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Coherent control in atomic chains: To trap and release a traveling excitation
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We introduce a protocol for dynamical dispersion engineering in an atomic chain formed by an ordered array
of multilevel atoms with subwavelength lattice constant. This chain supports dark states that are protected from
dissipation and can be understood as spin waves traveling along the array. By using an external control field
with a spatially varying elliptical polarization we correlate internal and external degrees of freedom of the array
in a controllable way. The coherent control over atomic states translates into control over the group velocity of
the spin waves. A traveling excitation can be stored and released without dissipation by adiabatically changing
the control field amplitude. This protocol is an alternative to the more conventional electromagnetically induced
transparency and exemplifies the rich physics born of the interplay between coherent control and correlated
decay.
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I. INTRODUCTION

Recent years have witnessed a renewed interest in the opti-
cal response of atomic arrays with subwavelength interatomic
distances. This interest is driven by an exquisite control ac-
quired over atomic positions that allows for arbitrary shapes
to be constructed from single-atom components [1–6]. As the
collective decay of an array is determined by the interference
between radiative paths of individual atoms, its optical re-
sponse is intimately connected to the underlying geometry.
Atoms arranged in a two-dimensional array have been show
to act as a subradiant mirror [6] while one-dimensional (1D)
chains and rings have been proposed to construct lossless
atomic waveguides [7,8] and cavities [9]. While these re-
sponses showcase the potential of ordered arrays as versatile
light-matter interfaces, an extension towards dynamical engi-
neering remains challenging.

Control over the internal degrees of freedom in light-
matter interfaces provides an attractive tool to manipulate
their response in real time. A striking example is that of elec-
tromagnetically induced transparency (EIT) [10–13], where
laser pulses traveling inside a disordered atomic gas can be
slowed down significantly. In EIT, a transparency window is
opened into an otherwise optically dense medium by means of
an external control field that generates a dark state due to de-
structive interference. Light propagates through the medium
as a polariton [14] whose speed is reduced as the excitation
is predominantly transferred to the dark state of the atomic
gas. Moreover, this polariton can be brought to a standstill by
using a time-varying control field [15,16].
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Here, we explore the interplay between coherent control
and correlated decay in the most simple arrangement, a 1D
atomic array, and present a protocol for dynamical disper-
sion engineering that allows for trapping and releasing single
traveling excitations. We use an external control field that is
far-detuned from the excited states of atoms with a three-level
V configuration. The control field displays a subwavelength
polarization gradient that modifies the dipole-dipole interac-
tions between the atoms and effectively couples their internal
(spin) and external (position) degrees of freedom. Coherent
control over the internal states is translated into control over
the group velocity of an excitation that propagates through
the array. Adiabatic changes of the helicity of the control
field allow us to slow down, trap, and reverse the direction
of traveling excitations, without being limited by single-atom
spontaneous emission.

II. CONTROLLED RESPONSE THROUGH A
FAR-DETUNED FIELD

The proposed setup, sketched in Fig. 1, consists of a chain
of lattice constant a where each atom is characterized by its
position zn and is assumed to have a ground state |gn〉 and
three excited states |en

s 〉 (s = {0,±}). The chain is illuminated
by a control field composed of two counterpropagating plane
waves of electric-field amplitudes E+ and E− that share the
same frequency ωc but have counter-rotating circular polar-
izations e±. Their superposition creates a standing wave of
elliptical polarization and constant ellipticity throughout the
chain [17],

Ec(z, t ) = e−iωct {(E+ + E−)e′
x + i(E+ − E−)e′

y} + c.c.,

whose axes e′
x,y rotate around the chain axis,

e′
x = cos kczex − sin kczey,

e′
y = sin kczex + cos kczey.

We first discuss how the control field induces a position-
dependent dipole moment in the atoms due to its polarization
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FIG. 1. An atomic chain of lattice constant a is driven by a far-
detuned control field with periodic polarization gradient. The field
consists of two counterpropagating circularly polarized plane waves
that form a standing wave of elliptical polarization whose axes rotate
along the chain axis (black and gray arrows) and induces a position-
dependent dipole moment by coupling ground |g〉 and excited |e±〉
states. The coupling strength depends on the Rabi frequency |�| and
detuning � with a relative phase that depends on the atomic position.
The field enables control over the dispersion relation of dark states
that emerge in the chain for lattice constants a < λ0/2 (λ0 being the
atomic transition wavelength).

