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Effect of elastic disorder on single-electron transport through a buckled nanotube
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We study transport properties of a single electron transistor based on elastic nanotube. Assuming that an
external compressive force is applied to the nanotube, we focus on the vicinity of the Euler buckling instability.
We demonstrate that in this regime the transport through the transistor is extremely sensitive to elastic disorder.
In particular, built-in curvature (random or regular) leads to the “elastic curvature blockade”: appearance of
threshold bias voltage in the I-V curve which can be larger than the Coulomb-blockade-induced one. In the case
of a random curvature, an additional plateau in the dependence of the average current on a bias voltage appears.
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I. INTRODUCTION

A global trend of modern electronics is the design of nan-
odevices with ultra-low power consumption and a high level
of integration. One of the most attractive candidates for this
purpose is a single-electron transistor (SET), which is a sensi-
tive electronic device based on the Coulomb blockade effect.
Key points of fundamental physics of SET and its operation as
a tunable nanodevice have been formulated about 20 years ago
(for review see [1–5]). There has recently been an increased
interest to this topic partially associated with the discovery
of carbon systems with a transverse degree of freedom, such
as suspended nanotubes and graphene. The interest is moti-
vated by creation of nanoelectromechanical systems (NEMS),
which are a class of devices integrating electrical and mechan-
ical functionality on the nanoscale [6–18]. The simplest model
of SET-based NEMS is provided by a harmonic mechanical
oscillator coupled to an excess particle number on the SET
island [16–25].

When suspended elastic nanotube is used as a SET island,
coupling between mechanical and charge degrees of freedom
provides an additional control via mechanical forces. This
coupling can be strongly increased by applying a compres-
sive force driving the nanotube towards the Euler buckling
instability [26,27] (see more recent experimental [28–36] and
theoretical [16–18,37–44] studies of this instability). Physics
of such systems is captured by the model developed in
Refs. [16–18]. This model was focused on the study of a
SET made of a clean nanotube in which fluctuations arise
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only due to temperature T . Such fluctuations lead to “elastic
blockade”: appearance of a small threshold bias voltage in
the SET I-V curve at the center of Coulomb blockade peak
[16–18] (the term elastic blockade was introduced earlier for
other materials [8,13]). However, the extreme sensitivity of
the nanomechanical SET to an external environment implies
that presence of disorder or some built-up deflection from
ideal symmetry can strongly modify the elastic blockade.

Typically, nanotubes are not ideal and, therefore, are
curved (in a random or regular way) in their equilibrium state.
The effect of such built-in curvature is manifold. First of all,
it can change the effective potential well confining electrons
in the SET island and redistribute the electron density. This
effect is weak provided that the curvature-induced electronic
potential is small as compared to the Fermi energy. Secondly,
built-in curvature can lead to an electron scattering. This effect
is also weak, since a typical spacial scale of curvature is much
larger than the Fermi wavelength. The most significant effect
is related to the presence of elastic degree of freedom. In
particular, as was shown in Refs. [41–44], built-in curvature
can strongly affect buckling transition.

These studies have a great relevance to experiment. Ex-
perimentally, the SETs with elastic degree of freedom can
be realized and tested in various systems, some of which
are sketched in Fig. 1. The simplest realization is a nan-
otube located in a plane and coupled, both electrically and
mechanically, with source and drain (see the left panel of
Fig. 1). Mechanical coupling leads to buckling within the
same plane. Physically, this system is fully equivalent to a
graphene nanoribbon, which buckles in the direction perpen-
dicular to plane (see the center panel in Fig. 1). Additionally,
electromechanical coupling can be studied in an array of nan-
otubes shown in the right panel of Fig. 1.

Recently, a possibility of a complete control of nanotube-
based SETs by means of an external mechanical forces
has been clearly demonstrated experimentally [33–36]. In
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FIG. 1. Sketch of a possible realization of SETs with an elastic degree of freedom. Left: A SET based on a suspended nanotube tunnel-
coupled to a source and a drain and driven by an external force F. A gate electrode creates additional electric field E in the y direction. This
transverse field bends the nanotube provided it is occupied by an excessive electron. Center: A SET with a graphene nanoribbon buckled by
an external force. Right: A SET made of an array of nanotubes.

particular, in a very recent experimental work [35] a double-
well elastic potential describing collective coordinate Y was
created and controlled mechanically by using two mechanical
forces: A compressive force along the nanotube which leads
to buckling bistability and a force in the perpendicular di-
rection, which makes the double-well potential asymmetrical
thus “helping” the nanotube to choose the proper potential
minimum. This experimental situation exactly corresponds to
the theoretical model we shall focus in this paper. In Ref. [33]
the lowest-lying flexural eigenmodes of nanotube were iden-
tified with an unprecedented precision by capacitively driving
the nanotube-based mechanical resonator with external cir-
cuit. Excitation of such eigenmodes by placing the nanotube
into the optical cavity shows surprisingly high quality fac-
tors (up to 104!) [34]. The latter proves extreme sensitivity
of suspended nanotubes to external forces. SET coupled to
oscillating field was realized in Ref. [36] and field-driven
Coulomb blockade peaks were used to make a single-electron
“chopper”.

