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Charge migration and attosecond solitons in conjugated organic molecules
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Charge migration (CM) is the electronic response that immediately follows localized ionization or excitation
in a molecule, before the nuclei have time to move. It typically unfolds on subfemtosecond time scales and most
often corresponds to dynamics far from equilibrium, involving multielectron interactions in a complex chemical
environment. While CM has been documented experimentally and theoretically in multiple organic and inorganic
compounds, the general mechanism that regulates it remains unsettled. In this work we use tools from nonlinear
dynamics to analyze CM that takes place along the backbone of conjugated hydrocarbons, which we simulate
using time-dependent density-functional theory. In this electron-density framework we show that CM modes
emerge as attosecond solitons and demonstrate the same type of solitary-wave dynamics in both simplified model
systems and full three-dimensional molecular simulations. We show that these attosecond-soliton modes result
from a balance between dispersion and nonlinear effects tied to time-dependent multielectron interactions. Our
soliton-mode mechanism, and the nonlinear tools we use to analyze it, pave the way for understanding migration
dynamics in a broad range of organic molecules. For instance, we demonstrate the opportunities for chemically
steering CM via molecular functionalization, which can alter both the initially localized electron perturbation
and its subsequent time evolution.
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I. INTRODUCTION

The movement of electrons and holes in matter regulates
many physical and chemical processes such as chemical re-
actions, photosynthesis and photovoltaics, and charge transfer
[1,2]. For the electrons, these dynamics can reach down to
the Angstrom and attosecond spatiotemporal scales and are
commonly referred to as charge migration (CM) [3–8]. At the
fastest time scales, CM is understood as the purely electronic-
driven dynamics that takes place before nuclei have time to
move. It can be the precursor for many of the downstream
processes mentioned above [2,9–11] and therefore a means of
understanding and ultimately steering them with the goal of
charge-directed reactivity [12,13].

The study of molecular CM is a formidable endeavor.
Experimental studies require coherent probes with attosec-
ond resolution [2,6]. Such ultrafast probes have been enabled
by the continuous progress in x-ray and table-top infrared
sources over the past few decades [1]. For example, recent
experiments have investigated how fast CM couples to the
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nuclear degrees of freedom, leading to structural changes
[14,15]. Theoretical investigations of CM necessitate models
with multiple interacting electrons [16,17], even when nuclear
motion is ignored [18–22]. Furthermore, systematic studies
of the underlying mechanisms responsible for regulating CM

FIG. 1. CM manifests as attosecond solitons in conjugated or-
ganic molecules: (top) Schematic of our investigations of CM in the
π system of a conjugated carbon chain. We initially put a localized
hole at one end of the conjugated system and then (colormap) track
the field-free CM electron dynamics it induces in the molecule.
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involve the analysis of systems with a large number of coupled
degrees of freedom.

In this work, we leverage tools from nonlinear dynamics
to study (sub-)femtosecond field-free CM unfolding in con-
jugated organic molecules following the sudden creation of
a localized hole in the system, a paradigm for site-specific
ionization. This is motivated by the fact that nonlinear dy-
namics [23,24] has developed general-purpose methods for
tackling and understanding the structure of high-dimensional
phase spaces. Indeed, nonlinear dynamical analyses have been
instrumental in many areas of atomic, molecular, and optical
science, including in transition-state theory of chemical reac-
tions [25–27] and strong-field physics [28–31].

We show that periodic modes of CM that feature a lo-
calized hole that travels back and forth along the molecule’s
conjugated chain, as sketched in Fig. 1, emerge as attosecond
solitons. These solitary waves represent a balance between
dispersion and nonlinear effects that are driven by time-
dependent multielectron interactions. Previous studies have
invoked the beating between a few molecular orbitals (MOs)
as the underlying mechanism that regulates CM [6,9,18]. In-
stead, here we propose a different view of the CM dynamics,
directly in the time domain. Our attosecond-soliton picture
provides a generic mechanism for sustained CM motions in
organic molecules that does not rely on nonphysical MOs
to describe CM dynamics. Notably, we find that the same
molecule can support several of these CM modes with peri-
ods varying by several hundred attoseconds. We discuss the
implication of our results for future theoretical and experi-
mental CM studies, including the opportunities for chemically
steering CM by molecular functionalization, both in creating
the initially localized electron hole and for its subsequent time
evolution.