gradient. Each atom couples to this field via the dipolar
interaction d̂(n) · Ec(zn) with d̂(n) being the electric-dipole
moment operator and Ec(zn) the field amplitude evaluated
at the atomic position zn. The coupling strength h̄� =∑

s dsEs(zn) is determined by the electric-dipole matrix el-
ements between states g and es, denoted by ds, and the
projection of the field along their respective orientations. With
the control field far-detuned from the atomic transition fre-
quency ω0 (� � |�|, with � = ω0 − ωc), its effect on the
nth atom is accurately described by the Hamiltonian [18–20]

Ĥ(n)
eff = h̄

2
(� + δ)

(∑
s=±

σ̂ (n)
ss − σ̂ (n)

gg

)

−
∑
s=±

h̄δ

4
(1 − s cos θ )σ̂ (n)

ss

+ h̄δ

4
sin θ (e−2ikczn σ̂

(n)
+− + e2ikczn σ̂

(n)
−+), (1)

plus an additional term accounting for the state |en
0〉, which

remains decoupled and is ignored throughout. In this ex-
pression, the operator σ̂

(n)
ss′ = |en

s 〉〈en
s′ | connects two atomic

states and the parameter δ = |�|2/2� represents a light shift.
The local polarization of the field is imprinted on each atom
through the mixing angle

θ = 2 arctan (E+/E−), (2)

and the phases ±2kczn, which carry all the information re-
garding the atomic position. For atomic ensembles confined

to regions much smaller than their transition wavelength this
phase is irrelevant and can be absorbed into a global coupling
parameter. It, however, plays a central role on extended sys-
tems [21], as we now discuss for an atomic chain.

Atoms in an ordered chain interact with one another
via modes of the surrounding electromagnetic environment.
Tracing out these modes under the Born and Markov ap-
proximations gives rise to a master equation for a density
matrix of atomic states only [22,23]. Being interested in
single-excitation dynamics, we consider a quantum trajectory
evolution equivalent to the resulting master equation [24]. The
state is then described by an ensemble of stochastic wave
functions evolving under a Schrödinger equation with non-
Hermitian Hamiltonian

H̃ =
∑

n

Ĥ(n)
eff − h̄

N∑
n,m=1

∑
s=±

Kn,m
s,s σ̂ (n)

sg σ̂ (m)
gs , (3)

interrupted by jump operators that drive the system into the
absolute ground state when an excitation leaving the array is
recorded. The interatomic coupling reads [22,23]

Kn,m
s,s = 3π
0

k0
e∗

s · G(zn − zm, ω0) · es, (4)

where G(zn − zm, ω0) propagates the electric field scattered
from site n to site m, and es is the atomic transition polar-
ization connecting the involved states [25]. 
0 refers to the
single-atom spontaneous emission rate, and k0 = ω0/c is the
wave-vector associated with the atomic transition frequency.
In the absence of the control field the Hamiltonian is diagonal
in polarization indices since the scattered field does not mix
different polarization components along the chain axis [26].

A. Collective modes as spin waves

The control field introduces a local rotation of the polar-
ization that mixes different excited states along the chain.
For infinite atomic chains, the system is invariant under a
displacement of a lattice constant a together with a rotation
of an angle kca. This helical symmetry is represented by the
operator

Î (a, kc) = exp

[
iP̂za + iĴzkca

h̄

]
, (5)

which tracks the local polarization of the control field
along the array, as the linear-momentum operator P̂z = −ih̄∂z

generates displacements along the chain and the angular-
momentum operator Ĵz = h̄[

∑
n σ̂

(n)
++ − σ̂

(n)
−−] rotations around

its axis. The helical operator commutes with the Hamiltonian
and provides a basis to diagonalize it. Using this basis the
eigenstates of the Hamiltonian are found to be Bloch waves
of quasimomentum k ∈ [−π/a, π/a) [20]:

|U, k〉 =
∑

n

eikzn
[
eikczn sin (αk/2)σ̂ (n)

−g + e−ikczn cos (αk/2)σ̂ (n)
+g

]|g〉⊗N , (6a)

|L, k〉 =
∑

n

eikzn
[
eikczn cos (αk/2)σ̂ (n)

−g − e−ikczn sin (αk/2)σ̂ (n)
+g

]|g〉⊗N , (6b)
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FIG. 2. Dispersion engineering by an external control field. (a) Dispersion relation of an undriven chain showing two degenerate bands that
correspond to two internal degrees of freedom (σ± transitions). Dispersion relation of upper (dashed line) and lower (solid) states of a chain
driven by (b) circularly polarized or (c) elliptically polarized control fields. Red and blue colors represent the relative weight of the |e+〉 and
|e−〉 transitions in the eigenstates, respectively. Notice that both states mix for an elliptically polarized drive. For all plots, the lattice constant
is a = λ0/6 and the radiative region is shaded. In panel (a) the frequency shift is ωshift = ω0. In panels (b) and (c), ωshift = ω0 + (2� + δ)/4
and the control field has wavelength λc = λ0 and generates a light shift δ = 6
0. Green dots indicate the central frequency of the excitation
plotted in Figs. 3 and 4.