In this paper, we study disordered nanotube- or
nanoribbon-based SET under the action of a mechanical force
(see Fig. 1). We model disorder by spontaneous local cur-
vature (regular or random) [41–44]. We demonstrate that the
results obtained in Refs. [16–18] for a clean nanomechanical
SET are strongly modified in the presence of such curva-
ture. This built-in curvature leads—due to electro-mechanical
coupling—to two crucial effects: (i) existence of large thresh-
old bias voltage in I-V curve at the center of Coulomb
blockade peak for a fixed, built-in curvature (see Fig. 2), (ii)
appearance of an intermediate plateau in bias-voltage depen-
dence of the current averaged over realizations of random
curvature (see bottom panel in Fig. 10).

Outline of the paper is as follows. We start with formu-
lation of the model in Sec. II. In Sec. III the approximate
treatment of the model is developed. The current for a fixed
curvature of nanotube is calculated in Sec. IV. The case of a
random curvature is considered in Secs. V and VI. We end
the paper with discussions and conclusions in Sec. VII. Some
technical details are given in Appendices.

FIG. 2. Schematic plot of the current density in (vg, v) plane for different realizations of a built-in curvature, characterized by disorder
strength C1. Disorder increases from the left panel to the right one. Regions with nonzero current v > vTh(vg) are marked by pink color.
They have a form of triangle with right (R) and left (L) boundaries described by function vTh(vg) and shown by red thick lines. Small gap
corresponding to zero current in the I-V curve in the clean case C1 = 0 is dramatically increased in the certain interval of disorder strength,
and is maximal for C1 = α/16 due to the elastic curvature blockade. For any point in (vg, v) plane there are two values of disorder C1 = CR

and C1 = CL corresponding to crossing of this point, respectively, by the right and left boundaries of the current-carrying triangle (CL > CR).
Both CL and CR depend on coordinates vg, v, CR,L = CR,L(vg, v). Area where current is zero for any disorder v < vTh(vg) is marked by grey
color. The function vTh(vg) is shown by thick blue line.
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II. MODEL

The sketch of the setup is shown in Fig. 1 (left panel).
We consider a nanotube of length L suspended between left
and right leads, which serve as source and drain, respec-
tively. The tunneling coupling of the nanotube to the source
(drain) is characterized by the tunneling rates �L (�R). We
assume that a finite voltage bias V is applied between source
and drain shifting their chemical potentials to ±eV/2. The
electrical potential Vg of the nanotube can be tuned by a capac-
itively coupled electrode (gate). We consider regime of strong
Coulomb blockade T < Ec such that only a single excessive
(in addition to a quasineutral Fermi gas) electron can occupy
a nanotube. Here, Ec is the charging energy (Ec ∼ 10 meV
for a typical nanotube length L ∼ 0.1 μm). The Hamilto-
nian of a nanotube, including the elastic degrees of freedom
parametrized by the bending angle θ = θ (s) as a function of
the arc-length position s reads

Ĥ =
∫ L

0
ds[κ (θ ′ − C′)2/2 + F cos θ ] + eEn̂dY. (1)

Here θ ′ ≡ dθ/ds, κ denotes the bending rigidity of the nan-
otube, F stands for the compressing force applied to the ends
of the nanotube, E is an additional electric field created by the
gate electrode, directed along y axis, and

Y =
∫ L

0
|ψ0(s)|2y(s)ds (2)

is the average displacement of the nanotube in y direction.
Here, y(s) is transverse coordinate of the nanotube, related to
bending angle as follows:

dy

ds
= sin θ. (3)