The paper is organized as follows: Section II introduces
the theoretical and computational framework we use to study
CM dynamics. Section III proceeds with a detailed nonlinear
dynamical analysis of CM modes in model conjugated hy-
drocarbons for which we can perform extensive simulations.
Specifically, we investigate the phase-space structures that
enable periodic CM modes and establish the solitary-wave
mechanism that supports such dynamics. Then, in Section IV,
we build on those results to provide evidence for the same type
of attosecond-soliton CM mode in full quantum-chemistry
computations of the bromohexatriyne molecule. We also dis-
cuss experimental implications of our findings. Section V
concludes the paper and discusses the implication of our re-
sults for future CM studies.

II. THEORETICAL AND COMPUTATIONAL
FRAMEWORK

We consider field-free CM in a conjugated hydrocarbon
molecular cation following the sudden creation of a localized
one-electron hole in the system, e.g., as would result from
site-specific ionization. Our general approach is sketched in
Fig. 1: We initially put the localized hole at one end of the con-
jugated π system and study how the ensuing CM dynamics
moves the electron/hole density across the entire molecule.
The delocalized π structure of conjugated hydrocarbons has
previously been shown to serve as the backbone for CM in

these compounds [22]. To demonstrate the generality of our
finding, we consider two levels of theory: (1) A reduced
model of the π system for which we can perform extensive
computations and detailed analyses and (2) high-performance
quantum-chemistry simulations in a real molecule, where we
leverage what we learned in the reduced case. The reduced
π system corresponds to a one-dimensional (1D) model of
an alkene. It emulates the carbon chain conjugated structure
by matching the bond lengths between the various C centers
of the full 3D molecules. We detail our model π system
in Appendix A. In all simulations we use time-dependent
density-functional theory (TDDFT) with fixed nuclei. TDDFT
has been shown to successfully explain CM experiments
and to reproduce correlated wave-function CM simulations
[7,19]. More broadly, TDDFT computations are commonly
used in atto/femtosecond science for their ability to systemat-
ically handle large molecules with many active and correlated
electrons [32,33]. For a molecular cation with N − 1 active
electrons the TDDFT dynamics, in the Kohn-Sham (KS) for-
malism [34], is given by the system of one-particle equations

i∂tφk (�r; t ) = Ĥeff[ρ](�r)φk (�r; t ), (1)

together with the one-body density

ρ(�r; t ) =
N−1∑

k=1

|φk (�r; t )|2. (2)

Following Pauli’s exclusion principle, the KS orbitals {φk}k

are orthonormal wave function in their spin and space
coordinates. The one-body density provides a real-space
representation of the electronic-charge distribution in the
molecule. From it, the hole density ρh(�r; t ) = ρN (�r) − ρ(�r; t )
is computed by taking the difference with the neutral’s
ground-state density ρN (�r). We stress the distinction be-
tween three related but different elements of TDDFT: (i)
The KS orbitals of Eq. (1) are the dynamical variables of
the TDDFT problem; in themselves, KS orbitals do not cor-
respond to physically observable quantities. (ii) MOs are
time-independent wave functions; we use them as a spatial
basis set to build initial conditions in the model π system. (iii)
The one-body density of Eq. (2) is the physical observable we
are ultimately interested in for CM analyses. We provide ad-
ditional details about our TDDFT simulations in Appendix B.

In what follows, we investigate the influence of the initial
hole localization on its subsequent CM dynamics. Specif-
ically, we systematically and continuously vary the initial
degree of localization of the one-electron hole around one end
of the π -system structure in both the 1D and full 3D simu-
lations. By convention we set 0% localization to correspond
to the cation ground state and 100% to correspond to a fully
localized hole, as sketched at the top of Fig. 1. Because of the
different implementation of the 1D and 3D TDDFT simula-
tions of Eqs. (1) and (2) (see Appendix B), we use different
avenues to introduce a variably localized initial the hole in
model π system and full TDDFT computations. We provide
details about our initial hole configurations in Appendix C.
In short, for the model π system, we build the variably lo-
calized hole configuration with a linear combination of a few
occupied and unoccupied MOs of the corresponding cation.
To build the initial hole for the full TDDFT simulations, we
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FIG. 2. A localized one-electron hole initially introduced in the
π system of a conjugated hydrocarbon leads to CM modes whose
periods vary with the initial degree of localization. While varying the
degree of localization of the initial hole, or equivalently the excitation
energy of the molecule, we track the main frequency/period of the
CM motion that moves the particle hole throughout the entire chain
(dark orange dots). We compare these with direct computations of
periodic CM modes in the same system (light gray dots).

use constrained DFT (cDFT) [35], which combines standard
energy minimization techniques with the constraint of having
a certain amount of the hole localized around a specific center
in the molecule. This approach allows us to consistently im-
pose the initial-hole configuration without involving ad hoc
MO mixing. The cDFT approach was shown to be successful
in a previous study of CM in halocarbons [22]. Following
the initialization of the hole, we compute the subsequent
TDDFT dynamics in the full, unrestricted TDDFT framework
of Eqs. (1) and (2) for both the model system and the real
molecule. Taken together, these equations correspond to a
nonlinearly coupled system, which we study using tools from
nonlinear dynamics.

