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Acceleration of evolutionary processes by learning and extended Fisher’s fundamental theorem
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Natural selection is a general and powerful concept to explain evolutionary processes in biological organisms
and to design engineering systems such as genetic algorithms. In conventional biology, it is assumed that changes
in an organism occur solely from random mutations, which are independent of its ancestors’ experiences.
However, there is accumulating evidence that organisms transmit their information to the next generation via
epigenetic states or other methods of information transfer. This information may enable descendants to learn
adaptive traits without relying on selection and may accelerate evolution when combined with natural selection.
The combination of natural selection and individual learning is also becoming important for engineering appli-
cations to improve genetic algorithms or reinforcement learning. While acceleration of the evolutionary process
by learning has previously been suggested, no theoretical foundation is available to support it. To accelerate
evolutionary processes by learning, individuals should be able to learn behaviors to optimize fitness, which is a
trait of the population rather than the individual. It has not yet been clarified whether and how individual learning
can improve fitness and thereby accelerate evolution. We also lack a methodology to quantify acceleration
and thus enable us to understand, verify, and predict the impacts of learning. In this work, we show that
agents can accelerate the evolutionary process by ancestral learning, which employs the information transmitted
only from their ancestors (ancestral information). We then clarify that acceleration occurs because ancestral
information enables agents to estimate the gradient of fitness. Finally, to quantify acceleration, we extend Fisher’s
fundamental theorem for natural selection to ancestral learning. The extended Fisher’s fundamental theorem
relates acceleration to the variation of individual fitness, and thus enables a quantitative understanding of when,
how, and why learning is beneficial.
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I. INTRODUCTION

A fundamental question in evolutionary biology is how or-
ganisms acquire sophisticated traits, functions, and strategies
to survive in harsh and ever-changing environments. Attempts
to answer this question have led to the development of the
theory of natural selection [1]. The evolutionary process by
natural selection is general and powerful enough not only to
explain various biological phenomena but also to be applied
to mathematical optimization in applied mathematics. Genetic
and evolutionary algorithms [2] are used for mathematical
optimization by simulating the “evolution” of candidate solu-
tions. Natural selection is versatile and powerful as it does not
require active information processing of individual organisms
or agents. Due to the growth competition among a population,
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the nondirectional random mutations in individual organisms
show a trend toward higher fitness at the population level.
This can explain biological evolution without the need for
advanced or purposeful design. Furthermore, it can work as
a basis for optimization algorithms in engineering, such as
genetic and evolutionary algorithms, that require small efforts
of fine tuning for specific problems. In this sense, conventional
natural selection is both a passive and collective process.

However, several studies in biology and engineering have
recently considered the natural selection of intelligent agents
[Fig. 1(a)], which can learn from experience and actively
change their traits accordingly. In biological systems, the gain
of fitness by sensing environmental information has previ-
ously been investigated [3–6]. Some studies [7,8] indicated
that there was a possibility that learning may accelerate the
evolutionary process. While this idea seems to violate the
conventional presumption that changes in an organism result
solely from random mutations that are independent of its
ancestors’ experiences, there is accumulating evidence that
organisms can transmit information to the next generation
using genes as well as epigenetic states or by other means
such as culture [9]. The transmitted information may thus be
employed by descendants to learn and accelerate evolution.
This point of view may be important for understanding the
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FIG. 1. Schematic representation of the setup used for learning
in evolutionary processes. (a) Agents that can replicate and learn.
Examples include microbes, animals, and humans. (b)–(d) Schematic
illustrations of the model. (b) Type switching π of the agents. An
agent at time t − 1 first determines its type based on the strategy
π . The colors of the agents other than gray represent the expressed
types. The color of the environment represents the state. (c) Replica-
tion of the agents. An agent produces ek(x,y(t−1) ) daughters, depending
on the type x and the environmental state y(t−1). The environmental
state y(t−1) independently follows Q(y). (d) Learning by the agents.
After replication, the daughters inherit strategies updated by a given
learning rule L.

fitness value of the phenotypic variability of organisms and
their correlations over generations, which are measured by
recently developed experimental techniques [10–16].

A pioneering study by Xue and Leibler [7] considered
a growing population of agents, each of which follows a
learning rule to choose the same type as that of its par-
ent more frequently than the parent (referred to as Xue’s
rule). They showed that this simple learning rule could
acquire the optimal type-switching strategy in a changing
environment.

In engineering, it has been shown that genetic and evolu-
tionary algorithms can be improved by introducing learning
by individual agents. A memetic algorithm [17] and infor-
mation geometric optimization [18] are examples of extended
optimization algorithms that employ an active update of can-
didate solutions by, for example, gradient descent.

Consequently, there has been a surge of interest, both in
biology and engineering, regarding the interplay between nat-
ural selection and individual learning. Although this idea has
been suggested and discussed in both fields, the theoretical
basis has not yet been established.

Learning in evolutionary processes

As the interplay between natural selection and individual
learning is tangled, we first describe the situation and the
definition of learning before clarifying the problems.

We consider a population of agents that asexually replicate.
Each agent has a type and stochastically selects one type in
one generation. The type can affect the number of offspring
that the agent can generate. In biological systems, the type
can be interpreted as a phenotypic trait of an organism. For
engineering systems, e.g., genetic algorithms, the type repre-
sents a candidate solution for the optimization problem. The
type cannot be directly inherited between generations. Each
agent also has a type-switching strategy that determines the
probability of choosing each type. Stochastic type selection
can be beneficial when the state of the environment changes
over time [19,20]. We assume that the strategy is heritable
and subject to selection. From a biological viewpoint, this
strategy can be regarded as a genetic or epigenetic trait, and
the types (phenotypes) of agents can be correlated among
generations via the inheritance of the strategy. From an engi-
neering viewpoint, this strategy is related to hyperparameters
that determine the behavior of an agent.

Since the strategy is heritable, better strategies can be se-
lected via natural selection if there is a diversity of strategies
in a population. In a conventional evolutionary process, the
diversity of strategies is generated by random (mutational or
epigenetic) changes that occur when the strategy of an indi-
vidual agent is inherited from one generation to the next. We
define learning of individual agents as the situation in which
the inherited strategy is biased based on the past information
of ancestors or the population. Specifically, we consider learn-
ing rules that bias the offspring strategy to gain greater fitness.
In general, conventional random changes can also be regarded
as kinds of learning rules in which no average gain of fitness
is expected. Therefore, we call them passive or zero-order
learning rules. The main focus of this work is on the learning
rules that can bias the strategy so as to achieve an average gain
of fitness. Agents should update the strategy in the direction
called a gradient of fitness towards which the fitness increases
(to be defined rigorously in Sec. V). We call them active or
first order because the gradient is closely related to the first
derivative of the fitness with respect to the strategy [21].

Under the above settings, there are three main problems
regarding the interplay between natural selection and learning.
The first is whether or when learning can accelerate the evolu-
tionary process of agents to acquire the optimal strategy. Since
a learning rule must be simple enough to be implemented in
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biological systems, we should investigate whether the evolu-
tionary process is accelerated, even with simple learning rules.
For engineering systems, such simplicity is desirable to build
a scalable learning algorithm. In a previous study by Xue
and Leibler [7], Xue’s rule was shown to achieve the optimal
strategy under a constant environment via an evolutionary pro-
cess. However, zero-order random changes can also achieve
the optimal strategy; therefore, active learning may not al-
ways be beneficial or efficient when compared with passive
learning.

The second problem is whether an agent can estimate the
gradient from the accessible information. Specifically, we do
not know what kind of information is sufficient to estimate the
gradient. Although Xue’s learning rule can find the optimal
strategy by using only the information of the parent’s type,
the relationship between Xue’s rule and the fitness gradient
is unclear. The information of the parent’s type might be
insufficient to estimate the gradient. Since fitness is a trait
of the population, communication among agents of the same
generation might be required to estimate the fitness gradi-
ent. Sufficient conditions are also important for engineering
systems to find new variants of genetic and evolutionary algo-
rithms.

The last is how to quantify and predict the acceleration of
natural selection by learning. For conventional evolutionary
processes with natural selection, we use Fisher’s fundamental
theorem (FF-thm) and its variants [22]. The theorem states
that the increase in the mean fitness of a population is pro-
portional to the variance of fitness in the population. From
this relationship, we can predict the progress and speed of
evolution in a population. As the evolutionary process be-
comes more complicated by taking the learning of individual
agents into account, a simple relationship similar to FF-thm
would help to facilitate our understanding of the impact
and efficiency of learning. Furthermore, such a relationship
can be applied to analyze the performance of engineering
systems.

In this paper, we address these three problems. First, we
propose ancestral learning, which utilizes only the infor-
mation transmitted from the ancestors. Ancestral learning is
simple and therefore biologically reasonable, which also gen-
eralizes Xue’s learning rule. The candidates of the information
carrier for ancestral learning include the abundance of pro-
teins and mRNAs [10], epigenetic scars of social defeat stress
[11], gut microbiota [12], and the intergenerational effects of
space flight on epigenetic states [13]. We validate that learning
accelerates the evolutionary process, by numerically showing
that the fitness with ancestral learning increases faster than
with the zero-order mutational rule. Second, we prove that the
ancestral information is sufficient to estimate the fitness gra-
dient. We also clarify that ancestral learning is the first-order
learning rule by proving that ancestral information is sufficient
to estimate the fitness gradient. Third, we derive an extended
FF-thm for ancestral learning, which relates the variation in
fitness among ancestors to the fitness gain by ancestral learn-
ing. Using this theorem, we can predict the acceleration of
evolutionary processes by ancestral learning, which depends
on the properties of the environment. The theorem enables us
to quantitatively understand when and why ancestral learning
becomes beneficial.

