 in the steady-state regime of
g1/g2 > 0.31. The b2 mode is heated if g1/g2 < 0.31, and
the system is unstable in most regions, so the corresponding
graphs are not drawn.

To further analyze the dissipative effect, we will compare
the analytical results of the net cooling occupancy [Figs. 6
and 7] and numerical results of entanglement and steering
[Figs. 4 and 5]. We can see that the steering exists only in
some regions where the net cooling occupancy is greater than
zero. This means that the steering exists only possible when
dissipation is dominant. Moreover, the behavior of the net
cooling occupancy Ãl − B̃l shown in main maps of Figs. 6
and 7 can also explain the asymmetry of steering, as shown
in Figs. 4 and 5. Since the population difference of modes m1

and m2 is the same as that of the Bogoliubov modes b1 and b2,
〈m†

j m j〉 − 〈m†
kmk〉 = 〈b†

jb j〉 − 〈b†
kbk〉 = Ãk − B̃k , ( j = 2, k =

1 for g1/g2 > cot θ ; j = 1, k = 2 for g1/g2 < cot θ ). In the
case of g1/g2 > cot θ , the fact that the bright-mode b1 is
coupled with the atom reservoir while the dark-mode b2

is decoupled from them leads to the population 〈b†
1b1〉 al-

ways being smaller than 〈b†
2b2〉 when the cooling process

is dominant [i.e. Ã1 − B̃1 > 0 as shown in the red lines of
Fig. 6(b) and Fig. 7(b)]. Hence, 〈m†

1m1〉 < 〈m†
2m2〉, and the

condition for implementing G2→1 > 0 is more accessible to
satisfy than the condition for implementing G1→2 > 0, which
can be seen from Eq. (20). However, for the heating process
is dominant [i.e., Ã1 − B̃1 < 0 as shown in the red line of
Fig. 6(a)], 〈b†

1b1〉 > 〈b†
2b2〉, i.e., 〈m†

1m1〉 > 〈m†
2m2〉, which are

completely opposite to the situations for realizing one-way
steering, and so it is impossible to obtain the steering. For
the case of g1/g2 < cot θ , the dark-mode b1 is decoupled,
and the bright-mode b2 is coupled to the dressed atom. When
Ã2 − B̃2 > 0 [blue lines of Fig. 6(a) and Fig. 7(a)], the b2

mode is cooled and thus 〈b†
2b2〉 < 〈b†

1b1〉, i.e., 〈m†
2m2〉 <

〈m†
1m1〉, which leads to achieve G1→2 > 0 is more accessible

than G2→1 > 0 [Figs. 4(a) and 5(a)]. As shown in the blue
line of Fig. 6(b), the b2 mode is heated (Ã2 − B̃2 < 0), and

therefore no steering is generated. Theoretically, the larger the
net cooling occupancy is, the stronger the quantum correla-
tion will be. However, since the results in Figs. 4 and 5 are
under nonadiabatic conditions, there will be some deviation
compared with Figs. 6 and 7 in the position of the maximum
values. In addition, when the net cooling occupancy is rela-
tively small, the values of G1→2 and G2→1 are both equal to
zero but EN is nonzero. That means the quantum correlation
between two magnons generated by dissipation effect is too
weak to generate steering but enough to generate entangle-
ment in corresponding regions.

C. Experimental implementations

Let us discuss the feasibility of the present scheme. It
contains two ferromagnetic spheres, a superconducting artifi-
cial atom, and two microwave cavities. In the implementation
of experiments, we can use the single crystalline spheres of
yttrium iron garnet (Y3Fe5O12, YIG) as the ferromagnetic
samples. Strictly speaking, YIG is a ferrimagnetic material
[84,85], and the magnetism is carried by localized Fe mo-
ments in 8 tetrahedral (minority) and 12 octahedral (majority)
oxygen cages per unit cell, with antiparallel ferrimagnetic
states between the two coordinations. The spin wave spec-
trum of YIG consists of ferromagnetic (acoustic) modes
and antiferromagnetic (optical) modes with opposite polar-
izations. Only the lowest frequency ferromagnetic mode is
excited in the low-energy limit [22,86,87]. This enables us to
treat YIG as ferromagnet. In addition, YIG exhibits unique
features and advantages, including high spin density (ρs =
4.22 × 1027 m−3), low damping rate, and large frequency
tunability. Experimentally, the strong coupling [2–7] or even
ultrastrong coupling [8,9] between the YIG ferromagnetic
magnon and microwave photon has been realized. Coherent
coupling [22,24] and entanglement [25] between the ferro-
magnetic magnon in YIG spheres and superconducting qubits
are also experimentally implemented. The low-energy YIG
spheres used in the above experiments were all treated as
ferromagnets. Therefore, it is valid to use YIG spheres in the
low-energy limit as the candidates for ferromagnetic spheres
in our scheme. Proposed as in Fig. 1(a), the superconducting
artificial atom is located in the intersection (near the maximum
electric fields) of the cavities, and two distant YIG spheres are
mounted in two cavity arms (near the antinode of magnetic
field), respectively [88]. In this case, the frequencies of the

TABLE II. One-way EPR steering for g1/g2 < cot θ .