III. NONLINEAR DYNAMICAL ANALYSIS

Figure 2 summarizes the result of our nonlinear analysis of
CM dynamics in a reduced model of the conjugated π system
of alkene/alkyne hydrocarbons. Specifically, we investigate
the influence of the initial hole localization on the CM dynam-
ics it induces in the molecule (dark orange markers). The more
the initial hole is localized in the molecule the further away
its electronic structure is from the ground-state distribution.
This translates into a higher level of molecular excitation,
which we indicate along the lower x axis. For each initial
hole configuration we compute the subsequent field-free CM
dynamics as given by Eqs. (1) and (2). We then extract the
main frequency component of any motion that moves the hole
density between the two ends of the molecule—shown as the
right y axis in the figure. We aim to obtain a global picture of
phase space through the dependence of this frequency on the
initial conditions. In nonlinear dynamics, this approach cor-
responds to a frequency-map analysis (FMA) [36,37] which,
for instance, has been very successful in celestial mechanics to
understand the dynamics inside the Solar System [38,39]. In
particular, FMA can be used to discriminate between chaotic
motions, with a strong sensitivity to the initial conditions, and
regular ones, among them periodic motions.

FIG. 3. Examples of CM modes in a conjugated hydrocarbon
model with a particle electron/hole that periodically moves through
the π system. (a, b) Electron-density contribution from the KS-
orbital channel in which we introduce the initial localized-hole
perturbation—see text. (c) Hole density associated with panel (b).
The overhead labels 1© and 2© indicate the plateaus of Fig. 2 from
which these are taken.

A. FMA

For this work, we configure our FMA to focus on CM
dynamics unfolding within the first few tens of femtosec-
onds following the initial localized-hole creation. We provide
further details regarding our implementation of the FMA in
Appendix D. The results of the FMA, as shown in Fig. 2,
reveal several striking features. First it shows that, as a trend,
the period of the CM increases (frequency decreases) with in-
creasing molecular excitation energy. In other words, initially
more localized holes lead to slower CM. Second, this increase
is irregular and proceeds in an almost stepwise fashion via a
series of plateaus. Within each of these plateaus, the period of
the CM is essentially independent of the excitation energy or,
equivalently, of the details of the way in which the hole was
initialized.

Next, we look at the type of dynamics associated with
the plateaus in the FMA of Fig. 2. We have found that
these dynamics are best understood by looking at the density
contribution from the KS orbital in which we introduce the
initial localized-hole perturbation. In Section III B below we
explain how this KS-orbital density matches the CM motion
of the hole we are ultimately interested in. For illustration, in
Figs. 3(a) and 3(b) we show the temporal evolution of two
sample densities—see the matching labels 1© and 2© in Fig. 2.
Both panels reveal qualitatively similar motions where the
initial electron density in the KS orbital, instead of spread-
ing, remains localized in space and periodically propagates
through the entire π system like a particle.

Aside from the difference in the periods, a second quantita-
tive difference between panels (a) and (b) of Fig. 3 is that (b)
exhibits a “cleaner” propagation of the electron density along
the molecule. This difference in the quality of the CM motion
can be explained with the extended FMA of Fig. 4 by looking
at the next-to-leading frequency components in the CM signal.
In Fig. 4, in addition to the main frequency component �1

we identify several overtones corresponding to an anharmonic
component �2 and two harmonic ones, 2�1 and 3�1 (seen
above ≈3.5 eV). Notably, the plateau labeled 1© has both
�1 and �2 components, which manifest as a faint aperiod-
icity in the evolution of the electron density. On the other
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FIG. 4. Extended FMA for the model π system showing the
leading frequencies of the CM dynamics. The component labeled
�1 corresponds to the main frequency shown in Fig. 2. The curves
labeled 2�1 and 3�1 mark FMA components with twice and three
times the frequency value of the main component �1, respectively –
note that below ≈3.5 eV, the 3�1 curve plots outside of the range
of display. The labels 1© and 2© indicate the plateaus from which the
sample CM-mode of Fig. 3 are taken. We also show the result of the
FMA with the linearized-dynamics approximation of �Ĥeff = 0 in
Eq. (3), which reduces the dynamics to the beating between MOs.