II. MATHEMATICAL MODELS AND SETUP

We consider the population dynamics of asexual agents
with a discrete generation time t ∈ {0, 1, 2, . . . }. Let x(t ) ∈ X
and y(t ) ∈ Y be the type of an agent and the state of the
environment at time t . The type models the phenotypic traits
of organisms in biological systems. Each agent has its own
stochastic type-switching strategy πF ∈ RX where πF(x) is
the probability to switch into type x and πF satisfies that∑

x∈X πF(x) = 1 and πF(x) � 0 for all x ∈ X [Fig. 1(b)]. We
call πF a strategy and y(t ) ∈ Y the environmental state at time
t . The environmental state y(t ) at each time t independently
follows the same distribution Q(y) on Y . An agent with type
x under the environmental state y duplicates asexually and
produces ek(x,y) daughters on average [Fig. 1(c)]. The term
ek(x,y) is called an individual fitness [23] of the agent. We
define paths (histories) of the types along a lineage and en-
vironmental states from time zero to time t − 1 as X(t ) and
Y (t ), respectively.

To define the “fitness” of a strategy, we first consider a case
in which the agents cannot learn the strategy and the strategy
πF is fixed in a population and over generations. The number
N (t ) of agents in the population at time t under the path Y (t )

of the environmental states becomes as follows:

N (t )
πF

[Y (t )] =
[∑

x∈X
ek(x,y(t−1) )πF(x)

]
N (t−1)

πF
[Y (t−1)]. (1)

Here, the initial size N (0) of the population is given as an
initial condition. We omit a strategy πF or a path Y (t ) from
the notation N (t )

πF
[Y (t )] when they are clear from the context.

We can use this dynamical system to define the “fitness” of a
strategy πF. The cumulative population fitness of a strategy πF

under Y (t ) up to time t is defined as follows:

�(t )(πF | Y (t ) ) = log
N (t )

πF
[Y (t )]

N (0)
πF

. (2)

The time-averaged population fitness of πF is defined as

λ(πF) = lim
t→∞

1

t
�(t )(πF | Y (t ) ), (3)

which exists almost surely and independently of Y (t ) owing
to the ergodicity of the environmental state [24,25]. In the
following, we call λ(πF) the population fitness in short [26].

When agents learn their strategies [Fig. 1(d)], the number
N (t )(π ) of the agents with strategy π at time t becomes as
follows:

N (t )(π ) =
[ ∑

x∈X ,π ′
L(π | π ′)ek(x,y(t−1) )π ′(x)

]
N (t−1)(π ′). (4)

Here, L(π | π ′) is a (possibly stochastic) learning rule, which
satisfies

∑
π L(π | π ′) = 1. The learning rule L can depend

on the information available for the agent to learn. We suppose
the following sources of available information. Each agent
can transmit information to the next generation via epige-
netic states or cultures. Specifically, each agent can access
the frequency of the types that its ancestors chose. While we
do not explicitly consider communications between agents,
we will later show in Sec. V that the learning rule without
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FIG. 2. Schematic representation of ancestral learning. The color
of an agent represents its type. After an agent acquires the strat-
egy π

(i−1)
F by the (i − 1)th update, its descendants have the same

strategy for τest generations. At the next update, each descendant

calculates the empirical distribution j
π

(i−1)
F

emp and updates the strategy
using Eq. (7). This figure corresponds to the case where α = 1.0 and
τest = 4.

communication is sufficient to achieve acceleration of the evo-
lutionary processes by calculating the gradient of population
fitness. In addition, we do not assume that the agent can sense
the environmental state y. For further generalization on these
assumptions, see Sec. X.

Under this setting, we consider how agents in the popula-
tion can gradually acquire the optimal strategy:

π∗ = argmax
π

λ(π ), (5)

by zero- or first-order learning. We note that the optimal strat-
egy is unique because of the concavity of population fitness
λ(π ) with respect to π . The concavity of λ follows from
Eq. (15) that we prove in Sec. V.

III. ANCESTRAL LEARNING

We introduce ancestral learning and validate that it can
accelerate the evolutionary process. Ancestral learning is self-
reinforcement of strategy by a positive feedback. By ancestral
learning, an agent updates its strategy every τest generations,
where τest is a hyperparameter called an update interval (see
Fig. 2). We suppose that the update occurs at time t = iτest − 1
(i = 1, 2, . . . ), and the initial strategy π

(0)
F is acquired at time

−1 by the zeroth update. An agent at time (i − 1)τest − 1
acquires the strategy π

(i−1)
F by the (i − 1)th update and its

descendants at time t ′ [(i − 1)τest � t ′ < iτest] have the same
strategy. At time iτest − 1, i.e., at the next update, each de-

scendant calculates the empirical distribution j
π

(i−1)
F

emp of the
ancestor’s types back to time (i − 1)τest. Specifically,

j
π

(i−1)
F

emp (x) := 1

τest

iτest−1∑
t ′=(i−1)τest

δx,x(t ′ ) , (6)

where δx,x′ is Kronecker’s delta, and x(t ′ ) is the type of the
ancestor at time t ′. When π

(i−1)
F is clear from the context, we

omit it. After obtaining the empirical distribution, the agent
updates its strategy using the following rule:

π
(i)
F ← (1 − α)π (i−1)

F + α j
π

(i−1)
F

emp , (7)

where α is a hyperparameter called a learning rate. In this rule
of ancestral learning, the strategy after the ith update, π

(i)
F , is

a mixture of the previous strategy π
(i−1)
F with the frequency

j
π

(i−1)
F

emp of types chosen by its ancestors. If the learning rate is
close to 1, that is, α ≈ 1, the updated strategy π

(i)
F becomes

identical to the ancestor’s type frequency. If α is small, the
information of the ancestor’s type is gradually assimilated into
the strategy. Ancestral learning coincides with Xue’s rule [7]
when τest = 1. In addition, the rule does not require commu-
nication between agents.

Ancestral learning is a biologically reasonable learning
rule. The only information used in the rule is the empirical
distribution jemp of the ancestor’s types, which can be stored
and transmitted via epigenetic states or memes, as discussed
in the Introduction. Owing to this property, we call jemp

ancestral information. In addition, the memory necessary to
store jemp is reasonably small. In Sec. V, we prove that the
compressed information jemp instead of the whole path X(t ) of
the ancestor’s type is sufficient to attain the optimal strategy.
The update rule of ancestral learning seems natural as it is
similar to Hebb’s rule [27] as pointed out in Ref. [7]. Hebb’s
rule describes self-reinforcement through positive feedback,
so that the synaptic connection between activated and coacti-
vated neurons is strengthened.

The intuitive explanation for why ancestral learning can
attain the optimal strategy is that replicating the types of
survived ancestors is likely to contribute to the survival of
the descendants. Due to the growth competition among the
population, the empirical distribution jemp of ancestors’ types
deviates from the strategy πF, and jemp seen as a strategy has
a greater population fitness than πF. This deviation, known
as survivorship bias, works as the driving force of ancestral
learning.

To see the intuition more precisely, let us consider a simple
case where the environment is constant, Y = {∗}, the learning
rate α = 1.0, and the update interval τest is sufficiently long.
In this case, the individual fitness only depends on type, and
we can omit y in ek(x,y) as ek(x). The optimal strategy π∗

F is as
follows:

π∗
F (x∗) = 1, x∗ = argmax

x∈X
k(x)

π∗
F (x) = 0 otherwise, (8)

which means that π∗
F always selects the type x∗ that max-

imizes the individual fitness ek(x). We calculate j
π

(i−1)
F

emp to
observe how ancestral learning updates the strategy π

(i−1)
F and

to check that π
(i)
F converges to the optimal π∗

F as i → ∞.
Since jemp(x) = 1/τest (

∑iτest−1
t ′=(i−1)τest

δx,x(t ′ ) ) is the sum of inde-
pendent and identically distributed random variables {δx,x(t ′ )}t ′ ,
the law of large numbers implies the following:

jemp(x) ≈ 〈δx,x(t ′ )〉, (9)

when τest is sufficiently long (we discuss the case when τest is
not large and show that a small learning rate α can compen-
sate for the small τest in Sec. IX). We can interpret 〈δx,x(t ′ )〉
as a probability defined as follows. Recall that an agent at
time (i − 1)τest − 1 acquires π

(i−1)
F via the update by ances-

tral learning and that its descendants have the same strategy
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until the next update at time iτest − 1. Let us consider the
subpopulation consisting of the descendants. We choose an
agent at time iτest from the subpopulation uniformly at ran-
dom. Under this setting, 〈δx,x(t ′ )〉 is the probability πB(x) that
the ancestor of the chosen agent at time t ′ expresses type x.
When we choose an agent at time t ′ + 1 whose parent ex-
pressed type x, the expected number of its descendants at time
iτest is independent of x. We denote this expected value by
C(t ′+1). Let N ′(t ′ ) be the number of agents in the subpopulation
at time t ′. Using these quantities, we can calculate the number
of agents at time iτest, whose parent at time t ′ expressed type x
as C(t ′+1)ek(x)π

(i−1)
F (x)N ′(t ′ ). Additionally, the total number of

agents at time iτest is
∑

x′∈X C(t ′+1)ek(x′ )π
(i−1)
F (x′)N ′(t ′ ). There-

fore, the probability πB(x) is

πB(x) = C(t ′+1)ek(x)π
(i−1)
F (x)N ′(t ′ )∑

x′∈X C(t ′+1)ek(x′ )π
(i−1)
F (x′)N ′(t ′ )

= ek(x)π
(i−1)
F (x)∑

x′∈X ek(x′ )π
(i−1)
F (x′)

. (10)

Equations (10) and (9) indicate that jemp ≈ πB when τest is
sufficiently large. The probability πB is called the retrospec-
tive process of π

(i−1)
F for a constant environment [28–31]. The

retrospective process is biased so that πB(x∗), the probability
of switching to the optimal type x∗, is larger than π

(i−1)
F (x∗);

therefore, it is better fitted to the environment. As ancestral
learning updates π

(i−1)
F to jemp when α = 1.0, the strategy

becomes π
(i)
F (x) ∝ eik(x)π

(0)
F (x) after the ith update. Conse-

quently, π
(i)
F → π∗ as i → ∞.