where indices {U, L} account for the internal degrees of free-
dom [27–29] and αk represents the relative populations of
excited states [30]. The dispersion relation ωU(L) and collec-
tive decay 
U(L) of upper (lower) states satisfies

ωU(L)(k) − i 1
2
U(L)(k) = 1

2

[
� + 1

2δ − i
0 − K̃(k + kc)

− K̃(k − kc) +
(−)

1
2�k

]
. (7)

In the above equation, K̃ is the Fourier transform of Eq. (4) for
atomic polarizations perpendicular to the chain axis and takes
the form [4]

K̃(k) = 3
0

4i

3∑
m=1

( i

ak0

)m

[Lim(ei(k0+k)a) + Lim(ei(k0−k)a)],

with Lim being the polylogarithm of order m [31], while �k is
the band splitting [20]

�k =
√

(δ sin θ )2 + {δ cos θ + 2[K̃(k + kc) − K̃(k − kc)]}2.

B. Guided modes and dispersion engineering

For a < λ0/2, subradiant states with 
U(L)(k) = 0 emerge.
These states are identified as guided modes of the atomic
waveguide and their dispersion relation is plotted in Fig. 2
for different control field values. Subradiant states lie beyond
the light line (their wave vectors satisfy |k| > k0) and cannot
decay radiatively due to energy-momentum mismatch. This is
readily seen in Fig. 2(a), where, in the absence of a control
field, the guided modes associated with each state |e±〉 are
degenerate. One can understand guided modes as providing
a transparency window for photons to travel along the ar-
ray until scattered out at the edges. Due to the near-field
dipole-dipole interaction, the transparency bandwidth scales
as ∼
0/(k0a)3.

The effect of the control field is exemplified in Figs. 2(b)
and 2(c). The field breaks the degeneracy between excited
states and introduces a relative phase between |U, k〉 and
|L, k〉, which displaces the center of the light line for each
band by ±kc. For circular polarization [θ = 0, Fig. 2(b)] there
is no mixing between |e±〉 states. The dispersion relation is
identical to that of an undriven chain, except for a frequency

shift and a displacement in quasimomentum (a transition-
dependent shift from the origin). For elliptical polarizations
[θ 
= 0, Fig. 2(c)], internal and external degrees of freedom
couple, thus mixing |en

+〉 and |em
−〉 states [see Eqs. (6)].

The angle θ is controlled by the ratio between E± am-
plitudes and determines the state mixing. The control field
then governs the dispersion relation, allowing us to modify
the bandwidth (by approaching θ = π/2 and reducing the
coupling between neighboring sites thus causing the bands to
flatten) or to make the system directional [32], for example. It
also determines, indirectly, the group velocity of an excitation
that propagates along the chain as a spin wave.

III. TO TRAP AND RELEASE A TRAVELING EXCITATION

The group velocity can then be changed mid-flight using a
time-varying control field. Consider an excitation with central
frequency inside the lower band ωL and initial group velocity
vL = ∂ωL/∂k. Adiabatic changes [33–35] of the mixing angle
induce a coherent, reversible transfer of this excitation from
states |e+〉 to |e−〉, while keeping its central quasimomentum
unperturbed. The transfer changes the group velocity through

v̇L ∝ θ̇ sin θ∂k[K̃(k + kc) − K̃(k − kc)]. (8)

This dynamical control can be used to trap and release a
pulse as it propagates along the chain. As an example, we
simulate numerically an excitation propagating along a chain
of N = 200 sites. The excitation is created by an external
pulse described by an additional term Hdrive = h̄E (t )(σ̂ (1)

−g +
σ̂

(1)
+g ) + H.c. in Eq. (3). The pulse has a Gaussian temporal

profile

E (t ) =
√

π

τ
e−i�pt exp

[
−

( t − to
τ

)2
]
Eo (9)

centered at to = 50
−1
0 with a low intensity to constrain

the dynamics to the single-excitation manifold (τ = 12
−1
0

and Eo = 0.35). It is detuned from the atomic transition by
�p = −3.5
0 to populate the lower band [see green dots
in Fig. 2(b)] and is considered to enter through the side of
the chain where the spatial overlap to subradiant modes is
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FIG. 3. Dynamical trapping of an excitation inside a chain of
N = 200 atoms before being (a) released or (b) reflected. The
excited-state population of each site (yellow distribution) and mixing
angle (blue line) are shown as a function of time for a chain whose
parameters follow from Fig. 2(b).

