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Unraveling looping efficiency of stochastic Cosserat polymers
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Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating
polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum
limit the configuration of a polymer is a curve in the group SE(3) of rigid body displacements, whose energy
can be modeled via the Cosserat theory of elastic rods. Cosserat rods are a more detailed version of the classic
wormlike-chain (WLC) model, which we show to be more appropriate in short-length scale, or stiff, regimes,
where the contributions of extension and shear deformations are not negligible and lead to noteworthy high
values for the cyclization probabilities (or J-factors). We therefore observe that the Cosserat framework is a
candidate for gaining a better understanding of the enhanced cyclization of short DNA molecules reported in
various experiments, which is not satisfactorily explained by WLC-type models. Characterizing the stochastic
fluctuations about minimizers of the energy by means of Laplace expansions in a (real) path integral formulation,
we develop efficient analytical approximations for the two cases of full looping, in which both end-to-end relative
translation and rotation are prescribed, and of marginal looping probabilities, where only end-to-end translation
is prescribed. For isotropic Cosserat rods, certain looping boundary value problems admit nonisolated families
of critical points of the energy due to an associated continuous symmetry. For the first time, taking inspiration
from (imaginary) path integral techniques, a quantum mechanical probabilistic treatment of Goldstone modes in
statistical rod mechanics sheds light on J-factor computations for isotropic rods in the semiclassical context. All
the results are achieved exploiting appropriate Jacobi fields arising from Gaussian path integrals and show good
agreement when compared with intense Monte Carlo simulations for the target examples.
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I. INTRODUCTION

It is widely known that polymers involved in biological
and chemical processes are anything but static objects. In
fact, they are subject to stochastic forcing from the external
environment that lead to complex conformational fluctuations.
One of the fundamental phenomena which is understood to
perform a variety of roles is polymer looping, occurring when
two sites separated by several monomers, and therefore con-
sidered far from each other, come into proximity. A basic
observation is that the interacting sites alone do not charac-
terize the phenomenon of looping, but rather it is the whole
polymeric chain that rearranges itself for this to occur. As
a consequence, the length and mechanical properties of the
chain, together with the thermodynamic surrounding condi-
tions are finely tuning the likelihood of such events. There
are many reasons to study this topic, which have led to a
considerable literature. For instance, looping is involved in
the regulation of gene expression by mediating the binding
and unbinding of DNA to proteins [1–3], such as the classic
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example of the Lac operon [4,5]. In addition, DNA packag-
ing (chromatin formation) [6], replication and recombination
[1,7] depend on the ability of the polymer to deform into
loop configurations, as do other cellular processes. Proteins
exhibit intrachain loops for organizing the folding of their
polypeptide chains [8]; e.g., antibodies use loops to bind a
wide variety of potential antigens [9]. When dealing with a
closed loop, it is usually appropriate to refer to cyclization or
ring closure. In this regard, the production of DNA minicircles
is being investigated for their possible therapeutic applications
[10]. Even in the context of nanotechnologies, ring closure
studies have been performed for carbon nanotubes subject to
thermal fluctuations [11] and wormlike micelles [12].

From the modeling point of view, it is appropriate to
look back at some of the historical milestones that under-
pin our work. In 1949, Kratky and Porod [13] introduced
the wormlike-chain (WLC) model for describing the con-
formations of stiff polymer chains. Soon after, the complete
determination of the polymeric structure of DNA guided sci-
entists towards the application of WLC-type models in the
context of DNA statistical mechanics, allowing probabilistic
predictions of relevant quantities of interest. Historically, the
computations have been performed in terms of Fokker-Plank
equations [14,15], but also exploiting the point of view of
path integrals [16–18], a technique inherited from Wiener’s
work [19,20] and quantum mechanics [21]. These ideas were
largely investigated by Yamakawa [22–29], who in particular
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considered the problem of computing ring-closure probabili-
ties, now ubiquitous in molecular biology [30–32]. Nowadays,
for a homogeneous chain, the exact statistical mechanical
theory of both the WLC and the helical WLC (with twist)
is known [33–35], and the topic has been rigorously phrased
over the special Euclidean group SE(3) [36].

In parallel, in the early years of the 20th century, the
Cosserat brothers Eugène and François formulated Kirch-
hoff’s rod theory using what are now known as directors [37].
However, the difficulties arising from the generality of the
model, which includes the WLC as a particular constrained
case, hindered its application to stochastic chains. Only quite
recently, targeting a more realistic description of DNA, the
mentioned framework has been partially or fully exploited
both within new analytical studies [38–43] and intense Monte
Carlo (MC) simulations [44–47], the latter being only a partial
solution because of time and cost.

In this article we aim to fill the gap between user-friendly
but simplistic models (WLC) on the one hand, and accurate
but expensive simulations (MC) on the other, still maintaining
the analytical aspect which allows one to draw conclusions of
physical interest. This is achieved using [41,42] as a starting
point for bridging the two historical lines of research, i.e.,
exploiting efficient (real) path integral techniques in the semi-
classical approximation [48–53] (or Laplace method [54]),
and working within the special Cosserat theory of rods in
SE (3). Namely, for studying the end-to-end relative displace-
ments of a fluctuating polymer at thermodynamic equilibrium
with a heat bath, we describe the configurations of the chain
in a continuum limit by means of framed curves over the
special euclidean group. Thus, from an assumed Boltzmann
distribution on rod configurations, a conditional probability
can be expressed as the ratio of a Boltzmann weighted in-
tegral over all paths satisfying the desired end conditions,
to the analogous weighted integral over all admissible paths
(partition function). The resulting path integrals are finally
approximated via a quadratic (semiclassical) expansion about
a minimal energy configuration, for which the crucial assump-
tion is that the energy required to deform the system is large
with respect to the temperature of the heat bath. This means
computing probabilities for length scales of some persistence
lengths or less, which turns out to be of great relevance in
biology.

Although the present study is general and is applicable to
various end-to-end statistics, we focus on the computation
of ring-closure or cyclization probabilities for elastic rods,
targeting three significant aspects. The first is the possibility of
systematically distinguishing between the statistics provided
by end positions alone (marginal looping) and the ones pro-
vided including also end orientations (full looping) [48], for
Kirchhoff as well as for Cosserat rods. We emphasize that
although Kirchhoff rod theory [55] generalises both Euler’s
elastica theory to model deformations in three dimensions,
and the WLC model allowing arbitrary bending, twisting, and
intrinsic shapes of the rod, it does not allow extension or
shearing of the rod centerline. This is indeed a prerogative of
the Cosserat, more general framework, where the centerline
displacement and the cross-sectional rotation are considered
as independent variables. We show that these additional de-
grees of freedom are crucial in the analysis of polymer chains

in short-length scale, or stiff, regimes, in both the full and
marginal cases, where the system exploits extension and shear
deformations for minimizing the overall elastic energy, in the
face of an increasingly penalizing bending contribution. This
allows the cyclization probability density to take high values
even when the WLC model (and Kirchhoff) is vanishing ex-
ponentially.

The second is addressing the “perfect problem” in the
semiclassical context, where the symmetry of isotropy gives
rise to a “Goldstone mode” [56] leading to a singular path
integral, and requires a special treatment by suitably adapting
(imaginary) quantum mechanical methods [57–62] and func-
tional determinant theories [63–65], which are novel in such
a generality in the context of elastic rod. For simple models,
an analysis in this direction is present in [66]. The concepts of
isotropy and nonisotropy can be roughly related to a circular
shape rather than an elliptical shape for the cross section of
the rod, and the two cases have two different mathematical
descriptions in terms of Gaussian path integrals, which we
discuss in detail in the course of this article. In particular, the
effect of nonisotropy for semiflexible chain statistics has been
addressed from a path integral point of view in [42] for the
planar case and in [41] for the three-dimensional case (and
will be here taken up and simplified), but without resolving
the singularity arising in the isotropic limit.

The last significant aspect included in the present work is
deriving approximated solution formulas that can always be
easily evaluated through straightforward numerical solution of
certain systems of Hamiltonian ODE, which in some particu-
larly simple cases can even be evaluated completely explicitly.
Versions of the solution formulas, involving evaluation of
Jacobi fields at different equilibria and subject to different
initial conditions (ICs), are obtained for the two cases of full
and marginal ring-closure probabilities. The efficiency aspect
in computing looping probabilities, maintaining the same ac-
curacy of MC in the biologically important range less than one
or two persistence lengths, is fundamental. This is because
MC simulation is increasingly intractable due to the diffi-
culty of obtaining sufficiently good sampling with decreasing
polymer length, which is the limit where the approximation
is increasingly accurate. Contrariwise our approximations are
increasingly inaccurate in longer length regimes where good
MC sampling is easily achieved. Remarkably, the qualitative
behavior of the probability densities coming from Laplace
approximation and from MC sampling are the same regardless
of the length scale.

We stress that the stiffness parameters expressing the phys-
ical properties of the polymer are allowed to vary along the
material parameter of the curve, leading to a nonuniform rod
which, in the context of DNA, would represent sequence-
dependent variations. In addition, the model allows coupling
between bend, twist, stretch and shear, as well as a nonstraight
intrinsic shape. Notwithstanding the latter generality, we pre-
fer to illustrate our method with some basic examples of
uniform and intrinsically straight rods and comparing it with a
suitable MC algorithm, in order to highlight the contributions
provided by the different choices of cyclization boundary con-
ditions (BCs) in the presence of isotropy or nonisotropy, and
to investigate the effect of shear and extension when moving
from Kirchhoff to Cosserat rods. Finally, the results will be
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FIG. 1. Schematic representation of a Cosserat rod with an elliptical cross section (nonisotropic), where bending, twist, shear, and
extension/compression are allowed deformations. For Kirchhoff rods only bending and twist are permissible. The standard WLC model
takes only bending deformations into account, and the rod is assumed to be intrinsically straight with circular cross section (isotropic).

exposed under the hypothesis of linear elasticity, even though
the theory applies to more general energy functionals.

The structure of the article is as follows. In Sec. II we
give an overview of the statics of special Cosserat rods,
with particular emphasis on equilibria and stability for the
boundary value problems (BVPs) involved, and we further
establish the relations with simpler models. In particular, the
Hamiltonian formulation of the Euler-Lagrange and Jacobi
equations provides a common theoretical framework for both
Kirchhoff and Cosserat rods. In Sec. III we set out a preview
of the examples that will be considered in the course of the
article, namely, in the context of linear elasticity. Here we
focus on the physical properties that characterize shearable
and extensible-compressible polymers and explain how these
degrees of freedom improve the understanding of the problem.
Therefore, we study the minimizers of the energy, distinguish-
ing between the nonisotropic and isotropic cases. The role of
the continuous variational symmetries of isotropy and unifor-
mity is explained. Before describing the computational setting
in detail, we devote a section (Sec. IV) for summarizing the
general formulas that we obtain for estimating end-to-end
probabilities of fluctuating elastic rods as a proxy for inter-
preting the behavior of polymers in a thermal bath. Then
we introduce the path integral formulation of the problem
in Sec. V, prescribing an appropriate parametrization of the
rotation group and giving the functional representations of
full and marginal looping probability densities. Afterwards,
the explicit approximated formulas for such densities are de-
rived, initially in the case of isolated minimizers and thereafter
in presence of nonisolation, for which a special theoretical
analysis is performed. Moreover, in Sec. VI we provide a MC
algorithm for stochastic elastic rods, exploited to benchmark
our results. The examples are finally investigated from the
point of view of cyclization probabilities in Sec. VII, with spe-
cial focus on shear and extension contributions for Cosserat

rods in the short-length scale regimes. Further discussion and
conclusions follow.