We next consider the case where the environment is not
constant. We calculate j

π
(i−1)
F

emp as with the constant-environment
case. Since the environmental state y(t ) at each time indepen-
dently follows Q(y), the law of large numbers implies that

jemp(x) ≈ 〈〈δx,x(t ′ ) | y〉〉Q(y), (11)

where 〈δx,x(t ′ ) | y〉 is the conditional expectation of δx,x(t ′ ) ,
given the environmental state at time t ′ is y. We can interpret
〈δx,x(t ′ ) | y〉 as the conditional probability πB(x | y) defined as

follows. Let us consider an agent that acquires strategy π
(i−1)
F

at time (i − 1)τest − 1 and the subpopulation that consists
of its descendants as before. Suppose that the environmental
state at time t ′ is y. We choose an agent at time iτest uniformly
at random from the subpopulation. In this setting, 〈δx,x(t ′ ) | y〉
is the probability πB(x | y) that the ancestor of the chosen
agent at time t ′ expresses type x. Using a similar argument,
we can prove that

πB(x | y) = ek(x,y)πF(x)∑
x′∈X ek(x′,y)πF(x′)

. (12)

The probability πB(x | y) is also called a retrospective pro-
cess and is fitted to the environmental state y better than πF.
Equations (12) and (11) indicate that jemp(x) converges to the
averaged retrospective process π̄B(x) := ∑

y πB(x | y)Q(y).
Therefore, πF is updated to the mixture of strategies πB(x | y),
each of which is better fitted to the corresponding envi-
ronmental state. We numerically (Sec. IV) and theoretically
(Sec. V) prove that the update to such a mixed strategy leads
to the optimal strategy.

IV. ANCESTRAL LEARNING CAN ACCELERATE
EVOLUTIONARY PROCESSES

Next, we validate that learning can accelerate evolutionary
processes by numerically showing that the optimal type-
switching strategy is acquired with ancestral learning faster
than with zero-order mutational rules.

We simulated the evolutionary process using a multitype
branching process in a random environment [32,33]. We
simulated the dynamical system defined by Eq. (4) while
considering the individuality and finite size of the population.
In the simulation, we set X = Y = {0, 1, 2} [Fig. 3(a)]. We
also set Q(0) = 0.6 and Q(1) = Q(2) = 0.2. Each agent with
type x under environmental state y had four daughters if x = y
and one daughter otherwise. In short, ek(x,y) = 4 if x = y and
ek(x,y) = 1 otherwise. We represent the strategy πF as a vector
of the form (πF(0), πF(1), πF(2)). Owing to the symmetry of
ek(x,y), the zeroth component π∗(0) of the optimal strategy is
higher than that of the others. We started the simulation from a
single agent, whose initial strategy is π

(0)
F = (1/3, 1/3, 1/3).

We limited the number of agents in the population to Nmax =
30 to avoid the intractability of the numerical experiment
owing to the exponential growth of the number of agents. If
the number of agents in the next generation exceeded Nmax,
we selected Nmax agents uniformly at random.

We investigated three learning rules. Each learning rule
updates the strategy at every time step, that is, τest = 1. The
first learning rule was ancestral learning with the learning
rate α = 0.01. The second and the third were the zero-order
mutational rules. As there are innumerable zero-order learning
rules, we chose two representatives to perform the control
experiments for ancestral learning. The second learning rule
was π ′

F ← (1 − α)πF + αδx,xrand , where πF and π ′
F were the

strategies of the agent before and after the update, respec-
tively, and xrand was chosen uniformly at random from X . In
biological systems, this rule can be seen as a random mutation
of πF, whose rate is constant. The trajectory of πF updated
by this rule is a random walk over RX if no growth occurs,
that is, ek(x,y) = 1 for all x ∈ X and y ∈ Y . We therefore call
this learning rule a random walk. The third learning rule was
π ′

F ← (1 − α)πF + αδx,xsamp , where xsamp was sampled from
the discrete distribution πF. In biological systems, this rule
can be seen as a mutation of πF, whose rate is dependent
on the current πF. The change in mutation rate is known as
adaptive mutation [34]. Therefore, we call this learning rule an
adaptive random walk. The adaptive random walk coincides
with ancestral learning if no growth occurs. In this sense, the
adaptive random walk is a control for observing the effect of
population growth on ancestral learning.

Figure 3 is the simulation of the three learning rules, which
shows that ancestral learning accelerates the evolutionary pro-
cess. We showed lineage trees up to t = 50. The population
fitness with ancestral learning increased faster than with the
other learning rules [Fig. 3(b)] along the lineage of the most
successful agent, whose population fitness was the maximum
of the agents at the end of each lineage tree. Acceleration
of the evolutionary process was also observed at the lineage
tree level [Figs. 3(d)–(f)]. In Figs. 3(g)–(i), we selected the
lineage of the most successful agent in each lineage tree and
plotted the trajectory of πF along the lineage. In the population
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FIG. 3. Numerical experiments to investigate ancestral learning. (a) The parameters of the model. In the panel, 0 ∈ Y corresponds to red, 1
to yellow, and 2 to blue. The red environmental state occurs more frequently than the others. Each agent with type x under environmental state
y has four daughters if x = y and one daughter otherwise. (b) Population fitness trajectories until t = 50 for the lineages of the most successful
agents, whose λ was the maximum of the agents at the end of each lineage tree. Each curve corresponds to an agent that adopts a different
learning rule. The blue, orange, and green curves represented ancestral learning, the random walk, and the adaptive random walk, respectively.
Ancestral learning resulted in the best increase in population fitness among the three learning rules. (c) The same plot as in (b) until t = 1500.
The dotted line showed the population fitness for the most successful agent with ancestral learning at t = 1500. In the longer simulation,
we could see the convergence of population fitness in the population with ancestral learning. (d)–(f) Simulated lineage trees for the agents
that (d) adopt ancestral learning, (e) the random walk, and (f) the adaptive random walk. Each point corresponded to an agent, and its color
represents the population fitness λ of the agent. Black lines connected parents to their daughters. (g)–(i) The trajectories of strategy πF until
t = 50 for the lineage of the most successful agent updated by (g) ancestral learning, (h) the random walk, and (i) the adaptive random walk,
respectively. (j)–(l) The same plot as (g)–(i) until t = 1500. In (j), the upper dotted line indicates πF(0) of the most successful agent, and the
lower indicates the average of πF(1) and πF(2). We could see that the strategy of the most successful agent with ancestral learning converged to
(0.92, 0.04, 0.04) approximately whereas those with the other learning rules did not converge. The converged strategy was close to the optimal
because it satisfied the optimality condition (Theorem 16.2.1 of Ref. [35]) with a small error.
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with ancestral learning, πF moved faster toward the opti-
mal solution [approximately (0.92, 0.04, 0.04); see the next
paragraph].

To determine whether the optimal strategy was acquired by
ancestral learning, we ran another simulation until t = 1500
[Figs. 3(c) and 3(j)–3(l)]. We first checked that the strategy
converged; that is, the strategy before and after the update
was almost identical when t is sufficiently large. Then, we
verified that the converged strategy is the optimal strategy. We
checked the convergence of the strategy along the lineage of
the most successful agent with ancestral learning. The strategy
converged as the population fitness along the lineage reached
a ceiling [Fig. 3(c)]. The convergence was also supported by
the trajectory of the strategy [Figs. 3(j)–3(l)]. The converged
strategy [approximately (0.92, 0.04, 0.04)] of the most suc-
cessful agent with ancestral learning was close to the optimal
as it satisfied the optimality (Karush-Kuhn-Tucker) condition
with a small error (see Theorem 16.2.1 of Ref. [35]).

From these results, we conclude that ancestral learning
accelerates the evolutionary process. Since ancestral learning
does not use the information from communications among
the agents at the same time, these results show that learn-
ing can accelerate the evolutionary process even without
communication.

V. ANCESTRAL INFORMATION IS SUFFICIENT
TO ESTIMATE GRADIENT

The second problem, whether an agent can estimate the
gradient of population fitness from the accessible informa-
tion, is then addressed. While we have numerically shown
that ancestral learning accelerates evolutionary processes, the
relationship between ancestral learning and fitness gradient is
still unclear. The ancestral information jemp used in ancestral
learning might be insufficient for estimating the gradient, and
communication between the agents in the same generation
might be required for the fitness gradient. In this section, we
prove that the ancestral information jemp is sufficient for esti-
mating the gradient. Theoretically, it implies that an agent can
estimate the gradient without communication among agents.
This also implies that ancestral learning updates the strategy
in the direction of the gradient.