Coupling Induced occupancies Cooling Heating Populations One-way steering

b2 Ã2 > B̃2 Yes No 〈b†
1b1〉 > 〈b†

2b2〉 m1 → m2

b2 Ã2 < B̃2 No Yes 〈b†
1b1〉 < 〈b†

2b2〉 No
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cavity fields must be adjusted flexibly to keep far-detuned
from the superconducting artificial atom and magnon modes,
and the decay rates of cavities should be large enough to
ensure the effective coherent coupling between the dressed
atom and magnons after adiabatic elimination of the cavity
fields. This can be realized in a planar cross-shaped cavity
[66], which formed by using two identical orthogonal half-
wavelength microstrip line resonators of sufficient length. As
shown in Fig. 1(a), we can use an X -cavity and set locally
the bias magnetic fields along the hard magnetization axis
(z direction) of YIG spheres. The cavity magnetic fields are
respectively with the x and y directions, and the cavity electric
fields are along the z direction. In this scheme, we keep the
cavity modes empty so that unwanted dephasing caused by
photon fluctuations in the the cavities can be avoided. In addi-
tion, the impact of the quality factor reduction caused by the
damage at the cavity boundaries can be completely ignored
since we use cavity fields with large decay rates. Besides, the
unnecessary nonlinear effect can be weakened by choosing an
appropriate size of YIG spheres.

In the end, the generated magnon entanglement or steering
can be detected and verified by measuring the corresponding
4 × 4 CM, as used in Ref. [89,90]. The states of magnons
m1,2 can be measured by coupling the magnons to the separate
weak microwave probing fields p1,2. When the probing fields
are resonant with the magnon modes, respectively, the beam-
splitter-like interactions Hl

mp = gp1 (ml p†
l + m†

l pl ) (l = 1, 2)
are thus activated. Therefore, the states of the magnon modes
can be transferred onto the probe fields. By homodyning the
outputs of the probe fields and measuring the corresponding
4 × 4 CM, one can verify the entanglement and steering of
the magnons.

IV. CONCLUSION

In conclusion, we have proposed a protocol for imple-
menting and manipulating the remote one-way EPR steering
of magnons at steady state in the hybrid ferromagnetic-
superconducting systems. The two distant magnons are indi-
rectly coupled to a three-level �-type superconducting fluxo-
nium qubit via exchange of virtual photons in two dispersive
cavities. We find that the one-way steering of magnons can be
realized by a single pathway of Bogoliubov dissipation, be-
cause the atomic system can act as a reservoir. Instead of intro-
ducing asymmetry from the external environment, the steer-
ing directivity is determined by cooling either Bogoliubov
mode selectively in our scheme, which can be flexibly mod-
ulated by adjusting the ratio of the effective magnon-atom
coupling strengths g1/g2 and the normalized detuning �/�.
Additionally, the asymmetrical magnon-magnon steering by
dissipation is robust against the environmental decoherence
and do not require the preparation of the system in a particular
input state. Furthermore, the remote one-way EPR steering
of magnons in massive ferromagnetic spheres belongs to
genuinely macroscopic quantum steering and manifests its
nonlocal nature. Our paper is thus useful for the investigation
of macroscopic quantum effects and quantum information
processing.
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APPENDIX A: DRESSED ATOMIC POPULATION

Applying the dressed states transformation to the artificial
atomic relaxation terms, we obtain

L′
aρ =

∑
m,n=+,−,2


mn

2
(2σnmρσnm − σmmρ − ρσmm)

+ 
ph1

2
(σ++ρσ−− + σ−−ρσ++)

+
ph2

2
(2σpρσp − σpσpρ − ρσpσp), (A1)

wherein σp = σ++ − σ−− and the terms 
mn(m, n = +,−, 2)
describe the incoherent population transfer between different
dressed states for m �= n and the phase damping for m = n,
the terms 
ph j

( j = 1, 2) are the phase damping terms. The
parameters in the above expressions are


+− = γ31 cos4 θ + γ33

4
sin2 2θ,


−+ = γ31 sin4 θ + γ33

4
sin2 2θ,


+2 = γ32 cos2 θ, 
−2 = γ32 sin2 θ,


2+ = γ21 sin2 θ, 
2− = γ21 cos2 θ,


ph1
= γ33

4
sin2 2θ, 
ph2

= γ31

4
sin2 2θ,


++ = γ33 cos4 θ, 
−− = γ33 sin4 θ, 
22 = γ22,

(A2)

Neglecting the weak cavity and magnon modes temporarily,
we obtain the dynamics equations of the density matrix ele-
ments,

ρ̇++ = −λ11ρ++ + λ12ρ−− + λ13ρ22,

ρ̇−− = λ21ρ++ − λ22ρ−− + λ23ρ22,

ρ̇22 = λ31ρ++ + λ32ρ−− − λ33ρ22,

(A3)

where the coefficients in Eq. (A3) are

λ11 = γ31 cos4 θ + γ32 cos2 θ + γ33

4
sin2 2θ,

λ12 = γ31 sin4 θ + γ33

4
sin2 2θ, λ13 = γ21 sin2 θ,

λ21 = γ31 cos4 θ + γ33

4
sin2 2θ,

λ22 = γ31 sin4 θ + γ32 sin2 θ + γ33

4
sin2 2θ,

λ23 = γ21 cos2 θ, λ31 = γ32 cos2 θ,

λ32 = γ32 sin2 θ, λ33 = γ21.