II. BACKGROUND ON ELASTIC ROD EQUILIBRIA
AND THEIR STABILITY

A comprehensive overview of the theory of elastic rods in
the context of continuum mechanics can be found in [67]. In
particular, we follow the specific notation and Hamiltonian
formulations introduced in [68]. Briefly, a configuration of a
Cosserat rod is a framed curve q(s) = (R(s), r(s)) ∈ SE (3)
for each s ∈ [0, L], which may be bent, twisted, stretched, or
sheared. The vector r(s) ∈ R3 and the matrix R(s) ∈ SO(3)
model, respectively, the rod centerline and the orientation of
the material in the rod cross section via a triad of orthonormal
directors {d i(s)}i=1,2,3 attached to the rod centerline, with
respect to a fixed frame {ei}i=1,2,3. As a matter of notation,
the columns of the matrix R(s) in coordinates are given
by the components of the vectors d j (s) in the fixed frame
{ei}, namely, Ri, j (s) = ei · d j (s), i, j = 1, . . . , 3. In Fig. 1 we
show a schematic representation of the the degrees of freedom
allowed within the special Cosserat theory of rods in relation
to other simpler models that will be outlined in the course of
this section.

Strains are defined as u(s), v(s) where d ′
i = u × d i, r′ =

v, with u the Darboux vector and the prime denoting the
derivative with respect to s. Sans-serif font is used to de-
note components in the director basis (e.g., ui = u · d i), and
we write u = (u1, u2, u3), v = (v1, v2, v3), etc. Physically,
u1 and u2 represent the bending strains and u3 the twist
strain. Analogously, v1 and v2 are associated with transverse
shearing, whereas v3 with stretching or compression of the
rod. In compact form, we have u×(s) = R(s)T R′(s), v(s) =
R(s)T r′(s), where u× is the skew-symmetric matrix or cross
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product matrix of u having (1,2), (1,3), and (2,3) entries,
respectively, equal to −u3, u2, and −u1.

The stresses m(s) and n(s) are defined as the resultant mo-
ment and force arising from averages of the stress field acting
across the material cross section at r(s). In the absence of
any distributed loading, at equilibrium the stresses satisfy the
balance laws n′ = 0, m′ + r′ × n = 0. Equilibrium configura-
tions can be found once constitutive relations are introduced,
which we do in a way that facilitates the recovery of the
inextensible, unshearable limit typically adopted in polymer
physics.

Namely, we consider a pair of functions W, W ∗:R3 × R3 ×
[0, L] → R that (for each s ∈ [0, L]) are strictly convex, dual
functions under Legendre transform in their first two argu-
ments, and with 0 ∈ R6 their unique global minimum. If û(s)
and v̂(s) are the strains of the unique energy minimizing
configuration q̂(s), then ∀ε > 0, we introduce the Hamil-
tonian function H = W ∗(m, εn; s) + m · û + n · v̂, and the
constitutive relations are u = ∂H/∂m = W ∗

1 (m, εn; s) + û,
v = ∂H/∂n = εW ∗

2 (m, εn; s) + v̂, which can be inverted
to obtain m = W1(u − û, v−v̂

ε
; s), n = 1

ε
W2(u − û, v−v̂

ε
; s),

where the Lagrangian W (u − û, v−v̂
ε

; s) defines the elastic

potential energy of the system as
∫ L

0 W (u − û, v−v̂
ε

; s) ds.
Note the use of the subscripts to denote partial derivatives
with respect to the first or second argument. The standard
case of linear constitutive relations arises when W ∗(x; s) =
1
2 x · R(s)x and W (y; s) = 1

2 y · P (s)y for x, y ∈ R6, where
R6×6 � P−1(s) = R(s) = R(s)T > 0, with P (s) a general
nonuniform stiffness matrix and R(s) the corresponding com-
pliance matrix. For each ε > 0 and given W , W ∗, we arrive at
a well-defined Cosserat rod theory, where, e.g., the full poten-
tial energy of the system might include end-loading terms of
the form λ · [r(L) − r(0)], λ ∈ R3.

The point of the above formulation is that the Hamilto-
nian and associated constitutive relations behave smoothly in
the limit ε → 0, which imply the unshearability and inex-
tensibility constraint on the strains v(s) = v̂(s), where v̂(s)
are prescribed. This is precisely a Kirchhoff rod model, ab-
breviated as (K), in contrast to (C) for Cosserat. However,
the ε → 0 limit of the (C) Lagrangian is not smooth; rather
the potential energy density for the (K) rod is the Leg-
endre transform of W ∗(m, 0; s) + m · û + n · v̂ w.r.t. m ∈
R3, or W (K)(u − û; s) − n · v̂. In the case of linear elastic-
ity for a (C) rod with P (s) = (K B

BT A
)

and K(s), B(s),

A(s) in R3×3, the (1,1) block of the compliance matrix is
R1,1 = (K − BA−1BT )−1 and W (K)(u − û; s) = 1

2 (u − û) ·
K(K)(s)(u − û), with K(K) = K(K)T = R−1

1,1 > 0.
Uniform helical WLC models are recovered in the case

of a uniform (K) rod when û(s), v̂(s), and K(K)(s) are all
taken to be constant. (For any uniform rod, (C) or (K), the
Hamiltonian function is constant along equilibria.) Linearly
elastic (K) rods are (transversely) isotropic when K(K)(s) =
diag{k1(s), k2(s), k3(s)} with k1 = k2 and û1 = û2 = v̂1 =
v̂2 = 0. Then m3 is constant on equilibria, and W (K) =
1
2 [k1κ

2 + k3(u3 − û3)2] reduces to a function of the square
geometrical curvature κ (s) of the curve (where it should
be noted that u3(s) is still the twist of the {d i} frame
which is not directly related to the geometrical torsion of
the Frenet framing of the rod centerline). The WLC model

arises when k1(s) is constant and the twist moment m3

vanishes.
There is an extensive literature concerning the study of

equilibria of a given elastic rod. Numerically this involves
the solution of a two-point BVP, which can reasonably now
be regarded as a straightforward well-understood procedure.
Often coordinates on SO(3) are introduced and the resulting
system of second-order Euler Lagrange equations associated
with the potential energy is solved numerically. We adopt an
Euler parameters (or quaternions) parametrization of SO(3),
but solve the associated first-order canonical Hamiltonian sys-
tem subject to appropriate (self-adjoint) two-point BCs, so
that the inextensible, unshearable (K) rod is a simple smooth
limit of the extensible, shearable (C) case.

In this article we are primarily interested in the two specific
BVPs, denoted respectively by (f) and (m):

(f) r(0) = 0, R(0) = 1, r(L) = rL, R(L) = RL,

(1)

(m) r(0) = 0, R(0) = 1, r(L) = rL, m(L) = 0.

(2)

The BVP (f) arises in modeling looping in SE (3) including
the particular case of cyclization where rL = 0 and RL = 1.
The BVP (m) arises in modeling looping in R3, where the
value of RL is a variable left free, over which one marginal-
izes. In general, for rod two-point BVPs, equilibria with given
BCs are nonunique. For isotropic or uniform rods, and for
specific choices of rL and RL in (f) and (m), equilibria can
arise in continuous isoenergetic families [69], a case of pri-
mary interest here.

As we assume hyper-elastic constitutive relations with

E (q) =
∫ L

0
W (u − û, v − v̂; s) ds, (3)

stability of rod equilibria can reasonably be discussed depen-
dent on whether an equilibrium is a local minimum of the
associated potential energy variational principle. For (C) rods
classification of which equilibria are local minima has a stan-
dard and straightforward solution. The second variation δ2E is
a quadratic functional of the perturbation field h = (δc, δt),
where the sans-serif font q(s) = (c(s), t(s)) ∈ R6 is a given
parametrization of SE (3) for the configuration variable in the
director basis, which will be specified later in the article, and
reads as

δ2E =
∫ L

0
(h′ · Ph′ + 2h′ · Ch + h · Qh) ds, (4)

where P(s), C(s), and Q(s) are coefficient matrices in R6×6

computed at any equilibrium. The Jacobi equations are
the (second-order) system of Euler-Lagrange equations for
Eq. (4), or equivalently the linearization of the original
Euler-Lagrange equations for the potential energy variational
principle. One then solves a 6 × 6 matrix valued system,
namely, an initial value problem for the Jacobi equations with
ICs coinciding with the ones given later in the article when
computing probability densities from Jacobi fields (shooting
towards s = 0, where in both (f) and (m) Dirichlet BCs are
present; the case with Neumann BCs at both ends is more
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delicate [70]). Provided that the determinant of the matrix
solution does not vanish in [0, L), then there is no conjugate
point and the equilibrium is a local minimum [71–73].

As described fully in [74], the constrained case of (K) is
more subtle and a theory dating back to Bolza for isoperimet-
rically constrained calculus of variations must be applied [75].
However, the Hamiltonian version of the Jacobi equations for
rods (just like the Hamiltonian version of the Euler-Lagrange
equilibrium equations) has a smooth limit as ε → 0, and the
limit corresponds to the Hamiltonian formulation of the Bolza
conjugate point conditions as described in [72]. The Jacobi
equations in first-order Hamiltonian form are written as(

H′

M′
)

= JE
(

H
M

)
, (5)

with the Hamiltonian skew-symmetric matrix J = (0 1
−1 0

) ∈
R12×12, E(s) the symmetric matrix driving the system which
will be detailed later, and M(s) ∈ R6×6 the conjugate variable
of the Jacobi fields H(s) under the Legendre transform.

In the following, we assume the existence and stability of
the minimizers of the elastic energy (3) q f and qm satisfying
the BCs (f) in Eq. (1) and (m) in Eq. (2). Note that the in-
trinsic configuration of the rod q̂ is itself a minimizer (global)
satisfying

r(0) = 0, R(0) = 1, n(L) = m(L) = 0. (6)

Stability of equilibria is not the focus of this article, but
we will show that the volume of certain Jacobi fields, i.e.,
the actual (positive) value of a Jacobi determinant, plays a
central role in the evaluation formula for the quadratic path
integrals that arise in our Laplace approximations to looping
probabilities.

The connection between Jacobi fields and quadratic imag-
inary path integrals is well known in the case that the
coefficient matrix C(s) in the cross-terms in Eq. (4) vanishes
(or is symmetric and so can be integrated away). By contrast,
for elastic rods a nonsymmetric C(s) is typically present, and
the approach of Papadopoulos [49] is required to evaluate
the quadratic path integrals; as described in [41,42] a further
Riccati transformation for the Papadopoulos solution formula
is necessary to recover a Jacobi fields expression. Moreover,
in [48] the latter studies are generalized for different choices
of BCs on the paths, in particular for dealing with the partition
function and solving the marginalized problem.

The main contributions of this article are to demonstrate
that the approach of [41,42] for conditional probability densi-
ties can be extended in two ways. First, isolated equilibria to
BVP (m) can be treated, in addition to the case of isolated
equilibria to BVP (f), and second, the case of nonisolated
equilibria of both BVPs (f) and (m) (as arises for isotropic
rods) can be handled by appropriately generalizing a particu-
lar regularization procedure [64,65] within Forman’s theorem
in the field of functional determinants [63]. Furthermore, the
underlying physical phenomena arising from the different
cases are discussed and explained within some guiding ex-
amples. For a polymer, the questions we are trying to answer
would be interpreted as follows: what is a good estimate of
the probability of the end monomers coming into contact
with each other? How is the latter value changing if we im-

pose an orientation constraint on the binding site? How does
the shape of the cross section (isotropic or nonisotropic) affect
the statistics? And, finally, what happens if we deviate from
the standard inextensible and unshearable model and incorpo-
rate shear and extension as possible deformations?