We model disorder by built-in curvature described by func-
tion C(s), which can be regular or random. The electronic
degrees of freedom enters the Hamiltonian (1) via the operator
of the excess particle number n̂d, and the wave function ψ0(s),
of an active energy level for an excessive electron on the
nanotube. Provided the nanotube is occupied by an additional
electron, the quasineutrality is broken, and the transverse
electric field E bends the nanotube. Hence, there is the term
eEn̂dY in Eq. (1). The nanotube is assumed to be clamped on
the left and right leads of the SET, such that Hamiltonian (1)
has to be supplemented by the following curvature-dependent
boundary conditions [41,42]:

y(0) = y(L), θ ′(0) = C′(0), θ ′(L) = C′(L). (4)

In the Hamiltonian (1) we neglect the elastic kinetic en-
ergy. This is justified under assumption that a typical elastic
frequency of transverse oscillations of the nanotube, ω ∝√

κ/(ρL4), where ρ is the linear mass density of the nanotube,
is small as compared to temperature h̄ω � T . As a result, the
only dynamical degree of freedom in the Hamiltonian (1) is
the excess particle number n̂d.

In the strong Coulomb blockade regime, the operator
n̂d takes two values, nd = 0 and nd = 1. Solution of the
coupled—electronic and elastic—dynamical problem can be
essentially simplified in the adiabatic approximation provided
the tunneling between the nanotube and the source and the

drain is sufficiently fast �L,R � ω. In such adiabatic approx-
imation and under assumption, h̄�R,L � max{T, |eV |, |eVg|},
the computation of the bending angle becomes fully classical
and the bending angle profile is described by the following
nonlinear equation (for C(s) ≡ 0, this equation was derived
in Ref. [17])

κ[θ ′′(s) − C′′(s)]+F sin θ (s) = eE (s)nd(Y ) cos θ (s), (5)

where E (s) = E
∫ L

s ds′|ψ0(s′)|2 and nd(Y ) is the average
value of the operator n̂d for a fixed configuration θ (s),

nd(Y ) =
∑
λ=±

γλ fF(eEY − eVλ). (6)

Here fF(ε) = 1/[exp(ε/T ) + 1] denotes the Fermi function,
V± = Vg ± V/2, γ− = �L/(�L + �R), and γ+ = �R/(�L +
�R). Under the same assumptions, the SET current reads

I = 2e�R�LI (Y )

�L + �R
, I (Y ) =

∑
λ=±

λ

2
fF(eEY − eVλ). (7)

In order to compute the current by means of Eq. (7), one
needs to solve the nonlinear second order differential Eq. (5).
As we shall demonstrate below, one can construct an analytic
solution near buckling instability.

III. FUNDAMENTAL MODE APPROXIMATION

In order to satisfy the boundary conditions (4), it is con-
venient to expand the functions θ (s) and C(s) in the Fourier
series,

θ (s) =
∞∑

n=1

θn cos qns, C(s) =
∞∑

n=1

Cn cos qns, (8)

where qn = πn/L. Euler buckling instability is clearly seen
from Eq. (5) at E = 0. Indeed, linearization of this equa-
tion yields divergence of θ1, for F = Fc:

θ1 ≈ −8C1

ε
, ε = 8(F − Fc)

Fc
, Fc = κ

(π

L

)2
, (9)

for the critical force of the instability (see Refs. [26,27]).
Hereafter we assume that |ε| � 1. In fact, the growth of θ1

for |ε| → 0 is limited by nonlinear terms in the Eq. (5). The
modes θn with n � 2 are finite at F = Fc and can be found
within the linear approximation: θn ∼ Cn. Such crucial differ-
ence between the behavior of the mode with n = 1 and modes
with n�2 allows us to project Eq. (5) onto the fundamental
mode cos(q1s) as it was done in the clean case [16,17]. In the
most of our paper, we throw out all but the first mode (weak
effects coming from modes with n � 2 are briefly discussed
at the Appendix A). The shape of nanotube, within funda-
mental mode approximation can be found from Eq. (3) and is
given by

y1(s) = Lθ1

π
sin

(πs

L

)
. (10)

We shall also make several simplifying assumptions
throughout the paper. We assume the symmetric SET, �R =
�L = � (i.e., γ+ = γ− = 1/2). Also we set T = 0. We shall
estimate the effect of thermal fluctuations at the end of the
paper and demonstrate that for realistic values of parameters
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this effect is small. The latter assumption allows one to replace
Fermi functions entering Eqs. (6) and (7) with step functions.
We shall also assume that disorder is weak so that |θ1| � 1.