hand, in plateau 2©, only multiples of the lowest frequency
are visible, which translate into a very clean quasiperiodic
migration. Generally speaking, Fig. 4 shows that we have
a single fundamental CM frequency plus its harmonics, and
hence clean CM motion, for initial hole localization above
about 60% in the model π system. We have checked that we
observe qualitatively similar results in the other plateaus of
the FMA.

B. KS orbitals vs hole dynamics

The single KS-orbital density contributions shown in
Figs. 3(a) and 3(b) are important for understanding how the
CM dynamics is organized; however, recall that they do not
correspond to physically observable quantities. For that, in
Fig. 3(c) we show the hole density associated with Fig. 3(b).
Clearly, the two panels exhibit a similar pattern as the hole
density mostly stays localized in space while it propagates
through the π system. Overall, the contributions from the
other KS-orbital channels to the hole density show up mostly
as higher-frequency patterns localized around the individual
atomic centers. We understand the correspondence between
the selected KS orbital and the hole densities as the result of
the orthonormality of the KS orbitals in Eq. (1): The localized
density of panel (c) corresponds to an unpaired KS-orbital
channel, which therefore contributes a single electron to the
one-body density of Eq. (2). The other KS orbitals, which
are forced to “stay away” from it via the orthogonality con-
dition, all correspond to fully filled KS channels and therefore
contribute two electrons to the density. In the end, the orthog-
onality between the unpaired and the paired KS orbitals leads
to the matching hole density in panel (c).

C. Solitary-wave CM mechanism

To better understand the mechanism that regulates the
particle-like hole dynamics shown in Fig. 3, we formally
decompose the TDDFT Hamiltonian operator of Eq. (1) into
its linear and nonlinear parts

Ĥeff[ρ(t )] = Ĥeff[ρGS] + �Ĥeff[ρ(t )], (3)

where ρGS is the ground-state one-body density of the molec-
ular cation. Modeling the CM as a beating of MOs amounts
to neglecting the nonlinear part �Ĥeff[ρ(t )] given that, in
the basis of MOs, Ĥeff[ρGS] is a diagonal matrix with the
MO energies on its diagonal. We find that the linearized
MO-beating approximation yields qualitatively and quanti-
tatively different results from the full TDDFT dynamics.
To illustrate this, in Fig. 4 we compare the extended FMA
for the full TDDFT dynamics, including time-dependent
electron-electron interactions, with its linearized approxima-
tion �Ĥeff = 0 in Eq. (3), which reduces the dynamics to the
beating between MOs. The figure shows a clear disagreement
between the two results both in terms of the shapes of the
frequency components and in the number of them.

Intuitively, we understand the inadequacy of the MO-
beating picture as follows: MOs are delocalized over the entire
π system and thus, in order to obtain a tightly localized
electron density over a portion of the chain, one needs the
coherent superposition of multiple MO wave functions. Then,
the mismatch in the energy spacing between these MOs would
lead to a decoherence, and thus spread, of the electronic den-
sity, which we do not observe in our simulations. This shows
that the dispersion associated with the linear part of Ĥeff[ρ(t )]
in Eq. (3) is canceled by nonlinear effects associated with the
nonlinear component �Ĥeff[ρ(t )], ultimately leading to the
nondispersing solitary-wave dynamics shown in Fig. 3.

D. Periodic CM soliton modes

To conclude our nonlinear analysis of the model π system,
we return to Fig. 2. While the FMA of Fig. 2 sheds light on
the CM dynamics unfolding from the initial hole we impose
in the conjugated system, it only explores a narrow portion
of the phase space that would otherwise be accessible to CM
motions in general. Note also that one could design different
ways to generate the initial hole than what we have chosen
here, each potentially exploring a different portion of the
phase space. To more fully explore the phase space in our
model system, we complement our FMA with a direct sys-
tematic search for periodic CM modes that exhibit a traveling
solitary wave similar to Figs. 3(b) and 3(c) in the full param-
eter space of the model π system. We discuss our strategy for
finding these periodic CM modes in Appendix E. We show the
period and excitation energy of these periodic CM modes with
light gray markers in Fig. 2. As a whole, these results give a
very clear picture of how the dynamics of particle-like CM is
organized in the phase space of the π system: The “ladder”
of extended plateaus again shows that essentially the same
CM period can be observed over a wide range of excitation
energy, often spanning more than one eV. We also recover
the general trend that slower CM modes are only available
for more excited electronic configurations of the target—note
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the lack of periodic CM modes in the upper-left corner of the
figure.