III. A PREVIEW OF THE EXAMPLES CONSIDERED

The method developed in the present article will be ap-
plied, as a fundamental example, to a linearly elastic, uniform,
with diagonal stiffness matrix, intrinsically straight and un-
twisted rod [P (s) = P = diag{k1, k2, k3, a1, a2, a3}, û = 0,
v̂ = (0, 0, 1)]. Neither intrinsic shear nor extension is present.
Since we are primarily interested in ring-closure or cyclization
probabilities, we look for minimizers of the energy satisfying
the BCs reported in Eqs. (1) and (2) with rL = 0 and RL = 1.

First, we consider a nonisotropic rod (k1 �= k2), further
assuming w.o.l.o.g. that k1 < k2. For the case of full looping
(f), there exist two circular, untwisted, isolated minima q f

lying on the y − z plane characterized by u f = (±2π/L, 0, 0)
and v f = (0, 0, 1). In particular, the one having nonposi-
tive y coordinate is given by r f (s) = L

2π
(0, cos (2πs/L) −

1, sin (2πs/L)) and the rotation matrix R f (s) is a coun-
terclockwise planar rotation about the x axis of an angle
ϕ f (s) = 2πs/L, s ∈ [0, L]. Consequently, u f = (2π/L, 0, 0),
m f = (2πk1/L, 0, 0), v f = (0, 0, 1), n f = 0 and the energy
is simply computed as E (q f ) = 2π2k1/L. We observe that
these solutions are special for the fact of being the same both
for (K) and (C) rods, which is not the case in general. By
contrast, there are no simple analytical expressions for the
two planar and untwisted teardrop shaped isolated minimiz-
ers qm involved in the marginal looping problem (m), and
elliptic functions or numerics must be used. For example, in
the (K) case, the rotation angle ϕm(s) can be derived using
elliptic functions in terms of the constant unknown force nm =
(0, n2, n3) [55,76,77]. The qualitative shapes of the minimal
energy configurations are reported in Fig. 2. It is important to
underline that for the (m) problem the solutions for (K) and
(C) rods are different, since the latter are characterized by
vm(s) = (0, vm

2 (s) �= 0, vm
3 (s) �= 1). More precisely, in Fig. 3

we provide a specific numerical analysis for the (C) teardrop
solution varying the undeformed length of the rod L. We recall
that the projection of the tangent r′ on the director d2 is the
component v2 of the shear strain, whereas the projection of
the tangent on the director d3 is the component v3 of the
stretch. We observe that the bending and shear components
um

1 (s), vm
2 (s) are overall increasing (in the sense of depart-

ing from zero) when decreasing L, while the stretch vm
3 (s)

decreases and increases (in the sense of departing from one)
respectively in the interior and at the boundaries of the interval
[0, L]. Namely, bending reaches its maximum at s = L/2 and
vanishes at the boundaries; there is no shear at s = L/2, and it
is maximized symmetrically within the intervals [0, L/2) and
(L/2, L]; compression is maximum for s = L/2, and slight
extension can be observed close to the boundaries. Critical
behaviors occur for small values of L, where compression
dominates and bending starts to decrease: this will be clearer
in the following stability analysis. To be precise, among the
equilibria satisfying the BCs for the (f) and (m) cases, there
are also equilibria with figure eight centerlines, but in the
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FIG. 2. The thick lines represent the pairs of isolated minima for the nonisotropic case; the manifolds of minimizers for the isotropic case
are displayed accordingly. In panel (a) the solutions for the (f) case are the same for (K) and (C) rods. In panel (b) we underline the effect of
shear and extension for the (m) case, which modifies the red solutions (K) into the green ones (C).

present study their contributions will be neglected because of
their higher elastic energy.

We continue the presentation with a brief stability analy-
sis, showing that the circle and teardrop solutions are stable,
with exceptions for the (C) rod in the limit of the unde-
formed length L going to zero, where bifurcations occur.
For (C) rods, cyclization problems (f) and (m) always admit
a “compressed” trivial solution qc, characterized by rc = 0,
Rc = 1, uc = 0, mc = 0, vc = 0, nc = (0, 0,−a3) with en-
ergy E (qc) = a3L/2, which starts to play an important role
(this is not mentioned in [42]). In summary, for the full (C)
case it exists L f > 0 such that the latter solution becomes
stable and has lower energy than the circular minimizer q f if
0 < L < L f . In this regime the system will be mainly driven
by the compressed solution (even if the circle remains sta-
ble). Moreover, for the marginal (C) case, it exists Lm > 0
such that the stable teardrop solution qm ceases to exist in
the interval 0 < L < Lm, merging with the compressed so-
lution which becomes stable. In both the cases, the above
observations will have a strong impact on the trend of the
estimated cyclization probability densities, that is confirmed
by MC simulations. More precisely, analyzing the determi-
nant of the associated Jacobi fields (5) [with ICs and matrix
E(s) given later in Eq. (8) and Eqs. (B3)–(B5)] by means
of conjugate point theory, we observe that the compressed
solution is stable (i.e., a minimizer of the energy) in the
range 0 < L < L f for the (f) case, and in 0 < L < Lm for
the (m) case, where L f = 2π/a3min{√k1 a2,

√
k2 a1} and

Lm = L f /2. Moreover, as already mentioned, for full looping
(f) there exist also circular solutions q f , which are stable
for all L > 0, with energy 2π2k1/L. (This is true except for
k1 > k3, L < 2π

√
(k1 − k3)/a1, but in the present article we

will not treat such an instability of the circular solution.)
Note that if k1 � k2 and a1 = a2 = a3, then E (qc) = E (q f )
at L f = 2π

√
k1/a3 and E (qc) < E (q f ) for 0 < L < L f . For

marginal looping (m), the teardrop solution qm is not present
in the interval 0 < L < Lm, transforming into the compressed

solution which becomes stable. We show the bifurcation di-
agrams in Fig. 4 for a nonisotropic (C) rod. Observe that
E (qm) does not explode for small lengths, but instead reaches
a maximum and decreases towards E (qc). By contrast, for a
(K) rod the circular and teardrop solutions exist and are stable
for all L > 0, with energy diverging approaching L = 0, and
no compressed solution is present.

In addition to the above statements, the isotropic
case requires a more detailed analysis for the presence
of a continuous symmetry. Namely, for a general lin-
early elastic (transversely) isotropic (C) rod defined by
P (s) = diag{k1(s), k2(s), k3(s), a1(s), a2(s), a3(s)} with k1 =
k2, a1 = a2 and û1 = û2 = v̂1 = v̂2 = 0, it is known [69]
that for cyclization BCs (f) in Eq. (1) and (m) in Eq. (2)
the equilibria are nonisolated and form a manifold obtained,
starting from a known solution, by a rigid rotation of the
rod of an angle θ about the z axis and a subsequent rotation
of the framing by an angle −θ about d3(s), for θ ∈ [0, 2π )
(register symmetry). As a consequence, in our particular ex-
amples, once selected, e.g., the nonisotropic solution lying in
the y-z plane, y � 0 and characterized by the configuration
(R(s), r(s)), s ∈ [0, L], then we get an entire family of min-
imizers R(s; θ ) = QθR(s)QT

θ , r(s; θ ) = Qθ r(s), where Qθ is
defined as the counterclockwise planar rotation matrix about
the z axis of an angle θ ∈ [0, 2π ) (Fig. 2). As a side note for
the (f) example, being the circular solutions the same for (K)
and (C) rods, the isotropy symmetry arises even if a1 �= a2.

Furthermore, for a general linearly elastic uniform rod,
for which the stiffness matrix P and the intrinsic strains
û, v̂ are independent of s, another continuous symmetry is
present for the cyclization BCs (f) in Eq. (1). In fact, starting
from a known solution characterized by the configuration
(R(s), r(s)), s ∈ [0, L], it is possible to obtain a family
of equilibria parametrized by s∗ ∈ [0, L) in the following
way: select s∗ ∈ [0, L), rigidly translate the rod by −r(s∗),
reparametrize the rod using the parameter t ∈ [0, L] such that
s = t + s∗ (mod L), rigidly rotate the rod about the origin
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FIG. 3. Analysis of the (m) cyclization problem for a nonisotropic (C) rod with k1 = 0.5, k2 = 5, k3 = 10 and a1 = a2 = a3 = 100. In
panel (a) we report the shapes of the teardrop minimizers for L = 1, L = 0.6, and L = 0.3. The tangent r′(s) and the vectors d2(s), d3(s)
of the moving frame are displayed in black, blue, and red, respectively. In panels (b), (c), and (d) we plot the bending, shear and stretch
components um

1 (s), vm
2 (s), and vm

3 (s), respectively, for a uniformly spaced set of undeformed lengths ranging from L = 1 to L = 0.3. The
values are computed numerically.

by means of RT (s∗). However, in our uniform examples, the
symmetry of uniformity is not playing any role, due to the
circular centerline of the minimizers which is a fixed point of
the transformation and, in the marginal case, to the impossibil-
ity of satisfying the condition mm(L) = 0 after the application
of the symmetry.

In the present article we will deal with only one symmetry
parameter, namely, θ ∈ [0, 2π ) associated with isotropic rods,
where the presence of a family of minimizers translates into
a zero mode ψα (s; θ ) (α standing both for f and m) of the
self-adjoint operator Sα associated with the second variation
(4), as will be discussed in due course. Therefore, the sta-
bility analysis reported in Fig. 4 is totally analogous for the
isotropic case, except from the fact that an entire family of
minimizers is involved and a conjugate point is always present

due to the zero mode. Furthermore, the theory can be applied
to the uniformity symmetry alone and generalized to cases
in which isotropy and uniformity allow the coexistence of
two nondegenerate symmetry parameters (θ, s∗) generating
a manifold of equilibria isomorphic to a torus, as it is the case
of figure-eight minimizers with (f) cyclization BCs. Finally,
note that in the following theory there is no assumption either
of uniformity of the rod, or, in general, of a straight intrinsic
shape.

IV. STATEMENT OF THE PROBLEM
AND GENERAL RESULTS

In this section we describe the problem at the heart of
this paper and present the general formulas that we derive in
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FIG. 4. Stability analysis for a nonisotropic (C) rod with k1 = 0.5, k2 = 5, k3 = 10 and a1 = a2 = a3 = 100. Continuous lines represent
quantities associated with stable solutions, dashed lines to unstable ones. In panels (a) and (b) the energies for the circular and teardrop
equilibria are displayed in red, together with the compressed solution, in black, which becomes unstable after the bifurcation point L f or Lm. In
panels (c) and (d) we report the values of det [H(0)] computed on the associated solutions for the (f) and (m) cases, respectively, with conjugate
points arising when the curves hit zero.

the context of end-to-end probabilities for fluctuating elastic
rods, valid in both the (C) and (K) cases. The proof and the
application of these results will follow in separate sections.
Thus we consider an elastic rod at thermodynamic equilib-
rium with a heat bath in absence of external forces, assuming
w.o.l.o.g. that q(0) = q0 = (1, 0). Then, given a prescribed
qL = (RL, rL ) ∈ SE (3), we formulate the problem of comput-
ing a conditional probability density function (pdf) for the
other end of the rod to satisfy at s = L either q(L) = qL,
or the weaker condition r(L) = rL. The first case gives rise
to a conditional pdf (f) over the space SE (3) denoted by
ρ f (qL, L|q0, 0), whereas the second one represents the R3-
valued marginal (m) over the final rotation variable, with no
displacement constraint on R(L), that will be denoted by
ρm(rL, L|q0, 0). The following results are given for the case of
linear elasticity, although the theory developed in the article is
general.