To calculate the gradient of the population fitness, we em-
ploy a pathwise formulation and variational principle [31] of
the population dynamics. Let us consider the case in which
the path of the environmental state is Y (t ), and the agents do
not learn and stick to a fixed strategy πF. In this setting, let
us calculate the number NπF [X(t ) | Y (t )] of the agents at time
t whose path of the type of the ancestors is X(t ). By applying
Eq. (1) recursively, we have

NπF [X(t ) | Y (t )] = ek(X(t ),Y (t ) )PF[X(t )]N (0), (13)

where the quantities k(X(t ),Y (t ) ) := ∑t−1
t ′=0 k(x(t ′ ), y(t ′ ) ) and

PF[X(t )] = ∏t−1
t ′=0 πF(x(t ′ ) ) are the pathwise (historical) indi-

vidual fitness and pathwise forward probability, respectively.
With the pathwise formulation, we can represent the cumula-
tive population fitness as

�(t )(πF | Y (t ) ) = log
∑
X(t )

ek(X(t ),Y (t ) )PF[X(t )]. (14)

Since each y(t ) follows Q(y) independently, the population
fitness satisfies (cf. Refs. [24,25])

λ(πF) = 〈log〈ek(x,y)〉πF (x)〉Q(y). (15)

The form of log〈·〉πF on the right-hand side is equivalent to the
scaled cumulant generating function [36], and the following
variational principle holds:

λ(πF) =
〈

max
π

{∑
x∈X

k(x, y)π (x) − D[π‖πF]

}〉
Q(y)

, (16)

where π runs over all distributions on X and D[·‖·] is the
Kullback-Leibler (KL) divergence defined by

D[π‖π ′] :=
∑
x∈X

π (x) log
π (x)

π ′(x)
. (17)

See Appendix A for the proof. By a direct calculation, we
can see that the maximizer is πB(x | y). We can calculate
the derivative of the population fitness from the variational
principle:

∂λ(πF)

∂πF(x)
= π̄B(x)

πF(x)
. (18)

See Appendix B for the proof.
We now have all the ingredients to calculate the gra-

dient of the population fitness. As the strategy πF has a
constraint

∑
x∈X πF(x) = 1, we consider the following defi-

nition of the gradient. The gradient at πF under the constraint∑
x∈X πF(x) = 1 is defined as

lim
ε→+0

argmax
δπ

πF+δπ∈Dε (πF )

{λ(πF + δπ )}, (19)

where the limit is one sided from the positive real num-
bers, δπ ∈ RX with

∑
x∈X (πF(x) + δπ (x)) = 1, that is,∑

x∈X δπ (x) = 0, and Dε (πF) is the sphere around πF with a
radius of ε. To define the sphere, we use the KL divergence
as a natural distance over distributions on X as Dε (πF) :=
{π | D[πF‖π ] < ε}. Intuitively, the gradient is the direction
in which the population fitness increases the most among
all strategies that satisfy the constraint and have the same
infinitesimal distance from πF. The definition is related to a
proximal operator [37] and coincides with the usual gradient
if no constraint is imposed, and if the sphere is defined by
the Euclidean distance. We prove that the gradient is directed
toward π̄B, i.e.,

lim
ε→+0

argmax
δπ

πF+δπ∈Dε (πF )

{λ(πF + δπ )} ∝ π̄B − πF. (20)

See Appendix B for the proof.
The results address the second problem. To estimate the

gradient, an agent must estimate π̄B. Based on the discussion
in the last paragraph of Sec. III, the ancestral information
jemp is an unbiased estimator of π̄B; that is, 〈 jemp〉 = π̄B.
Therefore, an agent can estimate the gradient from ances-
tral information without communication among agents in the
same generation. The explicit formula of the gradient also
indicates that ancestral learning updates the strategy in the
direction of the gradient. The direction π

(i+1)
F − π

(i)
F of the
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update of the strategy by ancestral learning equals the right-
hand side of Eq. (20). In particular, ancestral learning finds
the optimal strategy if the learning rate is sufficiently small
because λ is concave. In addition, while we assumed here
that τest is infinitely large, we also show in Sec. IX that this
assumption can be relaxed approximately for small τest by
choosing the learning rate α sufficiently small.

VI. FISHER’S FUNDAMENTAL THEOREM
FOR ANCESTRAL LEARNING

We address the last problem, the quantification of the
acceleration of evolutionary processes by learning, by ex-
tending the FF-thm to ancestral learning. Ancestral learning
may increase the population fitness much faster in certain
environments than others, depending on the stochastic prop-
erty Q(y) of the environment. In addition, the acceleration
can also depend on the update interval τest and the learning
rate α. The extension of the conventional FF-thm to ancestral
learning will improve our understanding of the dependency
of acceleration on Q(y), as well as when and why learning
becomes beneficial.

We will first review the conventional FF-thm for natural
selection [22]. The FF-thm relates to the speed of evolution
and the variance of individual fitness in the population. To
illustrate this, we consider the following fixed-type population
dynamics in a constant environment: The set of types is X as
Eq. (1), the daughter type is the same as that of the parent, and
the environment is constant, Y = {∗}. The individual fitness
of type x is ek(x). Here, we omit the dependency of individual
fitness ek(x,∗) on the environmental state ∗ as in the derivation
of Eq. (10). Under this setting, the number N (t )(x) of the agent
with type x at time t is as follows:

N (t )(x) = ek(x)N (t−1)(x). (21)

As we are interested in statistics of the population, such as
the variance of the individual fitness, we focus on the fraction
p(t )(x) := N (t )(x)/

∑
x∈X N (t )(x) of the agents with type x

at time t instead of N (t )(x). The time evolution of p(t ) was
derived from Eq. (21) and is expressed as

p(t )(x) = ek(x) p(t−1)(x)∑
x′∈X ek(x′ ) p(t−1)(x′)

. (22)

We define the covariance of the random variables f (x) and
g(x) with respect to a probability distribution p(x) over X as

Covp [ f (x), g(x)] := 〈 f (x)g(x)〉p − 〈 f (x)〉p〈g(x)〉p. (23)

From this, the variance is also defined as

Vp[ f (x)] := Covp [ f (x), f (x)]. (24)

One of the measures of evolutionary speed is the gain of mean
individual fitness 〈ek(x)〉p(t ) . The gain satisfies the following
relationship owing to Eq. (22):


〈ek(x)〉p(t ) := 〈ek(x)〉p(t ) − 〈ek(x)〉p(t−1) (25)

= Vp(t−1) [ek(x)]/〈ek(x)〉p(t−1) . (26)

See Appendix C for the detailed proof. The equation reveals
the relationship between evolutionary speed and the variance
of individual fitness in the population. This equation is called

the FF-thm for natural selection [38]. As we are not interested
in the mean individual fitness but the population fitness de-
fined by

λ(t ) := log

∑
x∈X N (t )(x)∑

x∈X N (t−1)(x)
, (27)

at time t , we derive an FF-thm for population fitness. We
define variants of the covariance and variance, which we call
log covariance and log variance, to extend the conventional
FF-thm by

log-Covp[ f (x), g(x)] := log
〈 f (x)g(x)〉p

〈 f (x)〉p〈g(x)〉p
, (28)

log-Vp[ f (x)] := log-Covp[ f (x), f (x)], (29)

respectively. The log covariance measures the similarity of

two random variables as the covariance does because the
log covariance monotonically increases with respect to the
covariance. Indeed, we can prove

log-Covp [ f (x), g(x)] = log

(
1 + Covp [ f (x), g(x)]

〈 f (x)〉p〈g(x)〉p

)
(30)

by direct calculation. By using these quantities, we can obtain
an extended FF-thm for population fitness using a similar
argument as in Eq. (26),


λ(t ) := λ(t ) − λ(t−1) = log-Vp(t−1) [ek(x)]. (31)

See Appendix C for the proof. This equation reveals the rela-
tionship between the speed of evolutionary process measured
by the gain of the population fitness and the log variance of
the individual fitness in the population.

The FF-thm for population fitness is closely related to an-
cestral learning. To see this, we first consider a simple case in
which the environment is constant, Y = {∗}, the learning rate
α = 1.0, and τest ≈ ∞. Under this setting, we measure the
acceleration of the evolutionary process by ancestral learning
using 
λ(i) := λ(π (i)

F ) − λ(π (i−1)
F ), where π

(i−1)
F and π

(i)
F are

the strategies of an agent before and after the update by ances-
tral learning. The gain 
λ(i) of the population fitness depends
on ancestral learning and is independent of natural selection.
We can therefore regard 
λ(i) as a measure of the accelera-
tion. By using these preparations, we find that the update by
ancestral learning and gain 
λ(i) have a close connection with
the FF-thm for population fitness. In Sec. III, we have shown
that the update of ancestral learning is π

(i)
F ← π

(i−1)
B , where

π
(i−1)
B is the retrospective process of π

(i−1)
F . This update is

equivalent to that in Eq. (22) if we identify p(t ) with π
(i)
F . In

addition, the gain 
λ(i) is equivalent to the left-hand side of
Eq. (31) if we identify p(t ) with π

(i)
F again. Owing to these two

equivalences, we can obtain an FF-thm for ancestral learning
by substituting p(t ) with π

(i)
F in Eq. (31):


λ(i) := λ
(
π

(i)
F

) − λ
(
π

(i−1)
F

) = log-V
π

(i−1)
F

[ek(x)]. (32)

This theorem reveals the relationship between gains in popu-
lation fitness by using ancestral learning and the log variance
of individual fitness of the strategy.

The theorem also reveals the trade-off between the accel-
eration 
λ(i) and the population fitness λ(π (i)

F ) by showing
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that the acceleration is large when the agent expresses a va-
riety of types. An interpretation is that the agent can obtain
information about which type is best fitted to the environment
by expressing a variety of types. We call such a situation
exploratory. In contrast, an agent with the optimal strategy
always expresses the same type in this setting [Eq. (8)].
Therefore, the theorem implies that the acceleration is almost
zero when the strategy is close to the optimal value, and
λ(π (i)

F ) is large. We call such a situation exploitative. Thus, we
can see the so-called exploration-exploitation trade-off in this
setting.