In Fig. 2, the comparison between the periodic CM
modes and the FMA—light gray and dark orange markers,
respectively—is stunning: All the plateaus in the latter match
a set of periodic modes in the former. In other words, these
periodic CM modes form the dynamical skeleton that regu-
lates the CM we observed when creating an ad hoc localized
hole at one end of the π system. The “cleanliness” of that
motion—e.g., Fig. 3(a) vs Fig. 3(b)—depends on how close
the initial condition puts the initial electronic configuration to
a suitable periodic CM mode it can mimic. Altogether this
suggests a two-pronged approach to CM studies: (i) Asking
whether the molecule of interest supports periodic soliton CM
modes. If so, then (ii) identify how to tailor the ionization
process to access the CM mode(s) of interest. We revisit this
idea in Section IV below.

E. Functionalizing the carbon chain

The bare conjugated carbon chain we have considered so
far is, of course, highly symmetric and therefore an imprac-
tical system for generating a localized hole at one end in
a realistic experimental scenario. Instead, one can consider
functionalizing the chain by attaching a functional group at
one of its ends, as sketched in Fig. 1. In simulations, we do so
both for the model π system and for full TDDFT simulations
(see Section IV). Specifically, in this paper we consider the
example of using a halogen functional group.

Experiments and simulations have shown that strong-field
ionization can create localized ionization on the halogen cen-
ter [32] in halocarbons and that the resulting valence hole can
then migrate through the rest of the carbon-chain conjugated
system [7,22]. In the model π system, we can emulate a
halogen function by putting a single atomic center at one end
of the conjugated carbon chain. When varying the properties
of this atomic center we have found that, in order for the
electron/hole perturbation to migrate between the function
and the carbon chain as it does in our original CM example of
Fig. 1, their respective orbitals must hybridize when forming
the overall compound’s electronic structure. This finding is
consistent with observations in full TDDFT simulations of
functionalized alkynes using different halogens [22]. Intu-
itively, such delocalized hybridized orbitals provide a bridge
for the electron density to move between the function and the
carbon-chain parts of the molecule.

To conclude this section, we illustrate a second potential
use of molecular functionalization as a means to steer CM
dynamics. In the same type of halo-functionalized model π

system as before, we now start the hole on the chain side of the
compound. Figure 5 compares the CM dynamics for two dif-
ferent functionalization configurations, here controlled with
the distance between the function atom and the chain. Panel
(a) shows a fuzzy FMA that lacks the clean solitary-wave
CM-mode dynamics of the chain alone, as illustrated in panel
(c). On the other hand, panel (b) exhibits clean frequency
components with plateaus similar to those of the chain on
its own. This is confirmed in the sample CM dynamics of
panel (c) where the particle density travels almost periodically
along the conjugated backbone and only transiently “leaks” to

FIG. 5. Molecular functionalization can be used to steer CM:
Adding different functional groups to the same carbon chain can
(top) inhibit or (bottom) enhance CM modes in the rest of the π sys-
tem. Here we vary the functionalization by having different distances
between the halogen and the chain: 4 a.u. in panels (a, c) and 3 a.u.
in panels (b, d). The figure compares CM dynamics after initiating
the variably localized hole on the chain side of the molecule. Panels
(a, b) correspond to extended FMAs similar to Fig. 4. For the initial
condition marked by the vertical blue lines, panels (c,d) show two
sample CM dynamics as in Fig. 3. In panel (b), like in Fig. 4, the
labels 2�1 and 3�1 indicate FMA frequency components with twice
and three times the fundamental frequency �1, respectively.

the function when the migration reaches the lower end of the
chain. In both cases, the halogen function acts as a bias for the
rest of the π system by (bottom) enhancing or (top) inhibiting
its CM modes.

IV. CM IN “REAL” CONJUGATED MOLECULES

We now leverage the results of our nonlinear analysis of
CM dynamics in the model π system and apply them to
“real” molecules and to experimental considerations. Though
we cannot systematically explore the phase space in the full
molecule in the way we did in the reduced system, the FMA
analysis is quite revealing in terms of what we have already
observed. We provide details of the TDDFT simulations,
initial-hole configuration, and FMA computations in bromo-
hexatriyne in Appendixes B, C, and D, respectively.