We show that an approximate form of the conditional prob-
ability density in the case of an isolated minimizer qα (s) of the

elastic energy (3) [with respect to the associated BVPs (f) and
(m)] reads as

ρα ≈
(

β

2π

)x(α) e−βE (qα )√
det [Hα (0)]

, (7)

with x( f ) = 3, x(m) = 3/2, and we are interested in the cy-
clization values ρ f (q0, L|q0, 0), ρm(0, L|q0, 0). We denote by
Hα (s) the Jacobi fields computed at qα , solutions of the associ-
ated Jacobi equations (5) with E(s) reported in Eqs. (B3)–(B5)
and ICs given at s = L as

H f (L) = 0, M f (L) = −1,

Hm(L) =
(

13×3 03×3

03×3 03×3

)
, Mm(L) =

(
03×3 03×3

03×3 −13×3

)
. (8)

We further show that an approximate form of the condi-
tional probability density in the case of nonisolated minimiz-
ers qα (s; θ ), obtained by means of a suitable regularization
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procedure, reads as

ρα ≈ 2π e−βE (qα )

√
[μψα (0)]i

]Hα (0)[i,i
, (9)

and we are interested in the cyclization values ρ f (q0, L|q0, 0),
ρm(0, L|q0, 0). In particular, μψα ∈ R6 and Hα ∈ R6×6 are, re-
spectively, the conjugate momentum of the zero mode and the
Jacobi fields associated with Sα , both computed by means of
Eq. (5) but recalling an extra contribution of β

2π
(see the next

section). Moreover, here we denote with [·]i the ith component
of a vector, with ] · [i,i the principal minor of a square matrix
removing the ith row and the ith column, and the index i
depends on the choice of the boundary regularization, based
on the nonzero components of μψα . The appropriate ICs for
Hα are given at s = L as

H f (L) = 0, M f (L) = χ,

Hm(L) =
(

X1,1 X1,2

0 0

)
, Mm(L) =

(
0 0

X2,1 X2,2

)
, (10)

where χ is an arbitrary matrix with unit determinant such that
the ith column corresponds to μψ f (L) and X = (X1,1 X1,2

X2,1 X2,2

) ∈
R6×6, partitioned in 3 × 3 blocks, is an arbitrary matrix with
determinant equal to −1 such that the ith column corresponds
to ([ψm]1:3, [μψm ]4:6)T (L).

V. FLUCTUATING ELASTIC RODS AND THE PATH
INTEGRAL FORMULATION

If a polymer interacts with a solvent heat bath, the in-
duced thermal motion gives rise to a stochastic equilibrium
that we model making use of a Boltzmann distribution on
rod configurations satisfying q(0) = q0 [41,42], of the form
Z−1e−βE (q(s)), with β the inverse temperature and Z the
partition function of the system. A precise treatment of the
previous expression requires the introduction of the path
integral formalism [21,50–52]. Namely, the SE (3) and R3

densities ρ f and ρm are respectively given as the ratios of
infinite dimensional Wiener integrals [48]:

ρ f (qL, L|q0, 0) = K f

Z , ρm(rL, L|q0, 0) = Km

Z , (11)

K f =
∫ q(L)=qL

q(0)=q0

e−βE (q) Dq, Km =
∫ r(L)=rL

q(0)=q0

e−βE (q) Dq.

(12)

The limits of integration are dictated by the BCs (1) and (2),
respectively, and Z is a path integral over all paths with BCs
given in Eq. (6) that guarantees the normalization condition:

Z =
∫

q(0)=q0

e−βE (q) Dq, (13)

∫
SE (3) ρ f (qL, L|q0, 0) dqL = ∫

R3 ρm(rL, L|q0, 0) drL = 1. The
prescriptions m(L) = 0 for Km and m(L) = n(L) = 0 for Z
account for Neumann natural BCs at s = L and concern the
minimizers. We stress that it is key that at this stage the model
is an extensible, shearable rod, namely, with (C) energy (3),
otherwise the problem could not be expressed as simple BCs
at s = 0 and s = L. Moreover, to apply all the path integral

machinery, we first have to deal with the rotation group SO(3),
being part of the configuration variable q(s) = (R(s), r(s)),
which gives rise to a manifold structure that should be treated
carefully in order to recover eventually a “flat space” formu-
lation.

Following [41], we show in Appendix A how to build an R6

parametrization of SE (3) [SO(3) is not simply connected and
a zero measure set of rotations is neglected] adapted to a given
unit quaternion γ̄ ∈ R4. In particular we make use of the Haar
measure on SO(3) and derive the metric tensor associated with
the parametrization. Namely, the γ̄-adapted parametrization
of SE (3) denoted by q(s) = (c(s), t(s)) ∈ R6 exploits the re-
lation between unit quaternions (or Euler parameters) γ and
elements of SO(3) and is given by

γ (c) = 1√
1 + ‖c‖2

(
3∑

i=1

ciBiγ̄ + γ̄

)
, t = R(γ̄ )T r, (14)

with c = (c1, c2, c3) ∈ R3, R(γ̄ ) the rotation matrix ex-
pressed by γ̄ , and B1, B2, B3 in R4×4 reported in Eq. (A1).
Moreover, by means of the Feynman discrete interpretation
of the path integral measure [21], the metric tensor and the
infinitesimal volume measure read, respectively,

g(c) = 1

1 + ‖c‖2
− c ⊗ c

(1 + ‖c‖2)2 ,

dq j = √
det [g(c j )] dc j dt j = 1

(1 + ‖c j‖2)2 dc j dt j .

(15)

The latter results are implemented by choosing three dif-
ferent curves of unit quaternions γ̄ (s) to be the curves defined
by the rotation component R(γ̄ ) of the minimizers q f , qm

and q̂ respectively, which characterize the three different
parametrizations involved in the computation of K f , Km, and
Z in view of the semiclassical approximation. Then, replacing
the configuration variable q(s) ∈ SE (3) with the sans-serif
fonts q(s) ∈ R6, we can formally write the integrand and
measure in Eqs. (12) and (13) as e−βE (q)√det [g(c)]Dq. The
treatment of the metric factor relies on the introduction of
real-valued ghost fields for exponentiating the measure, as can
be found in [58]. This means rewriting the factor as a Gaussian
path integral in the ghost field z(s) ∈ R3 satisfying z(0) = 0
with energy 1

2

∫ L
0 zT g−1(c)z ds. After that, we consider the

path integral expressions in the joint variable w = (q, z),
e.g.,

K f =
∫ q(L)=qL

w(0)=(q0,0)
e−β[E (q(s))+ 1

2

∫ L
0 z(s)T g−1(c(s))z(s) ds] Dw. (16)

In the following, even if the theory could be given in principle
for a general strain energy density W , in order to perform
concrete computations we refer to the case of linear elasticity,
where W is a quadratic function, driven by the stiffness matrix
P (s):

E (q) = 1

2

∫ L

0

(
u − û
v − v̂

)T (
K B
BT A

)(
u − û
v − v̂

)
ds. (17)

Moreover, we also refer to the particular looping case of
ring-closure or cyclization, evaluating ρ f at qL = q0 and the
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marginal ρm at rL = 0; the same conditions apply to the mini-
mizers.

A. Looping probabilities in the case of isolated minimizers

Since the elastic energy functional (17) is nonquadratic in
q, after the parametrization we approximate K f , Km, and Z by
means of a second-order expansion about a minimal energy
configuration [48–53], known as the semiclassical method,
or, in our real-valued context, Laplace expansion [54]. The
present work follows the setup of [48]. We further recall that
such an approximation holds when the energy required to
deform the system is large with respect to the temperature of
the heat bath, i.e., in the short-length scale, or stiff, regimes.

First, note that there is no contribution to the result
coming from the ghost energy when approximating path in-
tegrals of the kind of Eq. (16) to second order in the joint
variable w. This is a consequence of the structure of the
metric tensor (15), i.e., g−1(c) = (1 + c · c)(1 + c ⊗ c), and
therefore we can consider only the elastic energy (17) in
the variable q. In fact, the minima q f and qm (here as-
sumed to be isolated) encoded within the associated adapted
parametrizations lead to the minimizers q f and qm (denoted
generically by qα , α standing both for f and m) charac-
terized by cα = 0. In particular, the Neumann natural BC
m(L) = 0 for qm translates into ∂W

∂c′ (L) = 2[(1 + c×)/(1 +
‖c‖2)m](L) = 0 for qm. In the semiclassical approximation
for K f and Km the energy is expanded about the associ-
ated qα as E (q) ∼ E (qα ) + 1

2δ2E (h; qα ), q = qα + h, being
the first variation zero. The second variation δ2E is re-
ported in Eq. (4), with h = (δc, δt) the perturbation field
describing fluctuations about the minimizer qα and satis-
fying the linearized version of the parametrized BCs, i.e.,
h(0) = h(L) = 0 for (f), or h(0) = 0, δt(L) = 0, δ ∂W

∂c′ (L) =
2[δm − mm × δc](L) = 0 for (m). Analogously, for Z the
energy is expanded about q̂, being ∂W

∂t′ (L) = [R̂
T

R n](L) = 0
the associated Neumann natural BC arising from n(L) = 0
in q̂ (in addition to the BC for the moment as described
for qm). In this case, the linearized parametrized BCs are
given by h(0) = 0, μ(L) = 0, with μ(L) = (δ ∂W

∂c′ , δ
∂W
∂t′ )(L) =

(2(δm − m̂ × δc), δn − 2n̂ × δc)(L).
In the present case of linear elasticity, the second variation

(4) is characterized by P, related to the stiffness matrix P , and
C, Q which can be computed as follows in terms of strains,
forces, and moments of the minimizer involved, generically
denoted by q̄ = (R(γ̄ ), r̄). In elastic rod theory, the natural
parametrization for the variation field around q̄ is directly
provided by the Lie algebra so(3) of the rotation group in the
director frame, namely, δR = R(γ̄ )δη×, where δη× denotes
the skew-symmetric matrix or cross-product matrix of δη ∈
R3. In order to show the relation between δη and the variation
field δc, we use the formula δη = 2(

∑3
i=1 ei ⊗ Biγ̄ )δγ (which

is substantially the relation between the Darboux vector
and Euler parameters; see, e.g., [68]) with δγ = ∂γ

∂c |c=0δc =∑3
j=1 B j γ̄δc j referring to Eqs. (A1) and (14), and we con-

clude that δη(s) = 2 δc(s).
With reference to [78], the second variation of the linear

hyper-elastic energy (17) in the director variable ω = (δη, δt)
is δ2E = ∫ L

0 [ω′TPω′ + 2ω′TCω + ωTQω] ds, where P is

the stiffness matrix and C, Q are respectively given in terms
of strains, forces, and moments by Eqs. (B1) and (B2). Fi-
nally, introducing the matrix D = (21 0

0 1

)
, we have that the

second variation in the variable h = (δc, δt) (4) is given by
δ2E = ∫ L

0 [h′T Ph′ + 2h′T Ch + hT Qh] ds, with P = DPD,
C = DCD and Q = DQD.

The Jacobi equations in first-order Hamiltonian form as-
sociated with the latter second variation functional are given
in Eq. (5) and are driven by the symmetric matrix E(s) ∈
R12×12 detailed in Eq. (B3). The Jacobi fields H(s) ∈ R6×6,
together with the conjugate variable under the Legendre
transform M(s) ∈ R6×6 represent the solutions of the Jacobi
equations once prescribed appropriate ICs. The columns h of
H and the ones μ of M are related by μ = Ph′ + Ch.