We can further extend the FF-thm for ancestral learning to
cases where the environment is not constant, as follows:


λ(i) = 〈log-Cov
π

(i−1)
F

[ek(x,y), ek(x,y′ )]〉Q(y)Q(y′ )

+ D[Q(y)Q(y′)‖Q̄(i)(y′ | y)Q(y)], (33)

where

Q̄(i)(y′ | y) :∝
∑
x∈X

ek(x,y)π
(i−1)
B (x | y′)Q(y′). (34)

See Appendix D for the proof.
Note that the above equation can be reduced to Eq. (32) if

the environment is constant. Equation (33) is different from
the FF-thm of natural selection in a nonconstant environment,
as the time for the evolution of p(t ) is different from the update
for π

(i)
F ← π̄

(i−1)
B with ancestral learning. The time for the

evolution of p(t ) in a nonconstant environment is stochastic
and governed by the following:

p(t )(x) = ek(x,y) p(t−1)(x)∑
x′∈X ek(x′,y) p(t−1)(x′)

, (35)

with probability Q(y).

VII. MEASURES TO CHARACTERIZE
ANCESTRAL LEARNING

Using the terms that appear in Eq. (33), we can quanti-
tatively characterize different aspects of the strategies during
and after learning. We define an actual gain 
acλ

(i) and an
expected gain 
exλ

(i) using the left- and right-hand sides of
Eq. (33):


acλ
(i) := λ

(
π

(i)
F

) − λ
(
π

(i−1)
F

)
(36)

and


exλ
(i) := �̃(i) + KL(i), (37)

where �̃(i) and KL(i) are variance and KL terms of 
exλ
(i),

respectively, defined as

�̃(i) := 〈log-Cov
π

(i−1)
F

[ek(x,y), ek(x,y′ )]〉Q(y)Q(y′ ) (38)

and

KL(i) := D[Q(y)Q(y′)‖Q̄(i)(y′ | y)Q(y)]. (39)

The reason for the additional KL term [Eq. (39)] appearing
in Eq. (33) is attributed to the existence of two representative
strategies: specialist and generalist. Each term [Eqs. (38) and
(39)] of the expected gain [Eq. (37)] is associated with one
of the representative strategies and corresponds to the gain of
the population fitness by acquiring the corresponding strategy.

A specialist strategy is defined as a situation in which an
agent expresses a small subset of types that are fitted to the
environment. Formally, a strategy is specialized to X ′ � X if
πF(x) > 0 for x ∈ X ′ and πF(x) = 0 otherwise. An example
is the optimal strategy [Eq. (8)] for a constant environment
which is specialized to the single optimal type {x∗}. The spe-
cialist strategy is beneficial when the environment is constant
or the environmental states y ∈ Y are similar to each other,
because an agent can survive by expressing not all but a
few types in such situations. Here, the similarity between the
environmental states y and y′ is defined as the closeness of
ek(x,y) and ek(x,y′ ) for all x ∈ X (see the next paragraph for the
formal definition). However, if the environmental states are
dissimilar, an agent cannot produce descendants efficiently by
specializing to only a few types, as these types are not adaptive
to some environmental states. An agent should stochastically
choose types from a variety of alternatives to reduce the risk
of specialization. The probability of expressing a type should
be determined such that the strategy has a greater population
fitness. Even if the strategy is specialized to a subset X ′
with #X ′ > 1, the probability πF(x) for x ∈ X ′ should be
determined to maximize λ. We define the generalist strategy
to X ′ as the stochastic expression of the types in X ′, whose
probabilities are positive and are set such that the population
fitness is maximized. In general, the optimal strategy is a
combination of specialist and generalist. For example, let us
examine the optimal strategy π∗

F = (0.72, 0.0, 0.28) in the
model shown in Fig. 4(j), which is calculated numerically.
The strategy is specialized to X ′ = {0, 2} but of generalist
in X ′.

During the evolutionary process with learning, an agent
attains the optimal strategy by acquiring two representative
strategies. The variance and KL terms of the expected gain,
�̃(i) and KL(i), correspond to the gains in population fitness by
acquiring the respective strategy. The variance term �̃(i) mea-
sures the gain of population fitness by acquiring the specialist
strategy, whereas the KL term KL(i) does so by acquiring the
generalist strategy. To see this interpretation, we rewrite an
updated strategy π

(i)
F . We proved that π

(i)
F = π̄

(i−1)
B in Sec. III

when τest ≈ ∞. By definition,

π̄
(i−1)
B (x) =

〈
ek(x,y)

〈ek(x′,y)〉
π

(i−1)
F (x′ )

〉
Q(y)

π
(i−1)
F (x)

∝ 〈ek(x,y)〉Q(y)π
(i−1)
F (x). (40)

This equation transforms the probability distribution π
(i−1)
F

into π̄
(i−1)
B by multiplying 〈ek(x,y)〉Q(y) for each x ∈ X . In the

transformation, the normalization factor is 〈ek(x′,y)〉
π

(i−1)
F (x′ )Q(y).

Let us examine the multiplicative factors. For convenience,
we define a vector (〈ek(x,y)〉Q(y) )x∈X ∈ RX by collecting the
multiplicative factors for x ∈ X . It is the average of the vectors
Fy := (ek(x,y) )x∈X ∈ RX defined for each y. We regard Fy as
a representation of the environmental state y by embedding
it into RX [Figs. 4(e) and 4(h)]. The embedding can be used
to measure the similarity between environmental states y and
y′ using log-Cov

π
(i)
F

[Fy(x), Fy′ (x)]. By considering the nor-

malization factor 〈ek(x′,y)〉
π

(i−1)
F (x′ )Q(y), we also define a scaled
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FIG. 4. Numerical validation of FF-thm for ancestral learning. The learning rate is α = 1.0 unless otherwise specified. (a)–(c) Constant
environment model. (a) The parameters of the model. (b) Trajectories of the actual gain 
acλ

(i) and the variance term �̃ (i) [Eqs. (36) and
(38)] along the lineage of an agent. Notice that �̃ (i) = 
exλ

(i) [Eq. (37)] when the environment is constant. The dotted black line represents

λ = 0. At each update, we observe 
acλ

(i) ≈ �̃ (i). (c) Comparison between 
acλ
(1) and �̃ (1) when an agent had a randomly generated initial

strategy. For most of the strategies, 
acλ
(1) ≈ �̃ (1) was observed when the learning rate is α = 1.0 or α = 0.1. (d)–(f) Similar environment

model. (d) The parameters of the model. (e) Illustration of the representation of environmental state y in RX using the embedding vector Fy.
The environmental state y is represented such that the xth component of Fy is ek(x,y). The environmental states are similar since these two
embedded vectors point to similar directions. The optimal solution π∗ in this model is specialist. Geometrically, the strategy lies on the red
dotted line

∑
x∈X πF(x) = 1, and the optimal is on the axis corresponding to the red type. Thus, the strategy moved toward π∗ on this line. (f)

Comparison between 
acλ
(i), �̃ (i), KL(i) [Eq. (39)], and 
exλ

(i). As the FF-thm for nonconstant environments [Eq. (33)] has an additional KL
term, the KL term KL(i) and the expected gain 
exλ

(i) were shown in addition to (b). We could observe that the FF-thm holds and the variance
term dominated. (g)–(i) Dissimilar environment model. (g) The parameters of the model. (h) An illustration of the embedding of environmental
states in this model. From this embedding, we can see that the environmental states are dissimilar. In this case, the optimal strategy is generalist
and should lie in the middle of the red dotted line. (i) The same plot as (f) in this model. We observed that the FF-thm holds and the KL
term was not negligible. At last, |�̃ (i)| ≈ |KL(i)| was achieved. (j)–(l) Combined model. (j) The parameters of the model. (k) The same plot
as (b) with the additional trajectories of the KL term KL(i) and the expected gain 
exλ

(i). Since the variance term dropped earlier than the KL
term, we can see that an agent learned a specialist strategy first and then acquired a generalist strategy. (l) The same plot as (c) in this model.
For most of the strategies, we could see that 
acλ

(1) ≈ 
exλ
(1) holds when the learning rate is α = 1.0 or α = 0.1.
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embedding f y as follows:

fy(x) := Fy(x)

〈ek(x′,y)〉
π

(i−1)
F (x′ )

, (41)

which depends on the current strategy π
(i−1)
F in addition to y.

We use scaled embedding to rewrite Eq. (40) as

π̄
(i−1)
B (x) = 〈 fy(x)〉Q(y)π

(i−1)
F (x). (42)

The updated strategy π̄
(i−1)
B is closer to the specialist strategy

when environmental states are more similar since if each
f y has similar peaks (larger components), so is their aver-

age π̄
(i−1)
B [Fig. 4(e)]. The iteration of such an update leads

to specialization to the types where the peaks lie on. We
will later see in the next paragraph that the variance term
[Eq. (38)] measures the similarity of environmental states and
corresponds to the gain of the population fitness by being of
specialist strategy. In contrast, π̄

(i−1)
B is closer to a generalist

strategy when the environmental states are more dissimilar
as if each f y has different peaks; then their average π̄

(i−1)
B

becomes flat [Fig. 4(h)]. The iteration of such an update leads
to a generalist strategy because no concentration occurs and
the probability of expressing types is balanced so that the pop-
ulation fitness increases. We will see that the KL term KL(i)

measures the dissimilarity of the vectors and corresponds to
a gain in population fitness by being a generalist strategy. By
using the correspondence, we can interpret the vanishing of
the KL term when the environment is constant, as a result of
non-necessity for being a generalist strategy.