(A4)

Associating with the closure relation of ρ++ + ρ−− +
ρ22 = 1, we can obtain the steady-state population ρs

j j,
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( j = +,−, 2) as

ρs
++ = λ12λ23 + λ13λ22

�
,

ρs
22 = λ11λ22 − λ12λ21

�
,

ρs
−− = λ11λ23 + λ13λ21

�
,

(A5)

where � = λ13(λ21 + λ22) + λ12(λ23 − λ21) + λ11(λ22 +
λ23).

APPENDIX B: THE EFFECTIVE HAMILTONIAN

The interaction Hamiltonian HI can be rewritten as HI =
HI1 + HI2 . The first term

HI1 = ga1 a1σ21 + ga2 a2σ32 + H.c., (B1)

represents the interactions of atom with the cavity fields; and
the second term,

HI2 =
∑
l=1,2

gml alm
†
l + H.c., (B2)

denotes the interactions of magnons with the cavity fields. In
terms of the dressed atomic states, we can use the term Hd −∑

l=1,2 �al a
†
l al to make a second rotating transformation. By

tuning the cavity fields �a1 
 0,�a2 � 0, (|λ− ∓ �a1,2 | 

|λ+ ∓ �a1,2 |) and neglecting the rapidly oscillating terms, the
interaction term of the cavity fields and the dressed atom is
derived as

H ′
I1

= ga1 sin θa1σ2+ei(�a1 −λ+ )t

+ ga2 cos θa2σ+2ei(�a2 +λ+ )t + H.c. (B3)

Since the cavity fields are coupled to the atom and the
magnons simultaneously, we have to keep the same rotating
frames for the cavity fields. That means that we have to return
to the original rotating frame. Therefore, the total interaction
Hamiltonian of the system is written in the form

H ′
I =(ga1 sin θa1 + ga2 cos θa†

2)σ2+

+
∑
l=1,2

gml alm
†
l + H.c. (B4)

Furthermore, we consider that the system operates in the dis-
persive regime, where the dressed atom-cavity detuning and

magnon-cavity detuning are larger than the coupling strength
between them i.e., δ1,2 = �a1,2 ∓ λ+ 
 ga1,2 , �1,2 = ωm1,2 −
ωa1,2 
 gm1,2 . The effective coupling among the dressed atom
and the magnons can be obtained after eliminating the vari-
ables of cavity fields by using a unitary transformation Heff =
e−λX H ′eλX , where H ′ = H ′

0 + H ′
I with the total free Hamil-

tonian under the dressed state representation H ′
0 = H0 + Hd.

The anti-Hermitian operator X is introduced with the form

X =ga1

δ1
sin θa†

1σ+2 + ga2

δ2
cos θa†

2σ2+

+
∑
l=1,2

gml

�l
a†

l ml − H.c.,

which is satisfies as [H ′
0, X ] = −H ′

I . The λ is introduced to
show the orders in the perturbation expansion, and would be
set to 1 after the calculations. In terms of the Baker-Campbell-
Hausdorff formula, we have

Heff = H ′
0 + λH ′

I + λ[H ′
0, X ] + λ2[H ′

I , X ]

+ λ2

2
[X, [X, H ′

0]] + O(λ3)

= H ′
0 + λ2

2
[H ′

I , X ] + O(λ3).

Tuning the magnon modes of two YIG spheres nearly resonant
with the Rabi sidebands of the artificial atom, respectively,
i.e., �m1 ≈ −�m2 ≈ λ+, keeping resonant terms only and adi-
abatically eliminating the empty cavity modes, we can obtain
the effective Hamiltonian:

Heff =
∑

j=+,2,−
ν jσ j j +

∑
k=1,2

νmk m†
kmk

+ g1 sin θ (m1σ2+ + m†
1σ+2)

− g2 cos θ (m2σ+2 + m†
2σ2+),

where the effective frequencies are derived as ν+ =
λ+ + g2

a2
/�2, ν2 = g2

a1
/�1, ν− = λ−, νml = −�ml + g2

ml
/�l ,

gl = gal gml /|�l |. Here we should note that �l ≈ δl (l =
1, 2) at the current frequency condition. Applying a
new unitary transformation defined by the operator U =
e−i(

∑
j=+,2,− ν jσ j j+

∑
k=1,2 νmk m†

k mk )t , and assuming νm1 = −νm2 =
ν2 − ν+, we can finally rewrite the effective Hamiltonian
as

Heff = (g1 sin θm1 − g2 cos θm†
2)σ2+ + H.c. (B5)
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