Note that until now the formulation adopted is for the
general (C) rod with extension, shear, and hence an invertible
stiffness matrix P . The constrained inextensible and unshear-
able case (K) requires the stiffness components B and A to
diverge (as discussed in [41,42,68]), specifically as B/ε and
A/ε2, for ε → 0. Switching to the Hamiltonian formulation,
given a (C) rod the compliance matrix R (which is the in-
verse of P) has a smooth limit for ε → 0. Namely, for a (K)
rod we recover R(s) = ( R1,1 R1,2 = 0

R2,1 = 0 R2,2 = 0

)
, with R1,1(s) =

(K − BA−1BT )−1. In conclusion, once prescribed a sym-
metric and positive definite matrix K(K) = R−1

1,1, there exists
a sequence of positive definite and symmetric compliance
matrices for the (C) case converging smoothly to the (K) case,
implying that the expressions (B4) and (B5) for the blocks
of the matrix E(s) (B3) hold for both (C) and (K) rods. We
emphasize that for the (K) case δ ∂W

∂t′ is a basic unknown of
the Jacobi equations and cannot be found using the relation
μ = Ph′ + Ch, since the latter is not defined.

The resulting path integrals arising from the semiclassical
method are of the form, e.g.,

K f ≈ e−βE (q f )
∫ h(L)=0

h(0)=0
e− β

2 δ2E (h;q f ) Dh, (18)

and similarly for Km and Z but considering the different
minimizers and linearized BCs. Then, applying the results
derived in [48] for Gaussian path integrals, which are in turn
extensions of [49], we recover the approximate form of the
conditional probability density (7). In principle, denoting by
Ĥ(s) ∈ R6×6 the Jacobi fields computed at q̂ subject to the
ICs Ĥ(L) = 1, M̂(L) = 0 [48], the numerator and denomi-
nator in Eq. (7) should be, respectively, e−β(E (qα )−E (q̂)) and√

det [HαĤ
−1

(0)], in order to include the contribution coming
from the evaluation of the partition function Z . However, the
result simplifies since E (q̂) = 0, being q̂ the intrinsic config-
uration of the rod. At the same time E1,1 is the zero matrix for
this case, which implies M̂(s) = 0 ∀s [according to the IC
M̂(L) = 0] and consequently Ĥ(s) must satisfy a linear system
whose matrix has zero trace. Thus, by application of the gen-
eralized Abel’s identity or Liouville’s formula, ∀s we have that
det[Ĥ(s)] = det[Ĥ(L)] = det[1] = 1. Furthermore, it is worth
to mention that here the partition function computation is not
affected by approximations, even if it apparently undergoes
the semiclassical expansion. In fact, there exists a change
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of variables presented in [41,42] which allows an equivalent
exact computation exploiting the specific BCs involved in Z .
In general, the latter change of variables is not applicable and
the present method must be used, e.g., for nonlinear elasticity
or in the case of a linearly elastic polymer subject to external
end loadings, for which the shape of the energy leads to a
nontrivial contribution of the partition function that must be
approximated.

B. Looping probabilities in the case of nonisolated minimizers

In this section we consider nonisolated minimizers arising
as a consequence of continuous symmetries of the problem.
In particular, we provide a theory for one symmetry param-
eter, namely θ ∈ [0, 2π ) (as we want to deal with isotropic
rods), but the same scheme can be suitably generalized to
more symmetry parameters. The presence of a family of
minimizers denoted by qα (s; θ ) translates into a zero mode
ψα (s; θ ) = ∂

∂θ
qα (s; θ ) [53] of the self-adjoint operator S =

−P d2

ds2 + (CT − C − P′) d
ds + Q − C′ associated with the sec-

ond variation (4), namely, δ2E = (h, Sh), where (·, ·) is the
scalar product in the space of square-integrable functions
L2([0, L]; R6). Consequently, we cannot proceed as before, for
otherwise expression (7) will diverge for the existence of a
conjugate point at s = 0.

Thus, in evaluating expression (12) for K f and Km, we
adapt the parametrization to the minimizer corresponding to
θ = 0, our choice of the gauge in applying the collective
coordinates method, which amounts to a Faddeev-Popov-type
procedure [57], widely used in the context of quantum me-
chanics for solitons or instantons [59–62], of inserting the
Dirac δ transformation identity

1 =
∣∣∣∣ ∂

∂θ
F

∣∣∣∣
θ=0

∫
δ(F (θ )) dθ,

F (θ ) =
(

q − qα,
ψα

‖ψα‖
)

(19)

within the path integral, in order to integrate over variations
which are orthogonal to the zero mode. Once performed the
semiclassical expansion as before about qα , exchanged the
order of integration Dh ↔ dθ to get a contribution of 2π , and
having approximated to leading order both the metric tensor
and the factor |∂/∂θF |θ=0 ≈ ‖ψα (s; 0)‖, we are left with the
computation of a ratio of Gaussian path integrals

1

Zg

∫
e−π (h,

β

2π
Sh)δ

[(
h,

ψα

‖ψα‖
)]

Dh, (20)

for the linearized parametrized BCs associated with Eq. (1)
and Eq. (2), respectively. For notation simplicity, throughout
this section S stands for β

2π
S and Ŝ for β

2π
Ŝ, the latter oper-

ator driving the Gaussian path integral Zg arising from the
partition function Z , in which the minimizer q̂ is isolated.
Note that, since the argument of the delta distribution must
vanish for θ = 0 according to Eq. (19), then the integration
for the numerator is performed on the minimizer qα (s; 0) with
associated zero mode ψα (s; 0); in the following they will both
be denoted simply by qα and ψα .

Interpreting Eq. (20) as
√

Det(Ŝ)/Det�(S), i.e., the square
root of the ratio of the functional determinants for the oper-
ators Ŝ and S, the latter with removed zero eigenvalue (thus
the star symbol) [64,65], we consider the following general
strategy for its evaluation. Given the second variation operator
S acting on h(s) ∈ R6, with s ∈ [0, L] and BCs determined by
the square matrices T0 and TL as T0

(h(0)
μ(0)

) + TL
(h(L)
μ(L)

) = 0, we
state Forman’s theorem [63] in Hamiltonian form as

Det(S)

Det(Ŝ)
= det [T0W(0) + TLW(L)]

det[W(L)]
, (21)

for W(s) ∈ R12×12 whose columns (h,μ)T solve the homo-
geneous problem Sh = 0 (i.e., the Jacobi equations (5) with
the extra β

2π
factor, completed as W′ = JEW), and the trivial

partition function contribution has already been evaluated. It is
important to note the freedom of choosing W(0), W(L) con-
sistently; the latter statements are justified by the following
considerations.

Given two matrix differential operators Ω = G0(s) d2

ds2 +
G1(s) d

ds + G2(s) and Ω̂ = G0(s) d2

ds2 + Ĝ1(s) d
ds + Ĝ2(s) with

nonzero eigenvalues (with respect to the BCs), acting on
h(s) ∈ Rd , where G0, G1, Ĝ1, G2, Ĝ2 ∈ Rd×d , G0 is in-
vertible and s ∈ [a, b], the results of Forman [63] provide
a simple way of computing the ratio of functional determi-
nants Det(Ω)/Det(Ω̂), once prescribed the BCs Ia

(h(a)
h′(a)

) +
Ib
(h(b)

h′(b)

) = 0 for Ω and Îa
(h(a)

h′(a)

) + Îb
(h(b)

h′(b)

) = 0 for Ω̂, being Ia,

Ib, Îa, Îb ∈ R2d×2d . Namely,

Det(Ω)

Det(Ω̂)
= det [Ia + IbF(b)]√

det[F(b)]

√
det[F̂(b)]

det [Îa + ÎbF̂(b)]
, (22)

with F(s) [F̂(s)] in R2d×2d the fundamental solution of the lin-
ear differential system F′ = ΓF, F(a) = 1 [F̂

′ = Γ̂F̂, F̂(a) =
1] associated with the homogeneous problem Ωh = 0 [Ω̂h =
0] and Γ [Γ̂] the matrix of first-order reduction interpreting h′

as an independent variable [64,65].
In particular, we specialize to general second varia-

tion operators for s ∈ [0, L], d = 6, and we make the
choice Ω = S = −P(s) d2

ds2 + [CT (s) − C(s) − P′(s)] d
ds +

Q(s) − C′(s) computed in either q f or qm and Ω̂ = Ŝ com-
puted in q̂. Note that, for notation convenience, throughout
this section P, C, and Q stand for β

2π
P, β

2π
C, and β

2π
Q.

Moreover, defining Y(s) = F(s)Y(0) for a given nonsingu-
lar matrix Y(0), changing variables in Hamiltonian form

by means of Y = OW, O(s) =
(

1 0
−P−1C P−1

)
being W par-

titioned in 6 × 6 blocks as W(s) = (H H∗

M M∗
)
, and doing

the same in terms of F̂, it is easily shown that Forman’s
theorem (22) for S, Ŝ becomes Eq. (21) multiplied by
det[Ŵ(L)]/det [T̂0Ŵ(0) + T̂LŴ(L)], with the Hamiltonian
version of the BCs being equal to T0 = I0O(0), TL = ILO(L),
and W′ = JEW (the same is done for the “hat” term). Since
the trace of JE is always zero, the so-called generalized Abel’s
identity or Liouville’s formula implies that det[W] (det[Ŵ]) is
constant. We further observe that for Ŝ the BCs on the paths
(being the ones entering the path integral for the partition
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function) must be given by the matrices T̂0 = (1 0
0 0

)
, T̂L =(0 0

0 1

)
, and choosing Ĥ(L) = 1, M̂(L) = 0 within Ŵ(L), the

“hat” contribution reduces to det[Ĥ(0)], which is equal to 1 by
direct inspection (see the previous section).

The idea is now to compute expression (21) for the op-
erator S subject to carefully chosen perturbed BCs T(ε)

0 , in
order to avoid the zero mode. This gives rise to a quasizero
eigenvalue that can be found analytically using our extension
to general second variation operators (including cross-terms)
of the trick introduced in [64]. Finally, by taking the limit
for ε → 0 in the ratio of the regularized expression (21) to
the regularized quasizero eigenvalue, we recover the desired
quantity Det�(S)/Det(Ŝ).

We anticipate here the results for the approximation for-
mulas of the probability densities in the case of nonisolated
minimizers (already stated in Eqs. (9) and (10) when present-
ing the final formulas), valid also for (K) rods as detailed in
the previous section (note that the factor ‖ψα‖ simplifies out
within the regularization procedure)

ρα ≈ 2π e−βE (qα )

√
[μψα (0)]i

]Hα (0)[i,i
, (23)

and we are interested in the cyclization values ρ f (q0, L|q0, 0),
ρm(0, L|q0, 0). In particular, μψα ∈ R6 and Hα ∈ R6×6 are, re-
spectively, the conjugate momentum of the zero mode and the
Jacobi fields associated with Sα , both computed by means of
Eq. (5) but recalling the contribution of β

2π
. Moreover, here we

denote with [·]i the ith component of a vector, with ] · [i,i the
principal minor of a square matrix removing the ith row and
the ith column, and the index i depends on the choice of the
boundary regularization, based on the nonzero components of
μψα . The appropriate ICs for Hα are given at s = L as

H f (L) = 0, M f (L) = χ,

Hm(L) =
(

X1,1 X1,2

0 0

)
, Mm(L) =

(
0 0

X2,1 X2,2

)
, (24)

where χ is an arbitrary matrix with unit determinant such that
the ith column corresponds to μψ f (L) and X = (X1,1 X1,2

X2,1 X2,2

) ∈
R6×6, partitioned in 3 × 3 blocks, is an arbitrary matrix with
determinant equal to −1 such that the ith column corresponds
to ([ψm]1:3, [μψm ]4:6)T (L).