We rewrite Eq. (33) to show that the variance and KL
terms, �̃(i) and KL(i), measure the similarity and dissimilarity
of the environmental states, respectively. We first see that the
variance term measures the similarity between environmental
states. The variance term is equal to the following:

�̃(i) =〈log-Cov
π

(i−1)
F

[Fy(x), Fy′ (x)]〉Q(y)Q(y′ ). (43)

Since the log covariance measures the similarity between two
environmental states, the variance term measures that between
all environmental states. We can say the opposite for the KL
term, as it is equal to the following:

KL(i) =
〈
− log

〈Fy(x)Fy′ (x)〉
π

(i−1)
F

〈Fy(x)〉
π

(i)
F

〈Fy′ (x)〉
π

(i−1)
F

〉
Q(y)Q(y′ )

. (44)

See Appendix C for the proof. In principle, the KL term
is larger when the environmental states are more dissimilar
because the second moment 〈Fy(x)Fy′ (x)〉

π
(i−1)
F

appears in the
numerator, as long as 〈Fy(x)〉

π
(i)
F

in the denominator does not
change a lot. Therefore, the KL term measures the dissimilar-
ity of the environmental states.

VIII. NUMERICAL VALIDATION OF FISHER’S
FUNDAMENTAL THEOREM FOR ANCESTRAL

LEARNING

We numerically verified the FF-thm for ancestral learning.
We simulated four different models whose stochastic proper-
ties Q(y) of the environments are different. In each model,
we investigated whether the FF-thm holds, that is, 
acλ

(i) ≈

exλ

(i). The learning rate α = 1.0 unless otherwise specified.

In addition, we set τest = 1000 to suppress the fluctuation of
jemp [cf. Eq. (51)].

We first validated FF-thm when the environment is con-
stant. We simulated the model shown in Fig. 4(a) and call it
a constant environment model. We observed that 
acλ

(i) ≈

exλ

(i) along the lineage of an agent whose initial strategy
was π

(0)
F = (0.5, 0.5) [Fig. 4(b)]. To check the validity of

the FF-thm beyond one lineage, we compared 
acλ
(1) and


exλ
(1) of the agents, each of which had an initial strategy

generated uniformly at random [Fig. 4(c)]. We observed that

acλ

(1) ≈ 
exλ
(1) for most of the initial strategies.

We then verified the FF-thm when the environment is not
constant by using three simulation models. First, we used the
model shown in Fig. 4(d), which has similar environmental
states and is thus called a similar environment model. In this
model, the optimal strategy is specialized to {0} [Fig. 4(e)],
and the variance term �̃(i) is expected to dominate. Figure 4(f)
showed 
acλ

(i), 
exλ
(i), �̃(i), and KL(i) along the lineage of

an agent whose initial strategy was π
(0)
F = (0.5, 0.5). From

the plot, we found that 
acλ
(i) ≈ 
exλ

(i) and that the variance
term dominated, as expected.

Next, we simulated the model shown in Fig. 4(g). As the
environmental states are dissimilar in this model, it is referred
to as a dissimilar environment model. In this model, the op-
timal strategy is a generalist one as illustrated in Fig. 4(h),
and the KL term [Eq. (39)] is expected to be non-negligible.
Figure 4(i) showed 
acλ

(i), 
exλ
(i), �̃(i), and KL(i) along

the lineage of an agent whose initial strategy was π
(0)
F =

(0.9, 0.1). We verified 
acλ
(i) ≈ 
exλ

(i) and found that the
KL term was not negligible, as expected. We also observed
that |�̃(i)| ≈ |KL(i)| as i increases.

Finally, we consider the model shown in Fig. 4(j), where
the environmental states 0 and 1 are similar whereas state 2
is dissimilar from them. This model is consequently called
a combined model. In this model, the optimal strategy π∗ =
(0.72, 0, 0.28) is a combination of specialist to X ′ = {0, 2}
and of generalist in X ′. Figure 4(k) shows 
acλ

(i), 
exλ
(i),

�̃(i), and KL(i) along the lineage of an agent whose initial
strategy was (0.05, 0.15, 0.8). We could see that 
acλ

(i) ≈

exλ

(i). We also observed that the KL term is not negligible.
As the variance term dropped faster than the KL term, an
agent acquired the specialist strategy first and then acquired
the generalist strategy. This interpretation was also supported
by the strategy π

(5)
F = (0.31, 0.04, 0.65) just before the fifth

update, when the variance term became negative for the first
time. The strategy was almost specialized to X ′ = {0, 2}. In
contrast, the strategy was not of generalist in X ′ because
π

(5)
F (0) and π

(5)
F (2) were far from the optimal probabilities

π∗
F (0) and π∗

F (2), respectively. To check the validity of the
FF-thm beyond one lineage, we compared 
acλ

(1) and 
exλ
(1)

of the agents, each of which had an initial strategy generated
uniformly at random [Fig. 4(l)]. We observed that 
acλ

(1) ≈

exλ

(1) for most of the initial strategies.

IX. TRADE-OFF BETWEEN THE LEARNING RATE
AND UPDATE INTERVAL

The FF-thm for ancestral learning is derived for α = 1 and
τest 
 1. To address other situations, especially one where τest

is not very large, we further extend the FF-thm for ancestral
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learning to the cases where α < 1.0 and show that there is a
trade-off relationship between α and τest. First, we define an α

log covariance by generalizing Eq. (30) as follows:

log-Covα
p [ f (x), g(x)] := log

(
1 + α

Covp [ f (x), g(x)]

〈 f (x)〉p〈g(x)〉p

)
.

(45)

By using this quantity, we have


λ(i) = 〈
log-Covα

π
(i−1)
F

[ek(x,y), ek(x,y′ )]
〉
Q(y)Q(y′ )

+ D
[
Q(y)Q(y′)‖Q̄(i)

α (y′ | y)Q(y)
]
, (46)

where

Q̄(i)
α (y′ | y) :∝

∑
x∈X

ek(x,y)π (i−1)
α (x | y′)Q(y′) (47)

and

π (i−1)
α (x | y′) = απ

(i−1)
B (x | y′) + (1 − α)π (i−1)

F (x). (48)

See Appendix E for the proof. We define the actual and ex-
pected gains, which generalize Eqs. (36) and (37), by the left-
and right-hand sides of Eq. (46), respectively, as


acλ
(i) := λ

(
π

(i)
F

) − λ
(
π

(i−1)
F

)
(49)

and


exλ
(i) := 〈

log-Covα

π
(i−1)
F

[ek(x,y), ek(x,y′ )]
〉
Q(y)Q(y′ )

+ D
[
Q(y)Q(y′)‖Q̄(i)

α (y′ | y)Q(y)
]
. (50)

To verify the validity of the FF-thm [Eq. (50)] for α < 1.0,
we simulated the constant environment model [Fig. 4(a)], and
the combined model [Fig. 4(j)] when the learning rate is α =
0.1. We compared 
acλ

(1) and 
exλ
(1) of the agents, each of

which had an initial strategy generated uniformly at random
[Figs. 4(c) and 4(l)]. We observed 
acλ

(1) ≈ 
exλ
(1) for most

of the strategies.
When τest < ∞, FF-thm [Eq. (46)] does not hold and


acλ
(i) < 
exλ

(i). Owing to the finite update interval, the

ancestral information j
π

(i−1)
F

emp and the updated strategy π
(i)
F =

α j
π

(i−1)
F

emp + (1 − α)π (i−1)
F fluctuate around their expectations

π̄
(i−1)
B and π̄ (i−1)

α = απ̄
(i−1)
B + (1 − α)π (i−1)

F , respectively.
The average population fitness 〈λ(π (i)

F )〉 with respect to this
fluctuation is smaller than λ(π̄ (i−1)

α ) owing to the concavity of
λ and Jensen’s inequality. When τest is sufficiently large (but
still finite), we can quantify this decrease as


acλ
(i) ≈ 
exλ

(i) + α2

2
Tr(IλV ). (51)

Here, Tr(A) is the trace of matrix A, and the matrix V is
the covariance matrix of jemp defined by

V (x, x′) = 〈 jemp(x) jemp(x′)〉 − π̄B(x)π̄B(x′). (52)

In addition,

Iλ(x, x′) = ∂2λ(π̄α )

∂π (x)∂π (x′)
. (53)

See Appendix F for the proof. We note that the second term
of Eq. (51) is nonpositive because of the negative semidefi-
niteness of Iλ shown from the concavity of λ. As V is of the

order 1/τest, the deviation α2Tr(IλV )/2 from the FF-thm for
τest = ∞ is negligible if the learning rate is sufficiently small
when compared with the update interval τest: α2/τest � 1.
Thus, there is a trade-off between α and τest in relation to the
learning efficiency.

In Sec. VI, we mainly focus on the case of τest = ∞ to
make FF-thm [Eq. (46)] intuitive. However, a short τest is
realistic and may be beneficial in both biological and engi-
neering systems. The benefit of a short τest is that an agent
has more opportunities for acceleration by updates of strategy.
The drawback is that the acceleration by each update may not
always be guaranteed due to the fluctuation of jemp around
its expectation πB. As a result, the expected acceleration is
decreased. Equation (51) indicates that the decrease is of the
order α2/τest. This implies that an agent can keep the decrease
small by adopting a small α compared to τest, although such
a small learning rate slows the acceleration by each update
[Eq. (46)]. In other words, the decrease in memory size τest

can be compensated by the decrease in learning speed α.
Because of the decrease in acceleration, Eq. (51) depends on
the second power of α, whereas on the first power of τest, an
agent might prefer a pair of small α and short τest to that of
large α and long τest. Indeed, we have numerically shown
that ancestral learning accelerated the evolutionary process
with a small α = 0.01 and short τest = 1 in Sec. III. In such
a situation, our extended FF-thm is insightful because the
deviation [second term on the right-hand side of Eq. (51)] is
small.