In Fig. 6 we show the result of an FMA analysis of CM
in the singly ionized bromohexatriyne molecular cation com-
puted with the high-performance full-dimensional ab initio
quantum-chemistry TDDFT package NWChem [40,41]. Here
we vary the initial portion of the electron hole localized on the
Br atom using cDFT as discussed above and, after releasing
the hole-localization constraint and following the time evolu-
tion, we compute the main frequency of CM dynamics that
move the density between the Br and the final C ≡ C − H
groups in the target—orange markers in Fig. 6. The results
are strikingly similar to the simplified π system model: As
a trend, the period of the CM increases with the initial-hole
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FIG. 6. A similar CM frequency/period analysis as in Fig. 2
can be applied to full-dimension, all-electron, quantum-chemistry
TDDFT simulations in bromohexatriyne (inset molecule). Orange
dots mark the main frequency of the CM motion that moves the hole
throughout the entire molecule between the Br and final C ≡ C-H
groups. We added the horizontal dashed gray lines by hand to high-
light the two plateaus we observe in the frequency map.

localization (excitation energy). This increase happens in a
step-wise fashion over ranges of initial conditions that lead
to essentially the same CM period. Note the two distinctive
plateaus between about 1.7 and 3.3 eV and 4.3 and 6 eV,
highlighted with the dashed gray lines in the figure. We have
checked that the hole dynamics in these plateaus resemble
those of the model π system—see Ref. [22] and its supple-
mental movie for sample CM motions in full simulations of
halocarbons.

A notable quantitative difference between the FMA in the
model π system of Fig. 2 and in the full bromohexatriyne
of Fig. 6 is that the latter has apparently fewer plateaus,
and that the plateaus extend over a wider range of excitation
energies. We speculate on two possible mechanisms for this.
(i) Ionization condition: By using an energy-minimization
condition, the cDFT might be more “gentle” than the ad
hoc initial-hole configuration we use in the model π system.
This would lead the FMA in bromohexatriyne to effectively
explore a relatively narrower portion of phase space and thus
“see” fewer of the CM-mode plateaus than the molecule can
support. In an experimental context this speaks to the idea
that, by properly tuning the initial parameters, one can have an
ionization process that yields a relatively large bandwidth of
excitation energy but still induces a consistent CM response.
(ii) Structural condition: Compared with the rest of the alkyne
group, the Br function is effectively a heterogeneous center.
So, while the alkyne and Br components properly hybridize to
form the molecular cation, this mixing might not be compati-
ble with all the CM-mode plateaus of the bare C chain alone.
In turn this would result in a net reduction of the number of
plateaus supported by the molecule and thus accessible to the
FMA. This second explanation speaks to the idea of chemical
control of CM motions, where a functional group added to
a conjugated organic system can act as a bias and alter the
ability of the rest of the molecule to support periodic CM
modes—see the discussion around Fig. 5. More broadly, the
possibility for altering a molecule’s ability to support CM dy-
namics through changes in its electronic configuration opens
the door to doing so through external knobs like laser fields:
The laser would selectively switch sustained CM “on” or “off”
in the target sample by enabling or preventing its CM modes.

V. CONCLUSION AND OUTLOOK

In conclusion, we have performed detailed analyses of CM
in conjugated organic molecules using tools from nonlinear
dynamics (FMA and periodic-motion analysis). In the den-
sity picture we showed that periodic CM modes, with a hole
traveling back and forth through the π system in a particle-
like manner, emerge as solitary waves. This mechanism is
fundamentally different from the few-orbital beating pictures
that have previously been employed [6,9,18] and is driven
by time-dependent multielectron interactions. Obviously, for a
detailed quantitative prediction of CM modes like their precise
period or other metrics associated with the CM dynamics
[22], one needs a detailed modeling of the molecular sys-
tem. However, we showed that a lower level of theory, using
a simplified conjugated model, qualitatively reproduces key
features of the full system. In an extension of the results shown
here we have found similar features when further simplifying
our model π system and neglecting exchange and correlation
interactions in the simulations (see Appendix F). This sug-
gests that the particle-like CM motions we identify emerge as
a result of the dynamical mean-field interaction alone. Long-
range many-electron interactions are a hallmark of conjugated
organic molecules, which makes the possibility for sustained
CM motions widely available in these systems—at least until
the onset of nuclear motion.