We are now ready to explain how to regularize the
functional determinants for S f and Sm respectively, in or-
der to get rid of the zero eigenvalue. Starting from the
pure Dirichlet case, the BCs are given as T(ε)

0 = (1 E
0 0

)
,

TL = (0 0
1 0

)
, with E the zero matrix with a nonzero di-

agonal entry ε in position i, i serving as a perturbation
to avoid the zero mode. Then, choosing H f (L), M f (L)
as given in Eq. (24), and applying the formulas for the
determinant of a block matrix, from Eq. (21) we get
Det(ε)(S f )/Det(Ŝ) = det [H f (0) + EM f (0)]/det[M f (L)] =
ε[μψ f (0)]i ]H f (0)[i,i. By construction the zero mode repre-

sents the ith column of H f (s) and satisfies the linearized BC
ψ f (0) = 0, hence the last equality.

On the other hand, for the marginalized case, the

BCs are given by T(ε)
0 as before and TL =

(
0 0
10 10

)
, be-

ing 10 = (0 0
0 1

)
, 10 = (1 0

0 0

)
partitioned in 3 × 3 blocks.

Then, choosing Hm(L), Mm(L) as given in Eq. (24),
and applying the formulas for the determinant of a
block matrix, from Eq. (21) we get Det(ε)(Sm)/Det(Ŝ) =
−det [Hm(0) + EMm(0)]/det[X] = ε[μψm (0)]i ]Hm(0)[i,i. By
construction the zero mode represents the ith column of Hm(s)
and satisfies the linearized BC ψm(0) = 0, hence the last
equality. In addition, when computing det[Wm(L)], we have
used the determinant identity (C1) for n = 3.

The last step consists of finding the nonzero eigenvalue
λα

(ε) associated with the eigenfunction ψα
(ε) (arising from

the zero mode ψα) of the operator Sα with perturbed
BCs. First, we have that (ψα, Sαψα

(ε) ) = λα
(ε)(ψ

α,ψα
(ε) ),

and the left-hand side can be rewritten as (ψα, Sαψα
(ε) ) =

(ψα, Sαψα
(ε) ) − (Sαψα, ψα

(ε) ) = [μψα · ψα
(ε)]

L
0 − [μψα

(ε)
·

ψα]L
0 = −(μψα · ψα

(ε) )(0) = ε[μψα (0)]i[μψα
(ε)

(0)]i, where
the second equality comes after integration by parts and
the third and fourth ones are a consequence of the BCs.
Finally, being λα

(ε) = ε[μψα (0)]i[μψα
(ε)

(0)]i/(ψα,ψα
(ε) ), then

Det�(Sα )/Det(Ŝ) = limε→0(λα
(ε) )

−1Det(ε)(Sα )/Det(Ŝ) =
‖ψα‖2 ]Hα (0)[i,i/[μψα (0)]i.

We conclude with a technical remark. We observe that a
priori the solution formulas for isolated minimizers could be
recovered by applying Forman’s theorem in the framework
of functional determinants (as done here for the nonisolated
case); however, there we exploit the insightful connection
with the more standard theory of path integrals via “time
slicing.” Exploring the latter possibility not only allows us to
gain a deeper understanding of the subject, but is crucial to
developing the right ideas for using Forman’s formalism in a
more general setting.

VI. A MONTE CARLO ALGORITHM FOR STOCHASTIC
ELASTIC RODS

In this section we refer to the approach of [45–47] for
DNA MC simulations of J-factors, using the “half-molecule”
technique [44] for enhancing the efficiency. Namely, we
give a Monte Carlo sampling algorithm for fluctuating lin-
early elastic rods according to the Boltzmann distribution
having partition function (13), i.e., Z = ∫

q(0)=q0
e−βE (q) Dq

with energy (17), and we use the compact notation u� =
u − û, v� = v − v̂ for the shifted strains. First of all, we
need to rewrite the infinite-dimensional problem as a finite-
dimensional one by means of a “parameter slicing method.”
This is achieved, after parametrizing the configuration vari-
able as q(s) = (c(s), t(s)) ∈ R6, setting ε = L

n with n a large
positive integer and s j = jε for j = 0, . . . , n. Moreover, by
exploiting the change of variables (c j, t j ) → (u j, v j ) as pre-
sented in [41], we get the following equality up to a constant
factor for the discrete version of the partition function Z:∫

e−βε
∑n

j=0 W (c,t) j

n∏
j=1

(1 + ‖c j‖2)−2dc jdt j

∼
∫

e−βε
∑n−1

j=0 W (u�,v� ) j

n−1∏
j=0

J (u j )du jdv j, (25)
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with Wj = 1
2 [u�

T
j K ju� j + 2u�

T
j B jv� j + v�

T
j A jv� j],

J (u j ) = (1 − ε2‖u j‖2/4)−
1
2 and the subscript j indicates

that the associated term is evaluated in s j . We observe
that the Jacobian factor J can be neglected, as
discussed in [79], leading to the Gaussian distribution
ρZ = e−βε

∑n−1
j=0 W (u�,v� ) j /

∫
e−βε

∑n−1
j=0 W (u�,v� ) j

∏n−1
j=0 du jdv j

which can be easily sampled by a direct MC method in
order to get random instances of u j , v j , j = 0, . . . , n − 1,
associated with a random framed curve with initial data
q0 = (1, 0). Note that, in the proposed uniform example with
diagonal stiffness matrix, the Gaussian factorizes and the
sampling is simply performed componentwise in terms of
independent univariate Gaussians.

Since the conditional probability density is a function of
the variables RL, rL, we need to reconstruct Rn, rn from
the sampled strains by discretization of the differential equa-
tions γ ′(s) = 1

2

∑3
i=1[u(s)]iBiγ (s), r′(s) = R(γ (s))v(s), with

[u(s)]i the ith component of u and R(γ ) the rotation ma-
trix associated with the quaternion γ . This is achieved,
e.g., by application of the scalar factor method, derived
in [80] and discussed in [81], which is an efficient and
precise one-step method for integrating the Darboux vec-
tor u, preserving the unit norm of the quaternion. Defining
δγ j = ε

2

∑3
i=1[u j]iBiγ j , then we have that γ j+1 = (γ j +

tan (‖δγ j‖)δγ j/‖δγ j‖) cos (‖δγ j‖) subject to the initial data
γ0 = (0, 0, 0, 1), and consequently r j+1 = r j + εR(γ j )v j ,
r0 = 0.

In the spirit of [47] for computing cyclization densi-
ties, we are now able to generate MC trajectories and
assess whether or not qn = (Rn = R(γn), rn) is falling in-
side the given small region Rζ ,ξ of SE (3) centered in (1, 0)
parametrized as the Cartesian product Bζ × Bξ of two open
balls in R3, centered in 0, of radius ζ , ξ > 0 respectively.
Namely, (Rn, rn) ∈ Rζ ,ξ if and only if ‖c(γn)‖ < ζ and
‖rn‖ < ξ , with c ∈ R3 the same parametrization of SO(3)
presented above, adapted to γ̄ = (0, 0, 0, 1). Note that, since
c(γn) = [γn]−1

4 ([γn]1, [γn]2, [γn]3) and ‖γn‖ = 1, the condi-

tion ‖c(γn)‖ < ζ is equivalent to
√

[γn]−2
4 − 1 < ζ .

Moreover, we have the following link between the prob-
ability of the set Rζ ,ξ [P(Rζ ,ξ )] computed using MC
simulations and the conditional probability density defined in
the theoretical framework

|{samples: (Rn, rn) ∈ Rζ ,ξ }| / |{all samples}|
≈ P(Rζ ,ξ )

=
∫
Rζ ,ξ

ρ f (qL, L|q0, 0)dqL

≈ |Rζ ,ξ | ρ f (q0, L|q0, 0), (26)

where the notation | · | stands for the number of elements
of a discrete set or the measure of a continuous set, and the
accuracy of the approximation increases with n → ∞,
|{all samples}| → ∞, ζ → 0, ξ → 0. The set Rζ ,ξ is
measured by means of the product of the Haar measure
and the Lebesgue measure for the SO(3) and the E (3)
components. Thus, making use of the parametrization,
|Rζ ,ξ | = ∫

Rζ ,ξ
d qn = ∫

Bζ ×Bξ
(1 + ‖cn‖2)−2 dcn drn =

8π2ξ 3[arctan (ζ ) − ζ/(1 + ζ 2)]/3. Regarding the marginal
ρm(r0, L|q0, 0), the method is applied only considering the
condition on rn for being inside the open ball Bξ with measure
|Bξ | = 4πξ 3/3, and neglecting all the details concerning the
rotation component.

More specifically, in order to enhance the efficiency of the
algorithm, we refer to the approach adopted in [45–47] for
DNA MC simulations, using the “half-molecule” technique as
developed by Alexandrowicz [44]. In this technique, one com-
putes M random instances each of the first and second halves
of the framed curve and then considers all first-half-second-
half pairs in order to generate M2 random curves, allowing
a large sample size contributing for each density data point
and providing the necessary accuracy to the estimation. In
particular, we give here the specifications for the simulations
reported in the following section. For the (f) computations,
∼1015 samples were produced for each data point, choosing
n = 200 and ζ , ξ ranging from 2.5% to 6.6% of the parameter
L. The estimated density value corresponds to the mean taken
over 81 “boxes”, along with the standard deviation for these
boxes defining the range of the bar for each MC data point.
For the (m) cases, ∼1013 samples were produced for each data
point, choosing n = 200 and ξ ranging from 0.1% to 4% of
the parameter L; 40 different “boxes” were used for the final
estimation.

VII. RESULTS AND DISCUSSION FOR THE EXAMPLES
CONSIDERED

This section is dedicated to the application of formu-
las (7) and (9) in order to predict cyclization probabilities
in a concrete example of a fluctuating polymer modeled
as a linearly elastic, uniform, with diagonal stiffness ma-
trix, intrinsically straight and untwisted rod [P (s) = P =
diag{k1, k2, k3, a1, a2, a3}, û = 0, v̂ = (0, 0, 1)], as presented
above. The chosen example allows the physical peculiarities
of the problem to be investigated in a clear and effective
manner, while also providing analytical expressions for par-
ticularly simple cases and capturing the phenomena involved.
We remark that the theory proposed in this article is general
and can be applied to nonuniform problems, e.g., to consider
sequence-dependent variations in stiffness in the context of
DNA modeling, as well as sequence-dependent intrinsic cur-
vature.

We start with a preliminary analysis. Since in the (C) case
the compressed (isolated) solution is a minimizer for the short-
length scale regimes, we evaluate analytically its contribution
ρc

α to the cyclization probability density (f) and (m) for 0 <

L < L f and 0 < L < Lm respectively. Making use of Eq. (7)
with ICs (8) and setting the nondimensional length L̃ = L/lp

for a given lp > 0, we get

ρc
α ≈ e−EpL̃ 1

lp
3L̃

1
x

√
τ csc(x ϑ1 L̃)

2
x csc(x ϑ2 L̃)

2
x , (27)

where x = x(α) with x( f ) = 1, x(m) = 2 and Ep =
β lp a3/2, ϑ1 = (lp a3)/(2

√
k1 a2), ϑ2 = (lp a3)/(2

√
k2 a1),

τ = τ (α) with τ ( f ) = β2 k3 a3 E4
p/π

6, τ (m) =
l2
p

√
a1 a2/(k1 k2) E3

p/π
3. The latter formula is valid both

for isotropic (setting k1 = k2, a1 = a2) and nonisotropic
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rods. In the following we focus on the contribution ρα to the
cyclization probability density (f) and (m) coming from the
circular and teardrop minimizers, respectively.