Then, expanding sinus in Eq. (5) as sin θ ≈ θ−θ3/6, keeping
only the first harmonic, θ ≈ θ1 cos(q1s), and projecting thus
obtained equation onto the first mode, we obtain the closed
nonlinear balance equation for the amplitude of the first har-
monic θ1:

f (θ1) = 0, (11)

where

f (θ1) = θ3
1 − εθ1 + αnd(θ1) − 8C1, (12)

nd(θ1) = 1
2 [�(v+ − θ1) + �(v− − θ1)]. (13)

Here �(x) denotes the Heaviside step function. Within the
same approximation the current is given by

I = e�I (θ1), I (θ1) = 1
2 [�(v+−θ1)−�(v−−θ1)]. (14)

In Eqs. (12), (13), and (14) we introduced dimensionless
strength of the electron-phonon interaction and the dimen-
sionless voltages [45]

α = 16a1eE

πFc
, v± = vg±v

2
,

vg = πVg

a1EL
, v = πV

a1EL
,

(15)

where a1 = ∫ L
0 ds |ψ0(s)|2 sin(q1s) is the numerical coef-

ficient which fully encodes the dependence on the wave
function of the active electron quantum level: it changes
from a1 = 8/3π for ψ0(s) = √

2/L sin(q1s) to a1 ≈ 2/π for
ψ0(s) = √

2/L sin(qN s) with N ≈ kFL/π�1. Here kF stands
for the Fermi momentum.

Importantly, the typical magnitude of α is very small, α ∼
10−4 ÷ 10−2 [17], that will allow us to study the effect of the
electromechanical coupling perturbatively.

We are interested in the solution θ1(C1) of Eq. (11) that
provides the minimum of the dimensionless energy

W (θ1) =
(
θ2

1 − ε
)2

4
+ αwd(θ1) − 8C1θ1, (16)

related to f (θ1) as follows: f (θ1) = ∂W (θ1)/∂θ1. Here we
introduce

wd(θ1) =
∫ θ1

0
nd(θ )dθ = 1

2

∑
λ=±

(θ1 − vλ)�(vλ − θ1). (17)

We subtracted from wd the θ1-independent term [v+�(v+) +
v−�(v−)]/2 and assumed that v+ > v− (v > 0). We note
that in the single mode approximation the energy, E (θ1),
corresponding to Hamiltonian (1) is connected with the di-
mensional energy W (θ1) as follows:

E (θ1) = π2κW (θ1)

16L
. (18)

For α = 0 the energy W (θ1) has the form of the Landau
expansion of the free energy in series of the order parameter θ1

near the second order phase transition at ε = 0. The curvature
C1 plays the role of the symmetry-breaking field that breaks

the symmetry between two states of minimal energy at ε > 0.

Hence, the system can show the hysteretic behavior. However,
since we focus here in dc current, we assume that the system
always has time to reach the absolute energy minimum.

Most importantly, the single-mode approximation allows
us to find the I-V curve for a fixed curvature (i.e., for given
C1). For random curvature which is characterized by a certain
distribution function P (C1), this approximation allows us to
calculate analytically the distribution function for the current
and analyze the competition of the random curvature with
the term αwd(θ1), which suppresses the bistablity. Below, we
discuss the cases of fixed and random curvature in Secs. IV
and V, respectively.

IV. CURRENT FOR A GIVEN CURVATURE

In order to calculate θ1 for fixed value of C1 one needs to
find all solutions of the balance Eq. (11), calculate correspond-
ing energies with the use of Eq. (16) and find global energy
minimum by choosing solution with the lowest energy.

A. Clean case in the absence of electromechanical coupling
(C1 = 0, α = 0)

In order to set notations we start from the analysis of
a clean nanotube without electromechanical coupling. Then,
Eq. (11) simplifies drastically,

θ3
1 − εθ1 = 0. (19)

This equation describes conventional buckling instability [27].
It has a single stable solution, θ1 = 0 for ε < 0, and two stable
solutions and an unstable one for ε > 0:

θ1 =
{±√

ε, (stable),
0, (unstable).

(20)

The effective energy for θ1 mode looks:

W (θ1) =
(
θ2

1 − ε
)2

4
. (21)

Function W (θ1) is plotted in Fig. 3(a) for ε < 0 and in
Fig. 3(b) for ε > 0. As one can see, the system shows me-
chanical bistability above the instability threshold ε > 0.