Surprisingly, our analysis reveals that the same molecule
can support several soliton CM modes with very different
periods. For the model π system shown in Fig. 2, the identified
CM periods vary over a range of about 1 fs. In the full bromo-
hexatriyne simulations of Fig. 6, the two identified CM modes
are 500 as apart. Those modes are characterized by regions
of the parameter space over which different initial conditions
lead to the same almost-periodic CM motion, all essentially
with the same period. In other words, the overall CM dynam-
ics is not so much determined by the details of the individual
electronic degrees of freedom—nor the competition between
them—than it is driven by their collective response. This type
of collective behavior is usually referred to as synchronization
and has been identified throughout physics, engineering, and
biology [42–44]. We also note that these findings are compati-
ble with the fully correlated Schrödinger-equation formalism,
where field-free dynamics can only take discrete frequency
values associated with the energy difference between the
all-electron excited-state wave functions, and that more ex-
cited levels tend to be more closely spaced leading to longer
periods. In comparison, our attosecond-soliton mechanism
provides a novel way to understand CM dynamics directly
in the time domain and real space. In all cases, the type of
parametric robustness of the CM dynamics we have identi-
fied is essential for experimental applications as it provides a
robustness of the migration dynamics against uncertainties in
the way the hole might be created. The results presented in
this work, along with the analysis tools that we employed, can
help provide important perspectives for the design of future
CM studies.
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APPENDIX A: REDUCED π SYSTEM MODEL

We systematically build our reduced π system from 1D
carbon chains, denoted (C2)n, with n the number of pairs of
“C” centers. These chains are the 1D analog to 3D alkenes
without the hydrogen centers. We use soft-Coulomb [45]
effective potentials to describe electron interactions, parame-
terized as Vsc[Z, a](x) = − Z√

x2+a2 , with Z the effective charge
and a the softening parameter. For electron-electron interac-
tions we take a softening parameter aee = √

2. In the model
π system, each C center contributes one electron with ZC =
1. We set the respective positions for the atomic centers to
emulate conjugation-like bonding by using slightly different
interatomic distances within and between C2 pairs, respec-
tively, set to 2.5 and 2.7 a.u. We chose these distances to be
comparable to the ones from full-dimensional (functionalized)
alkenes. Finally, for electron-ion interactions, we select the
softening parameter aC = 1 for which we consistently find
reasonable electronic properties throughout the (C2)n family
in terms of both MO energies and shapes.

For simplicity, we only show results for the (C2)4 system.
We systematically find similar results—multiple plateaus in
the FMA associated with periodic CM modes with a traveling
particle-like hole, longer CM periods accessible only to more
excited configurations, etc.—for the other members of the
(C2)n family.

To functionalize the model π system we add a single
atomic “X” center with ZX = 2 at one end of the molecule,
meant to emulate a halogen group. We then use the softening
parameter aX and distance between the function and the chain
to tune the coupling/hybridization between the two.

APPENDIX B: (TD)DFT SIMULATIONS

For the 1D model π system, we use spin-restricted TDDFT
with local-density approximation (LDA) Slater-exchange
and correlation potentials [46] and an average-density self-
interaction correction (ADSIC) [47]. Numerically, we dis-
cretize the model π system and simulate its TDDFT dynamics
of Eq. (1) on a Cartesian grid.

For full-dimensional ab initio TDDFT simulations in bro-
mohexatriyne [22], we use an all-electron, spin-polarized
level of theory with the hybrid PBE0 functional, cc-pVDZ
basis set for the H and C atoms and Stuttgart RLC ECP for
Br, as implemented in the NWChem package [40,41].

APPENDIX C: VARIABLE INITIAL HOLE
CONFIGURATION

We initialize all simulations with a one-electron hole in the
conjugated system of the molecular cation.

For the model π system, we take an intuitive approach to
building the initial condition using a single parameter to con-
trol the initial hole localization. In this system, the molecular
cation has one unpaired KS orbital, while the other ones are
fully filled. In the unpaired KS-orbital channel, we linearly
mix a one-electron wave function localized around an end

FIG. 7. Variation of the initial electron/hole configuration we
use for the FMA of the model π system. (a–c) Samples of the initial
electron and hole density distributions along the molecular backbone
for 20, 55, and 85% localization, respectively. (d) Initial electron
density in the unpaired KS orbital we use as initial condition in the
FMA of Fig. 2. (e) Initial hole density associated with (d). Note that
panels (d, e) use the same colormaps as in Fig. 3.