X. DISCUSSION AND CONCLUSIONS

First, we numerically showed that ancestral learning could
accelerate evolutionary processes. We then proved that an
agent could estimate the gradient of the population fitness
from its ancestral information jemp, even without communica-
tion between agents. The acceleration was then quantified by
extending the FF-thm for ancestral learning and revealed that
the gain of population fitness by ancestral learning was associ-
ated with the log variance of the individual fitness in a strategy.
Finally, we determined the trade-off relationship between the
learning rate and update interval. Overall, we have established
a theoretical framework with which we can characterize and
evaluate the impact of learning on evolutionary processes.

Due to its generality, this framework may be applied to
various problems. A biological example is the adaptation (mi-
croevolution) of organisms. In the last decade, cell phenotypic
variability has been intensely analyzed using experimental
techniques to measure the dynamics of the phenotype at the
single-cell level, such as division time and cell size [14,15],
and sensitivity to chemical substances in chemotaxis [16].
These experimental works have revealed that phenotypic
states can be inherited over generations with certain regular-
ities. The results of this study will help to elucidate how the
inheritance of phenotypes occurs in cells as a form of learning.
Furthermore, our framework may also be employed to develop
new methods for measuring and quantifying the impacts of
learning from single-cell tracking data.

In engineering, the quantification of how much learning
improves the performance of algorithms, such as the memetic
algorithms discussed in the Introduction, is a current research
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interest. For example, it has recently been utilized in the field
of artificial intelligence to integrate reinforcement learning
with evolutionary algorithms [39]. While some papers have
suggested numerically that the optimization process using the
memetic algorithm is faster than with the vanilla genetic algo-
rithm, they lack theoretical quantification and justification of
acceleration. Our modified FF-thm can address this problem.
With our theory, we may design more efficient algorithms and
tune their parameters effectively.

The theory, however, could be improved further, as there
are some additional factors that might be useful for agents to
learn. One such factor is the type of parent. While an agent
with ancestral learning uses the ancestor’s type jemp, it does
not use the type of the parent directly. Such strong dependence
on the parent might be beneficial when the environmental state
is strongly correlated with the previous state. When the type
x of an agent depends on x′ of the parent, the type-switching
strategy should be modeled as a Markov transition TF(x | x′)
instead of the distribution of πF(x). Promising techniques
currently available for generalization are large deviations and
variational representations, which played an important role in
the present study, and Markov chains in random environments
[24,25].

Another factor to consider is the communication between
agents. Although we showed that the agent can estimate the
gradient without communication, learning with such informa-
tion might further accelerate the evolutionary process when
compared to ancestral learning. The acceleration by ancestral
learning becomes small when the update interval τest is short
owing to the fluctuations of jemp [Eq. (51)]. Communications
between agents may thus help to suppress such fluctuations.

The final factor is the sensing of the environmental state.
In the context of population dynamics, researchers have con-
sidered the situation in which an agent receives a sensing
signal z of the environmental state y and then expresses their
type using a signal-dependent strategy πF(x | z) [3–6]. Since
sensing is another form of information processing, we should
consider the unification of sensing and learning to understand
the significance of information processing in organisms. In
such a setting, an agent might attain the optimal strategy
π∗

F (x | z) via extended ancestral learning. To achieve such
unification, we need a theory that integrates the prospective
and retrospective information obtained by both sensing and
learning.

The source code for simulations is available at Ref. [40].
The language was C++17 with Boost 107100. We used
Windows Subsystem for Linux 2. The operating system was
Ubuntu 20.04.1 LTS on Windows 10 version 2004. We used
gcc 9.3.0 for compiling. For Fig. 3, we used graphviz 2.43.0
(0) and colormap [41]. For the other plots, we used matplotlib-
cpp [42], which requires PYTHON 3. We used PYTHON 3.8.5.
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APPENDIX A: VARIATIONAL REPRESENTATION
OF THE POPULATION FITNESS [EQ. (16)]

The proof is a special case of Refs. [6,31]. For the com-
pleteness of the paper, we give the proof. For a fixed y ∈ Y
and an arbitrary distribution π over X ,

log〈ek(x,y)〉πF (x) = log
∑
x∈X

π (x)
πF(x)

π (x)
ek(x,y). (A1)

By applying Jensen’s inequality, we have

log〈ek(x,y)〉πF (x) �
∑
x∈X

π (x)

[
log

πF(x)

π (x)
ek(x,y)

]

=
∑
x∈X

π (x)

[
k(x, y) − log

π (x)

πF(x)

]

=
∑
x∈X

π (x)k(x, y) − D[π‖πF]. (A2)

By substituting π (x) with πB(x | y), we can see that the equal-
ity is attained. Therefore,

log〈ek(x,y)〉πF (x) = max
π

{∑
x∈X

k(x, y)π (x) − D[π‖πF]

}
.

(A3)

By averaging the equality with respect to Q(y), we have
Eq. (16).

APPENDIX B: GRADIENT OF THE POPULATION
FITNESS [EQS. (18) AND (20)]

The proof is essentially the same as in Ref. [31]. Since the
maximizer of the right-hand side of Eq. (A3) is πB(x | y),

log〈ek(x,y)〉πF (x) =
∑
x∈X

k(x, y)πB(x | y) − D[πB‖πF]. (B1)

We differentiate both sides with respect to πF(x) while taking
into account the dependence of πB on πF:

∂

∂πF(x)
log〈ek(x,y)〉πF (x)

= −∂D[πB‖πF]

∂πF(x)
+

∑
x′∈X

∂πB(x′ | y)

∂πF(x)

∂F [πB]

∂πB(x′ | y)
, (B2)

where F [π ] := ∑
x∈X k(x, y)π (x) − D[π‖πF]. Since πB is

the maximizer of F , the derivative of F at πB is zero and
consequently the second term vanishes. Therefore,

∂

∂πF(x)
log〈ek(x,y)〉πF (x) = πB(x | y)

πF(x)
. (B3)

By taking the average with respect to Q(y), we have Eq. (18).
We next prove Eq. (20) via the Lagrange multiplier

method. For sufficiently small ε, it suffices to solve the fol-
lowing linearized optimization:

max
δπ

∑
x∈X

π̄B(x)

πF(x)
δπ (x), (B4)

under the constraints
∑

x∈X δπ (x) = 0 and
D[πF‖πF + δπ ] = ε. For a sufficiently small ε, we can
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approximate D[πF‖πF + δπ ] by using the Fisher information
matrix [43] as

D[πF‖πF + δπ ] ≈ 1

2

∑
x,x′∈X

δπ (x)δx,x′
1

πF(x)
δπ (x′)

= 1

2

∑
x∈X

δπ2(x)

πF(x)
. (B5)

Here, the Fisher information matrix is a |X | × |X | diagonal
matrix with diagonal entries {1/πF(x)}x∈X . By using this ap-
proximation, the Lagrangian function is

L(δπ ; λ, λ′) =
∑
x∈X

π̄B(x)

πF(x)
δπ (x) + λ

(
1

2

∑
x∈X

δπ2(x)

πF(x)
− ε

)

+ λ′
(∑

x∈X
δπ (x)

)
. (B6)

By differentiating L with respect to δπ (x), we have the sta-
tionary condition:

∂L

∂δπ (x)
= π̄B(x)

πF(x)
+ λδπ (x)

πF(x)
+ λ′ = 0, (B7)

for all x ∈ X . By multiplying πF(x) and taking the sum
∑

x∈X
of both sides of Eq. (B7), we have

1 + λ′ = 0. (B8)

We here used
∑

x∈X δπ (x) = 0. By rearranging Eq. (B7) and
substituting λ′ = −1, we have

δπ (x) = πF(x) − π̄B(x)

λ
∝ π̄B(x) − πF(x). (B9)

APPENDIX C: FISHER’S FUNDAMENTAL THEOREM
OF NATURAL SELECTION [EQS. (26) AND (31)]

We first prove Eq. (26) for the completeness of the paper.
By direct calculation,


〈ek(x)〉p(t ) =
∑
x∈X

ek(x) p(t )(x) −
∑
x∈X

ek(x) p(t−1)(x)

=
∑
x∈X

ek(x) ek(x) p(t−1)(x)∑
x′∈X ek(x′ ) p(t−1)(x′)

−
∑
x∈X

ek(x) p(t−1)(x)

=
∑

x∈X (ek(x) )
2
p(t−1)(x)−(

∑
x∈X ek(x) p(t−1)(x))

2∑
x∈X ek(x) p(t−1)(x)

= Vp(t−1) [ek(x)]

〈ek(x)〉p(t−1)

. (C1)

We next prove Eq. (31). By direct calculation,


λ(t ) = log
∑
x∈X

ek(x) p(t )(x) − log
∑
x∈X

ek(x) p(t−1)(x)

= log
∑
x∈X

ek(x) ek(x) p(t−1)(x)∑
x′∈X ek(x′ ) p(t−1)(x′)

− log
∑
x∈X

ek(x) p(t−1)(x)

= log
∑
x∈X

(ek(x) )2 p(t−1)(x) − 2 log
∑
x∈X

ek(x) p(t−1)(x)

= log
〈(ek(x) )2〉p(t−1)

〈ek(x)〉2
p(t−1)

= log-Vp(t−1) [ek(x)]. (C2)

APPENDIX D: FISHER’S FUNDAMENTAL THEOREM
OF ANCESTRAL LEARNING FOR NONCONSTANT

ENVIRONMENT [EQS. (33) AND (44)]

We first prove Eq. (33). By direct calculation,

λ
(
π

(i)
F

) = 〈log〈ek(x,y)〉
π̄

(i−1)
B

〉Q(y)

= 〈log〈ek(x,y)〉
π̄

(i−1)
B

〉Q(y)Q(y′ )