maximized. Figure 3 shows the resulting spin wave as a func-
tion of time and lattice site. The evolution is conditioned to
a measurement record that marks no excitations leaving the
array. The chain is initially prepared in its ground state and
is driven by a circularly polarized control field (θ = 0) to
guarantee a large bandwidth and low dispersion. The spin-
wave propagates freely along this chain before the control
field is adiabatically changed until it becomes linearly polar-
ized (θ = π/2), bringing the wave near to a standstill. The
mixing angle is then varied to oscillate around θ = π/2 for
three cycles before it is released [θ = 0, Fig. 3(a)] or reflected
back [θ = 0.8π , Fig. 3(b)].

The trapping and retrieval of an excitation is limited by
the decay rate and dispersion of the chain. For long but fi-
nite chains, subradiant modes couple to the electromagnetic
environment at both ends of the chain—where radiative paths
cannot cancel through destructive interference—and acquire
a small decay rate that decreases with the site number as
N−3 [4]. This spatially localized coupling allows for both a
decay-free propagation of a spin-wave inside the chain and
a nonzero decay at the ends where it scatters out. We plot
the population of the chain in Fig. 4(b) to exemplify this
behavior. Notice the small dip at time t 
 75
−1

0 . It occurs
because the driving field also couples to fast spin waves that
reach the end of the chain shortly after being excited and are
scattered into free space or reflected back. Slow spin waves,
by contrast, remain far from the edges at this time and are
trapped without losses. Once released, the slow spin wave
will eventually reach the end of the chain and scatter into a
traveling light pulse [20].

FIG. 4. Internal dynamics and dispersion control of the excita-
tion trapped in Fig. 3(a). (a) Group velocity (orange dashed) and
mixing angle (blue solid). (b) Total population of the excited state
(black solid) with |e−〉 (blue dashed) and |e+〉 (red dotted) contribu-
tions. (c) Fidelity of the protocol for cyclic (solid green) and constant
(dashed blue) interventions. Red circles indicate the end of a cycle.

A. Range of validity of the trapping protocol

Dispersion of the spin wave limits its trapping time, but
this effect can be corrected by the control field. The dis-
persion relations ωL and ωU display opposite curvatures in
most of the subradiant region [see solid and dashed lines in
Figs. 2(b) and 2(c)]. Therefore, the phase acquired by most
quasimomentum components changes from positive to nega-
tive as the ellipticity of the control field is varied. While this
behavior can be exploited to trap an excitation, it can also
be used to compensate for its natural dispersion. Figure 4(c)
shows the fidelity of the protocol as a function of trapping time
and compares the case of a cycling ellipticity to that of a con-
stant value (θ = π/2). The fidelity F (t ) = |〈ψ (tπ/2)|ψ (t )〉|2
quantifies changes of the spin wave after it is stopped at time
tπ/2 and released at a time t through their normalized wave
functions. As the ellipticity of the control field changes, there
is a partial rephasing of different quasimomentum compo-
nents that reduces the dispersion.

The experimental realization of these ideas requires strin-
gent (but achievable) conditions on the hyperfine structure of
the atomic species and underlying lattice constant. It requires
a Fg = 0 to Fe = 1 transition (found in bosonic strontium and
ytterbium) and deeply subwavelength interatomic distances
(recently achieved in optical lattice setups [36–38]). It also
requires for similar control field and atomic resonance fre-
quencies, imposing that kc 
 k0. As small lattice constants
give rise to increased Brillouin zones and larger bandwidths,
the relative shift in quasimomentum of upper and lower bands
decreases. This makes the two bands similar and makes it
difficult to find regions where they display the opposite cur-
vatures required to trap an excitation. To move past this
restriction one can choose a control field that couples the
excited states to a third, highly excited, state. The third state
acts as a bridge between |e±〉 while allowing for kc and k0 to
be independent from each other.
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IV. CONCLUSION

Dynamical control and dispersion engineering make
atomic arrays into versatile light-matter interfaces. We have
shown how to manipulate the optical properties of ordered
atomic media via external control fields, a task hard to achieve
in conventional dielectric structures. These ideas were ex-
ploited to trap and release an excitation, opening the door
to novel protocols for quantum information processing. Long
trapping times may enable the realization of two-photon gates
without the need for Rydberg interactions. Our proposal also

allows us to engineer exotic properties, such as directional
transport [39].
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