A. Nonisotropic polymers

First, we consider a nonisotropic rod (k1 �= k2), further
assuming w.o.l.o.g. that k1 < k2. For the case of full looping
(f), there exist two circular, untwisted, isolated minimizers q f

lying on the y-z plane with energy 2π2k1/L. The existence of
a couple of reflected minima simply translates into a factor
of 2 in front of Eq. (7) and the semiclassical expansion is
performed about one of them (e.g., about the one having
nonpositive y coordinate). For this case Eq. (5) is a constant
coefficients Jacobi system, that we solve analytically together
with the first set of ICs in Eq. (8), in order to obtain the
approximated formula for the cyclization probability density
ρ f (q0, L|q0, 0) for both (C) and (K) rods. Setting the length
scale lp = 2βk1, which corresponds to the planar tangent-
tangent persistence length for the same rod but constrained
in two dimensions [79], and the nondimensional length L̃ =
L/lp, we get ρ f ≈ 2 e−π2/L̃hI hO, where hI and hO are the
in-plane (of the minimizer) and out-of-plane contributions

hI = 1

lp
2L̃7/2

√
π

a2
,

hO (non−iso) = 1

lpL̃5/2

√
8π (1 − ν3)

b ν3(1 − cos λ)
, (28)

ρ f (non−iso) ≈ 2 e− π2

L̃
1

lp
3L̃6

√
8π2(1 − ν3)

a2 b ν3(1 − cos λ)
, (29)

with λ = 2π
√

(1 − ν2)(1 − ν3), a = 1 + (2π/L̃)2(η2 + η3),
b = 1 + (2π/L̃)2(ω1 − η1), ν2 = k1/k2, ν3 = k1/k3, η1 =
k1/(a1 l2

p ), η2 = k1/(a2 l2
p ), η3 = k1/(a3 l2

p ), ω1 = k3/(a1 l2
p ).

The (K) case is recovered setting a = b = 1, and the den-
sity obtained disregarding the factor hO coincides with the
cyclization probability density for planar rods given in [42].
Note that the in-plane and out-of-plane contributions are com-
puted by performing two separated Gaussian path integrals for
the in-plane and out-of-plane variation fields, exploiting the
decomposition of the second variation in two distinguished
terms [41]. Moreover, the expressions in Eqs. (28) and (29)
are valid under stability assumptions for k1 < k2, k1 �= k3 and
equal to the limit k3 → k1, i.e., ν3 → 1, if k3 = k1. We further
underline that Eq. (29) diverges in the isotropic limit k2 → k1,
i.e., ν2 → 1. The results for the full looping conditional proba-
bility in the case of isolated minimizers given above were first
derived in [41], where the Gaussian path integrals are carried
out in the variables ω = (δη, δt) instead of h = (δc, δt) as
done here. As a consequence of the latter choice, in [41] all
the formulas have a factor of 8 in front corresponding to the
Jacobian factor of the transformation (actually in the cited
work a factor of 2 is present, but it is a typographical error, it
should be 8). We cite this reference for the explicit evaluation
of the Jacobi fields leading to Eqs. (28) and (29).

In general, for computing the density ρm(0, L|q0, 0) from
Eq. (7) together with the second set of ICs in Eq. (8),
numerics must be used. In fact, for the case of marginal

looping (m), there are no simple analytical expressions for
the two planar (y-z plane) and untwisted teardrop shaped
isolated minimizers qm. However, in the (K) case there ex-
ists a scaling argument in the variable L, which allows
one to provide a qualitative expression. Namely, given the
fact that we can compute numerically a (K) equilibrium qm

p
for a given rod length lp, characterized by rp(sp), Rp(sp),
vp(sp) = v̂, up(sp), np(sp), mp(sp) for sp ∈ [0, lp], then for
each L > 0 it can be easily checked that r(s) = L̃ rp(s/L̃),
R(s) = Rp(s/L̃), v(s) = vp(s/L̃) = v̂, u(s) = 1/L̃ up(s/L̃),
n(s) = 1/L̃2 np(s/L̃), m(s) = 1/L̃ mp(s/L̃), L̃ = L/lp define
a (K) equilibrium qm for s ∈ [0, L]. This immediately im-
plies that E (qm) = 1/L̃ E (qm

p ). Moreover, since the matrix
E(s) is given in terms of strains, forces, and moments
at the equilibrium by means of Eqs. (B4) and (B5), it
is possible to obtain the scaling for the Jacobi fields as
det[Hm(0)] = L̃9 det[Hm

p (0)]. Finally, defining Ep = βE (qm
p )

and hp = l3
p[β/(2π )]

3
2 /

√
det[Hm

p (0)], we get

ρm (non−iso) ≈ 2 e− Ep
L̃

hp

lp
3L̃

9
2

, (30)

where Ep and hp have to be computed numerically, and the
factor 2 accounts for the contribution of both the minimizers.
By contrast, a simple scaling argument is not present for a (C)
rod, therefore allowing for more complex behaviors.

We show the results in Fig. 5 for a specific choice of the
parameters, in the range L > L f and L > Lm, respectively, for
(f) and (m), so that the only accounted minimizers for the
computation of the cyclization probability densities are the
circular and the teardrop solutions, and we can apply Eqs. (29)
and (30). The simulations show good agreement between the
Laplace approximation and MC in the target small length
domain. Even though the second-order expansion loses its
quantitative power for larger lengths, the qualitative behavior
is captured and the error does not explode. We recall that
looping is a rare event and MC simulations are usually expen-
sive and unfeasible; by contrast, the method proposed in the
present article is performing successfully with much higher
efficiency. It is also important to underline that for the specific
example considered the difference in ρ f between (K) and (C)
rods is due only to Jacobi fields, since the energy factor is the
same, the circular minima having no extension and no shear
deformations. The marginal case (m) is more representative of
the general behavior where (K) and (C) minimizers are distinct
solutions, which is true also for (f) BCs for arbitrary (nonuni-
form, with nonstraight intrinsic shape) elastic rods. In fact, in
the short-length scale regimes, the possibility to exploit the
additional degrees of freedom associated with extension and
shear is crucial for minimizing the overall elastic energy, in the
face of an increasingly penalizing bending contribution. This
phenomenon allows the probability density to be remarkably
higher than the (K) case below the persistence length, remain-
ing almost constant and even increasing in the range where
for the (K) rod (and therefore also for the WLC model) is ex-
ponentially vanishing. By contrast, for large lengths extension
and shear become negligible. In addition, as a general state-
ment, the Jacobi factor is fundamental to determine the peak
of the density, in a domain where the energy is monotonically
decreasing with length. On the other hand, the energy contri-
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FIG. 5. Comparison of cyclization densities between the path integral (PI) Laplace approximation (continuous lines) and MC (discrete
points with standard deviation error bars) for a nonisotropic rod. For (K) we set β = 1, k1 = 0.5, k2 = 5, k3 = 10; for the (C) case, we also set
a1 = a2 = a3 = 100. The quantities are reported in nondimensional form. In particular, the undeformed length of the rod is expressed in units
of real persistence length lp ≈ 0.9, the harmonic average of k1 and k2. In panel (a) we address the (f) case, reporting the values for ρ f and
displaying in red the zero-order contribution. In panel (b) the results for the marginal density ρm are reported, with a zoom window in log10

scale in order to underline the peculiar small length trend. In this case, (K) and (C) rods differ in zero-order contribution of the energy, and two
different red curves are displayed.

bution dominates the system for smaller lengths. Finally, we
clearly observe overall higher values for the marginal density
compared to the full case because of the less restrictive BCs.

B. Isotropic polymers

Now we consider the isotropic case, i.e., k1 = k2, a1 = a2

and a one-parameter family of nonisolated circular or teardrop
minima arises. Given the minimizer in the y-z plane with
y � 0 represented by r(s) = (0, r2(s), r3(s)) and R(s) a coun-
terclockwise planar rotation about the x axis of an angle ϕ(s),
the one-parameter family of minimizers can be expressed as
r(s; θ ) = Qθ r(s) and R(s; θ ) = QθR(s)QT

θ , where Qθ is de-
fined as the counterclockwise planar rotation about the z axis
of an angle θ ∈ [0, 2π ). Thus, taking the derivative of such
minimizers with respect to θ and finally setting θ = 0, the zero
mode can be easily recovered in the chosen parametrization
to be ψ(s) = (0, 1

2 sin (ϕ), 1
2 [cos (ϕ) − 1],−r2, 0, 0). More-

over, the conjugate momentum of ψ is derived in general
(for both (C) and (K) rods) substituting the zero mode itself
and its to-be-found moment as the unknowns of the Jacobi
equations in Hamiltonian form (5) computed on the mini-
mizer associated with θ = 0 (recalling to multiply E1,1 by
β

2π
and E2,2 by 2π

β
), and reads as μψ(s) = (0,

βk1

2π
[cos (ϕ) +

1]ϕ′,− βk1

2π
sin (ϕ)ϕ′,− β

2π
n2, 0, 0).

At this point it is straightforward to apply the theory de-
veloped above for nonisolated minimizers, choosing χ to be a
matrix with unit determinant such that the second column (i =
2) corresponds to μψ f (L) and X a matrix with determinant
equal to −1 such that the fourth column (i = 4) corresponds to
([ψm]1:3, [μψm ]4:6)T (L), according to Eq. (10). Consequently,
the ICs for the Jacobi equations are well defined, the energy

is computed, e.g., for the minimizer corresponding to θ = 0
as before, and Eq. (9) is analytical for ρ f ≈ 2πe−π2/L̃hI hO,
where

hO (iso) = 1

lpL̃3

√
4

b ν3
,

ρ f (iso) ≈ 2πe− π2

L̃
1

lp
3L̃

13
2

√
4π

a2b ν3
, (31)

with a = 1 + (2π/L̃)2(η1 + η3) and all the other quantities
have been defined previously. In particular, hI is the same as
for the nonisotropic case and therefore the zero mode arises
for the out-of-plane factor for which the above regulariza-
tion is applied. The (K) limit is recovered as before setting
a = b = 1.