= 〈log〈ek(x,y)〉
π

(i−1)
B (x|y′ )〉Q(y)Q(y′ )

+
〈

log
〈ek(x,y)〉

π̄
(i−1)
B

〈ek(x,y)〉
π

(i−1)
B (x|y′ )

〉
Q(y)Q(y′ )

. (D1)

We first treat the first term. By a similar argument to Eq. (31),
the term inside the expectation satisfies the following relation-
ship:

log〈ek(x,y)〉
π

(i−1)
B (x|y′ ) − log〈ek(x,y)〉

π
(i−1)
F

= log
∑
x∈X

ek(x,y) ek(x,y′ )π
(i−1)
F (x)

〈ek(x′,y′ )〉
π

(i−1)
F (x′ )

− log〈ek(x,y)〉
π

(i−1)
F

= log
〈ek(x,y)+k(x,y′ )〉

π
(i−1)
F

〈ek(x,y)〉
π

(i−1)
F

〈ek(x,y′ )〉
π

(i−1)
F

= log-Cov
π

(i−1)
F

[ek(x,y), ek(x,y′ )]. (D2)

By taking the average with respect to Q(y)Q(y′), we have

〈log〈ek(x,y)〉
π

(i−1)
B (x|y′ )〉Q(y)Q(y′ ) − λ

(
π

(i−1)
F

)
= 〈

log-Cov
π

(i−1)
F

[ek(x,y), ek(x,y′ )]
〉
Q(y)Q(y′ ). (D3)

We next treat the second term of Eq. (D1). By definition,

Q̄(i)(y′ | y)

Q(y′)
=

∑
x∈X ek(x,y)π

(i−1)
B (x | y′)∑

x∈X ,y′∈Y ek(x,y)π
(i−1)
B (x | y′)Q(y′)

=
〈ek(x,y)〉

π
(i−1)
B (x|y′ )

〈ek(x,y)〉
π̄

(i−1)
B

. (D4)

We thus have〈
log

〈ek(x,y)〉
π̄

(i−1)
B

〈ek(x,y)〉
π

(i−1)
B (x|y′ )

〉
Q(y)Q(y′ )

=
〈
log

Q(y′)
Q̄(i)(y′ | y)

〉
Q(y)Q(y′ )
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=
〈
log

Q(y)Q(y′)
Q̄(i)(y′ | y)Q(y)

〉
Q(y)Q(y′ )

= D[Q(y)Q(y′)‖Q̄(i)(y′ | y)Q(y)]. (D5)

In conclusion, we proved Eq. (33).
We next prove Eq. (44). By Eq. (D4),

log
Q(y)Q(y′)

Q̄(i)(y′ | y)Q(y)
= − log

〈ek(x,y)〉
π

(i−1)
B (x|y′ )

〈ek(x,y)〉
π̄

(i−1)
B

= − log

〈
ek(x,y)+k(x,y′ )

〉
π

(i−1)
F

〈ek(x,y)〉
π̄

(i−1)
B

〈ek(x,y′ )〉
π

(i−1)
F

= − log
〈Fy(x)Fy′ (x)〉

π
(i−1)
F

〈Fy(x)〉
π

(i)
F

〈Fy′ (x)〉
π

(i−1)
F

. (D6)

By averaging with respect to Q(y)Q(y′), we have Eq. (44).

APPENDIX E: FISHER’S FUNDAMENTAL THEOREM
OF ANCESTRAL LEARNING WHEN α < 1 [EQ. (46)]

We can prove Eq. (46) by almost the same argument as
Eq. (33). Recall that π̄ (i−1)

α = απ̄
(i−1)
B + (1 − α)π (i−1)

F . By di-
rect calculation, we have

λ
(
π

(i)
F

) = 〈log〈ek(x,y)〉
π̄

(i−1)
α

〉Q(y)

= 〈log〈ek(x,y)〉
π̄

(i−1)
α

〉Q(y)Q(y′ )

= 〈
log〈ek(x,y)

〉
π

(i−1)
α (x|y′ )〉Q(y)Q(y′ )

+
〈

log
〈ek(x,y)〉

π̄
(i−1)
α

〈ek(x,y)〉
π

(i−1)
α (x|y′ )

〉
Q(y)Q(y′ )

. (E1)

We first treat the first term. By a similar argument to Eq. (31),
the term inside the expectation satisfies

log〈ek(x,y)〉
π

(i−1)
α (x|y′ ) − log〈ek(x,y)〉

π
(i−1)
F

= log

〈
ek(x,y)

(
α

ek(x,y′ )

〈ek(x′,y′ )〉
π

(i−1)
F (x′ )

+ 1 − α

)〉
π

(i−1)
F (x)

− log〈ek(x,y)〉
π

(i−1)
F

= log

(
α

〈ek(x,y)+k(x,y′ )〉
π

(i−1)
F

〈ek(x,y′ )〉
π

(i−1)
F

+ (1 − α)〈ek(x,y)〉
π

(i−1)
F

)

− log〈ek(x,y)〉
π

(i−1)
F

= log

(
α

〈ek(x,y)+k(x,y′ )〉
π

(i−1)
F

〈ek(x,y)〉
π

(i−1)
F

〈ek(x,y′ )〉
π

(i−1)
F

+ 1 − α

)
. (E2)

By a similar argument to Eq. (30),

log〈ek(x,y)〉
π

(i−1)
α (x|y′ ) − log〈ek(x,y)〉

π
(i−1)
F

= log

(
α

Cov
π

(i−1)
F

[ek(x,y), ek(x,y′ )]

〈ek(x,y)〉
π

(i−1)
F

〈ek(x,y′ )〉
π

(i−1)
F

+ 1

)

= log-Covα

π
(i−1)
F

[ek(x,y), ek(x,y′ )]. (E3)

By taking the average with respect to Q(y)Q(y′), we have

〈log〈ek(x,y)〉
π

(i−1)
α (x|y′ )〉Q(y)Q(y′ ) − λ

(
π

(i−1)
F

)
= 〈

log-Covα

π
(i−1)
F

[ek(x,y), ek(x,y′ )]
〉
Q(y)Q(y′ ). (E4)

We next treat the second term of Eq. (E1). By definition,

Q̄(i)
α (y′ | y)

Q(y′)
=

∑
x∈X ek(x,y)π (i−1)

α (x | y′)∑
x∈X ,y′∈Y ek(x,y)π

(i−1)
α (x | y′)Q(y′)

=
〈ek(x,y)〉

π
(i−1)
α (x|y′ )

〈ek(x,y)〉
π̄

(i−1)
α

. (E5)

Thus, 〈
log

〈ek(x,y)〉
π̄

(i−1)
α

〈ek(x,y)〉
π

(i−1)
α (x|y′ )

〉
Q(y)Q(y′ )

=
〈
log

Q(y′)

Q̄(i)
α (y′ | y)

〉
Q(y)Q(y′ )

=
〈
log

Q(y)Q(y′)

Q̄(i)
α (y′ | y)Q(y)

〉
Q(y)Q(y′ )

= D
[
Q(y)Q(y′)

∥∥Q̄(i)
α (y′ | y)Q(y)

]
. (E6)

In conclusion, we proved Eq. (46).

APPENDIX F: FISHER’S FUNDAMENTAL THEOREM OF
ANCESTRAL LEARNING WHEN τest IS FINITE [EQ. (51)]

When τest is sufficiently large (but finite), we can approxi-
mate jemp by the central limit theorem [44] as

jemp ∼ N
(
π̄

(i−1)
B ,V

)
, (F1)

where N (μ,�) is the multivariate normal distribution with
mean μ and covariance �. The updated strategy π

(i)
F =

α jemp + (1 − α)π (i−1)
F satisfies

π
(i)
F ∼ N (π̄α, α2V ), (F2)

where we omit the superscript of π̄ (i−1)
α to avoid the compli-

cation. The growth rate is approximated as

λ
(
π

(i)
F

) = λ(π̄α + δπ )

≈ λ(π̄α ) +
∑
x∈X

∂λ(π̄α )

∂π (x)
δπ (x)

+ 1

2

∑
x,x′∈X

δπ (x)
∂2λ(π̄α )

∂π (x)π (x′)
δπ (x′)

= λ(π̄α ) +
∑
x∈X

∂λ(π̄α )

∂π (x)
δπ (x)

+ 1

2

∑
x,x′∈X

δπ (x)Iλ(x, x′)δπ (x′), (F3)
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where δπ =π
(i)
F − π̄α = α jemp. We note that δπ ∼N (0, α2V ).

By this approximation,


acλ
(i) = 〈

λ
(
π

(i)
F

)〉
N (π̄α,α2V ) − λ(i−1)

≈ λ(π̄α ) − λ(i−1) +
〈∑

x∈X

∂λ(π̄α )

∂π (x)
δπ (x)

〉
N (0,α2V )

+ 1

2

〈 ∑
x,x′∈X

δπ (x)Iλ(x, x′)δπ (x′)

〉
N (0,α2V )

= 
exλ
(i) + 1

2

〈 ∑
x,x′∈X

δπ (x)Iλ(x, x′)δπ (x′)

〉
N (0,α2V )

.

(F4)

In the last equation, the third term vanishes because〈∑
x∈X

∂λ(π̄α )

∂π (x)
δπ (x)

〉
N (0,α2V )

=
∑
x∈X

∂λ(π̄α )

∂π (x)
〈δπ (x)〉N (0,α2V )

= 0. (F5)

By the usual matrix calculation [45],〈∑
x,x′

δπ (x)Iλ(x, x′)δπ (x′)

〉
N (0,α2V )

= α2Tr(IλV ). (F6)

In all, we proved Eq. (51).
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