C dimer with the delocalized cation’s ground-state highest-
occupied MO; the initial localization of the hole is controlled
by this mixing coefficient. We then reorthonormalize the re-
maining paired KS orbitals. In the end, the difference in the
number of electrons contributed by the unpaired and paired
KS orbital yields the relative deficit of electronic density over
one of the final C dimers.

Figure 7 illustrates how the initial electron and hole config-
uration depends on the localization parameter in the model π

system. The colormaps stop at 100% initial hole localization
because our initial-condition mixing scheme has an upper
bound for the excitation energy it can induce in the cation.
On the other hand, we do not have the same upper limit when
directly searching for periodic CM modes in the full parameter
space, and we can therefore achieve the higher excitation
energies shown in Fig. 2.

For full (3D) TDDFT simulations, the use of the cDFT
method [35] was described in Ref. [22]. In Ref. [22] all CM
simulations were initialized with the constraint of having ex-
actly one electron hole on the halogen center. Here instead we
keep the overall one-electron hole but vary the amount of that
hole that is constrained to be localized around the Br center.
Figure 8 illustrates how the initial hole configuration varies
with the DFT constraint in bromohexatriyne computations.
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FIG. 8. Like in Fig. 7(e), variation of the initial hole configura-
tion for the FMA of bromohexatriyne of Fig. 6.

Note that the cDFT algorithm enables us to impose over 100%
initial localization of the hole on the Br end.

APPENDIX D: FMA

Generally speaking, an FMA tracks the variation of the
main frequency component(s) associated with a dynamical
process as a function of a continuously varied initial condition
[36,37]. While we use a slightly different implementation of
the FMA for the analysis of the model π system and full (3D)
TDDFT simulations, the underlying idea is the same in both
cases: To analyze CM motions across the entire molecule, we
construct a complex-valued scalar signal sFMA(t ) = sl (t ) +
isr (t ) by computing the amount of electron/hole density
around the left and right ends of the molecule, respectively,
sl,r . For the FMA itself, we use the time interval 10 fs � t �
30 fs: We discard the first 10 fs to avoid transient effects
associated with the sudden introduction of the localized per-
turbation in the system. We have checked that including them
in the analysis has only cosmetic effects and does not change
our results and conclusions.

For the model π system (Fig. 2), we compute sl,r by pro-
jecting the electron-density contribution for the unpaired KS
orbital over the end C2 dimers. We choose this projection for
consistency with the results of Figs. 3(a) and 3(b) where we
showed that the underlying organization of the CM dynamics
is best apparent in this KS-orbital channel. We have checked
that we obtain essentially the same results when projecting the
entire hole density on the same end dimers.

For the full TDDFT simulations (Fig. 6), we compute
sl,r by simply integrating the hole density around the Br
(left side of the median plane to the Br-C bond) and around
the −C ≡ C−H (right side of the median plane to the final
≡ C−C ≡ bond) groups, respectively.

FIG. 9. Same extended FMA as in Fig. 4, but here we have ne-
glected the exchange-correlation term in our TDDFT simulation, i.e.,
electron-electron interactions are reduced to the mean-field Hartree
potential only. The orange and purple curves are the FMA compo-
nents for the TDDFT simulations labeled by the frequency values
�1, its multiples 2�1 and 3�1, and �2. The green horizontal lines
show the result of an FMA starting from the same initial conditions
but using the linearized-dynamics approximation of �Ĥeff = 0 in
Eq. (3), which reduces the dynamics to the beating between MOs.

APPENDIX E: PERIODIC CM MODE SEARCH

The TDDFT system of Eq. (1) and (2) has an infinite num-
ber of degrees of freedom, which makes it impractical for a
direct computation of periodic CM modes. Instead we employ
a two-step approach: First, we restrict the dynamics to few
occupied and unoccupied MOs of the corresponding cation
and use a nonlinear solver—here the Levenberg-Marquardt
Method as implemented in MATLAB©—to find periodic mo-
tions in that restricted space. Then, we use those restricted
periodic modes as initial conditions in unrestricted TDDFT
simulations and check that they still correspond to periodic
motions. We stress that, with this approach, the restricted
computations only serve as an intermediary to determining
periodic CM modes in the same TDDFT framework we use
for our other CM simulations.

APPENDIX F: π-SYSTEM MODEL WITHOUT
EXCHANGE-CORRELATION INTERACTIONS

Figure 9 illustrates how one obtains qualitatively very sim-
ilar results when neglecting exchange-correlation interactions
in the model π system compared with Fig. 4.
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