For the marginal density ρm numerics must be used, but
in the (K) case we can carry on the scaling argument in the
variable L as before, obtaining

ρm (iso) ≈ 2π e− Ep
L̃

hp

lp
3L̃5

, (32)

for given Ep = βE (qm
p ), hp = l3

p

√
[μψm

p
(0)]i/]Hm

p (0)[i,i com-

puted numerically.
It is interesting to note that formulas (29)–(32) scale dif-

ferently with length as far as the second-order correction
term is concerned. The latter scalings naturally arise from the
ones observed within simpler WLC models; see chapter 7 in
[23]. The comparison between Laplace and MC simulations
for isotropic polymers is shown in Figs. 6(a) and 6(b), for
the same parameters addressed in the nonisotropic case, but
now sending k2 → k1. Once more time we only consider the
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FIG. 6. Comparison of cyclization densities between the path integral (PI) approximation and MC for an isotropic rod. For (K) we set
β = 1, k1 = k2 = 0.5, k3 = 10; for the (C) case, we also set a1 = a2 = a3 = 100. The quantities are reported in nondimensional form, and the
undeformed length of the rod is expressed in units of real persistence length lp ≈ 0.5. In panels (a) and (c) we address the (f) case, reporting
the values for ρ f and displaying in red the zero-order contribution. The behavior for (C) in the small-length regime is shown in (c). In panels
(b) and (d) the results for the marginal density ρm are reported, with a zoom window in log10 scale; the two different zero-order contributions
for (K) and (C) rods are displayed in red. The behavior for (C) in the small-length regime is shown in panel (d).

contributions of the manifolds made of circular and teardrop
minimizers, setting L > L f and L > Lm. The fact that now
k2 is ten times smaller than the same parameter adopted in
Fig. 5 implies that the overall trend of the density is shifted
to the right in units of persistence length, allowing large ef-
fects of shear and extension compared to the more standard
inextensible and unshearable models, as already discussed.
We further observe that the approximation error is generally
higher for (C) rods and for marginal looping (m), which is
a consequence of the semiclassical expansion that depends
on the stiffness values and BCs. For the simple examples
considered, there clearly exist more accurate formulas for the
(K) case in the literature; e.g., Eq. (32) can be related to the
WLC formula (7.68) (p. 266 in [23]). However, the power of

the method explained above lies in its generality and ability
to easily provide approximation formulas for a wide range of
potentially realistic and complex problems in the short-length
scale regimes. By contrast, since the (C) case represents itself
a novelty, we believe that basic examples are still important to
understand the underlying physical behavior.

It is natural to ask what happens for L � L f and L � Lm,
respectively, in (f) and (m), for (C) rods [for (K) the former
analysis based only on circular and teardrop solutions is valid
for all lengths]. Due to the presence of the stable compressed
solution in this range, the density diverges for vanishing
length, and this is true for both isotropic and nonisotropic
rods. In particular, for (f) here we sum up the contributions
coming from the compressed solution (27) and the manifold of
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FIG. 7. Contour plots for an isotropic rod (with the same parameters already used) showing the ratio of (C) to (K) for the length L∗ at which
the maximum of ρ f occurs [L∗(C)/L∗(K) in panel (a)] and for the value ρ∗

f at the maximum [ρ∗
f (C)/ρ∗

f (K) in panel (b)] as a function of k1 = k2

and a1 = a2 = a3.

circular minimizers (31); for (m) only the compressed solution
is present and we apply Eq. (27). At the critical lengths L f and
Lm a conjugate point arises for the compressed solution (in (m)
the conjugate point arises also in the teardrop minimizer) and
the Jacobi fields are singular, leading to an incorrect explosion
of the probability density, which should be regularized. We do
not address such regularizations, but in Figs. 6(c) and 6(d),
we report the results for this length regime, together with MC
simulations which connect our approximation formulas valid
on the left and on the right of the singularities. We remark that
the diverging behavior of the conditional probability density at
zero length observed for Cosserat polymers is a consequence
of the linearly elastic hypothesis on the energy functional
and cannot be regarded as a physical behavior in the context
of polymers made of discrete elementary units. However,
we show the existence of a length range, not affected by a
compressed stable solution, where high looping probabilities
occur due to an energy relaxation of the minimizers achieved
by exploiting the degrees of freedom associated with exten-
sion and shear.

Finally, in order to highlight the effect of shear and exten-
sion for larger lengths, in Fig. 7 we compare the (K) and the
(C) cases in terms of the length and the value of the proba-
bility density at which the maximum of ρ f occurs, the first
increasing and the second decreasing in presence of extension
and shear.

VIII. CONCLUSIONS

In the present article we addressed the problem of comput-
ing looping probabilities from a continuum perspective, for
different choices of BCs, with particular emphasis on extensi-
ble and shearable polymers, which are not generally treated
in the standard literature of WLC-type models. Moreover,
the proposed theoretical framework employed for deriving
general looping formulas is supplemented with concrete ex-
amples, the results of which are also supported by extensive
Monte Carlo simulations.

In a first approximation DNA fits the WLC hypothesis
of inextensibility and unshearability. However, contradictory
results have been reported for DNA below the persistence
length since the studies of Cloutier and Widom [82], actually
showing enhanced cyclization of short DNA molecules not
explainable by WLC-type models. In a recent study [31] the
authors conclude that “determining whether the high bend-
ability of DNA at short-length scales comes from transient
kinks or bubbles or stems from anharmonic elasticity of DNA
requires improved computational methods and further stud-
ies.” Working in this direction, and being aware of the fact that
DNA is in fact an extensible molecule [83], our high cycliza-
tion predictions for small lengths in the presence of extension
and shear aim to add a piece to the puzzle. Note that this is
achieved even under simple linearly elastic assumptions. We
believe this mechanism to be relevant and general enough to
be shared by several different problems in biology.

Furthermore, birod models [84,85] with sequence-
dependent parameters are more accurate in capturing DNA
conformations, but the theory devised here is comprehensive
and can be applied analogously to this level of complexity, al-
lowing the computation of different ring-closure probabilities
without involving expensive MC simulations. In the future,
in the wide context of end-to-end probabilities, the effect of
external loadings will also be investigated.

ACKNOWLEDGMENTS

We are grateful to Prof. John H. Maddocks for fruitful
discussions and insights, as well as to the entire LCVMM
group of Lausanne for constant support. G.C. and R.S. ac-
knowledge access to SCITAS computer facilities and Swiss
National Science Foundation (SNSF) Grant No. 182184.

APPENDIX A: COORDINATES ON SE(3)

For an explicit evaluation of the path integrals in Eqs. (12)
and (13), in the following we introduce appropriate coor-
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dinates on SE (3). As done originally by Feynman [21], a
path integral can be defined via a “time-slicing” procedure,
or “parameter-slicing” in our case, which is to replace the
infinite-dimensional integral Dq with the limit for n → ∞ of
n iterated finite-dimensional integrals

∏n
j=1 dq j . These have

to be performed on the space of framed curves, whose mea-
sure can be chosen to be the product of the Lebesgue measure
on the three-dimensional Euclidean space E (3) and of the
Haar biinvariant measure on SO(3), which may be uniquely
defined up to a constant factor [86,87].

In order to avoid difficulty that can arise from the nonsim-
ple connectivity of SO(3), it is often convenient to consider
instead its universal (double) covering SU (2). Any matrix in
SU (2) can be parametrized by a quadruple of real numbers
γ = (γ1, γ2, γ3, γ4) living on the unit sphere S3 in R4, i.e.,
γ · γ = 1. The latter quadruple is know as a unit quaternion
or a set of Euler parameters [68]. Recalling that by Euler’s
theorem each element of SO(3) is equivalent to a rotation
of an angle ϕ about a unit vector w, the Euler parameters
are expressed as a function of ϕ and w as γ4 = cos (ϕ/2),
γi = wi sin (ϕ/2), i = 1, 2, 3. Hence γ and −γ encode the
same rotation matrix, and the correspondence from SU (2) to
SO(3) is 2 to 1.

Referring to [41], for parametrizing the group of proper
rotations we restrict ourself to one hemisphere of the unit
sphere S3 in R4, and we introduce the matrices B1, B2, and
B3 in R4×4:

B1 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎠, B2 =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎠,

B3 =

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎞
⎟⎠, (A1)

satisfying the algebra B jBk = −δ jk1 − εi jkBi, where εi jk is
the total antisymmetric or Levi-Civita tensor and summation
over equal indices is intended. Furthermore, given a unit
quaternion γ̄ , {B1γ̄, B2γ̄, B3γ̄, γ̄} is an orthonormal basis of
R4 and each quadruple of Euler parameters γ (hence each
rotation) can be expressed in coordinates with respect to
the latter basis. In particular, for one hemisphere of S3, we
consider the new variable b = (b1, b2, b3) ∈ B3

1 living in the
open ball of R3 such that γ (b) = ∑3

i=1 biBiγ̄ +
√

1 − ‖b‖2γ̄ .
Therefore, γ (b) defines a 1-to-1 parametrization of SO(3),
adapted to the rotation expressed by the unit quaternion γ̄ ,
meaning that γ (b = 0) = γ̄ . To be precise, we should remark
that the image of such a parametrization does not include the
elements lying on a maximal circle (which depends on γ̄) of
the unit sphere in R4, since SO(3) is not simply connected and
rotations about a generic axis of a fixed angle are inevitably
neglected.

For Euler parameters, the infinitesimal measure is given by
dq j = δ(1 − ‖γ j‖2)dγ j dr j , so that the Haar volume measure
on SO(3) becomes a surface measure on S3 [86]. Thus, the
parametrization φ = γ (b) : B3

1 ⊆ R3 → M ⊆ R4, with M
an hemisphere of S3, naturally induces a metric tensor g on
the tangent space at each point of M. Denoting the coordinate
vectors as φi = ∂φ

∂bi
, i = 1, 2, 3, the components of the metric

tensor are given by gi,k = φi · φk , i, k = 1, 2, 3, and we get
g(b) = 1 + b ⊗ b/(1 − ‖b‖2), dq j = √

det [g(b j )] db j dr j

with the metric correction being equal to 1/
√

1 − ‖b j‖2.
Last, in order to deal with variables defined in the whole

of R3, we introduce the Gibbs vector c = b/(
√

1 − ‖b‖2).
As a consequence, we have derived a γ̄-adapted parametriza-
tion of SE (3) denoted by q(s) = (c(s), t(s)) ∈ R6 as reported
in Eq. (14). In particular, exploiting the Feynman discrete
interpretation of the path integral measure [21], we obtain
Eq. (15).

APPENDIX B: SECOND VARIATION MATRICES

We report the matrices C and Q for the second variation of the linear hyper-elastic energy (17) in the director variable ω as

C =
⎛
⎝Ku× + Bv× − 1

2 m×, Bu×

Av× + BT u× − n×, Au×

⎞
⎠, Q =

⎛
⎝Q1,1, Q1,2

QT
1,2, Q2,2

⎞
⎠, with (B1)

Q1,1 = 1

2
(n×v× + v×n×) + 1

2
(m×u× + u×m×) − u×Ku× − v×Av× − u×Bv× − v×BT u×,

Q1,2 = −u×Bu× − v×Au× + n×u×, Q2,2 = −u×Au×. (B2)

Moreover, the symmetric matrix E driving the Jacobi system associated with the second variation of (17) in the director
variable h is

E(s) =
(

E1,1 = CT P−1C − Q E1,2 = −CT P−1

E2,1 = E
T

1,2 E2,2 = P−1

)
∈ R12×12. (B3)

Finally, for both the Kirchhoff and Cosserat cases, the blocks of the matrix E can be written as

E1,1 = D

⎛
⎝ 1

2 (n×v× + v×n×) − 1
4 m×R1,1m× − 1

2 (m×R1,2n× + n×RT
1,2m×) − n×R2,2n×, 0

0, 0

⎞
⎠D, (B4)
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E1,2 = D

⎛
⎝u× − 1

2 m×R1,1 − n×RT
1,2, v× − 1

2 m×R1,2 − n×R2,2

0, u×

⎞
⎠D−1, E2,2 = D−1RD−1. (B5)

APPENDIX C: A DETERMINANT IDENTITY

When applying Forman’s theorem for the marginalized problem in the case of nonisolated minimizers we use the following
determinant identity

det

[(
X1,1 X1,2

0 0

)(
A B
C D

)
−

(
α β

γ δ

)(
A B
C D

)−1(
0 0

X2,1 X2,2

)(
A B
C D

)]
(C1)

= (−1)ndet

[(
X1,1 X1,2

X2,1 X2,2

)(
A B
γ δ

)]
,

for given matrices X1,1, X1,2, X2,1, X2,2, A, B, C, D, α, β, γ , δ ∈ Rn×n, which can be proven to be true by direct computation.
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