B. Disordered case in the absence of electromechanical
coupling (C1 �= 0, α = 0)

Disorder modifies the balance equation and the effective
energy as follows:

f (θ1) = θ3
1 − εθ1 − 8C1 = 0, (22)

W (θ1) =
(
θ2

1 − ε
)2

4
− 8C1θ1. (23)

The effective energy for C1 �= 0 is shown in Fig. 3(c). So-
lutions of Eq. (22) depend on C1, so that for ε > 0 and
at sufficiently weak disorder there are two stable solutions
θ±(C1) (see blue thick curves in Fig. 4), and one unstable
solution (see dashed curve in Fig. 4), just as in the clean
case. It is easy to check that W (θ+) < W (θ−) for C1 > 0 and
W (θ+) > W (θ−) for C1 < 0. The dependence θ1(C1) corre-
sponding to the absolute energy minimum of W (θ1) is shown
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FIG. 3. The effective energy for the clean nanotube at α = 0 below (a) and above (b) the buckling instability threshold. Above the threshold
the instability leads to a mechanical bistability in the clean nanotube. Disorder breaks the symmetry between two bistable states and the global
energy minimum appears (c), which depends on a specific disorder realization.

in Fig. 4 by red-thick curve for ε > 0. As seen, there is a jump
at C1 = 0, corresponding to transition from θ− to θ+. Hence,
in the case ε > 0 the dependence of θ1 on C1 can be written as

θ1(C1)=�(C1)θ+(C1)+�(−C1)θ−(C1). (24)

C. Effect of electromechanical coupling

For α �= 0, the step functions entering both f (θ1) and
W (θ1) depend on v± [see Eqs. (12), (13), (16), and (17)]. As
follows from Eqs. (13) and (17), the quantities nd and wd can
take different values depending on relation between θ1 and v±:

nd = 1, wd = θ1 − vg, for θ1 < v−,

nd = 1

2
, wd = θ1 − v+

2
, for v− � θ1 < v+,

nd = 0, wd = 0, for v+ � θ1.

(25)

FIG. 4. Schematic dependence of θ1 on the disorder strength
C1, corresponding to the absolute minimum of the effective energy
W (red curve) for ε > 0. Blue thick curves represent two stable
solutions θ±(C1), dashed curve is the unstable solution.

It is convenient to introduce three functions,

fs(θ1) = θ3
1 − εθ1 − 8Cs, s = a, b, c, (26)

that correspond to different possible values of nd. Here, we
denote

Ca = C1 − α

8
, Cb = C1 − α

16
, Cc = C1. (27)

These functions are shown in Fig. 5 by dashed lines. As seen
from this figure, solutions of equations fs(θ1) = 0 give (for
not too large magnitudes of C1 and α) six values of θ1 (we do
not consider here three unstable states with θ1 close to zero):

θ±
s = θ±(Cs), (28)

where functions θ±(C1) are shown in Fig. 4. We notice that
only two solutions θ±

b belong to the interval v− < θ1 < v+
and, therefore, correspond to nonzero current through the

FIG. 5. (a) Graphical representation of the balance equation in
the presence of electromechanical coupling. Dashed lines represent
functions fa, fb, and fc, cf. Eq. (26); red thick line shows function
f (θ1), cf. Eq. (12). Equation f (θ1) = 0 has three solutions: θ−

b , θ−
c ,

and θ+
c . Only one of these solutions θ−

b corresponds to nonzero
current through the nanotube. (b) Energy of nanotube for the same
voltages. There are three local minima at θ−

b , θ−
c , and θ+

c . The global
minimum correspond to θ+

c , so for such vg and v, the current is
blocked due to the elastic blockade.
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nanotube [see Eq. (14)]. Using Eqs. (16) and (25), one can
easily find energies corresponding to the solutions θ±

s :

W ±
a = ω±

a −αvg, W ±
b = ω±

b −αv+/2, W ±
c = ω±

c , (29)

ω±
s = [(θ±

s )2−ε]2

4
−8Csθ

±
s . (30)

Importantly, ω±
s are functions of C1 and α only and do not

depend on vg and v.

Next step is to find regions in the plane (vg, v), where one
or several solutions (28) are realized and, in the case of several
solutions, choose solution with the lowest energy. This proce-
dure is illustrated in Fig. 5. Function f (θ1) defined by Eq. (12)
is non-monotonous [see red curve in Fig. 5(a)] and have jumps
at the points θ1 = v+ and θ1 = v−. Equation f (θ1) = 0 yields
several solutions for θ1 belonging to manifold (28). For exam-
ple, in Fig. 5(a) the voltages v± are such that there are three
solutions: θ−

b , θ−
c , and θ+

c . These solutions give the three local
minima of the energy W [see Fig. 5(b)]. As one can see, the
global minimum correspond to θ+

c , so that current through
nanotube is zero. This example illustrates physical origin of
the elastic blockade: local minimum θ−

b , corresponding to
nonzero current, does not give absolute minimum. Hence, an
electron placed in this local minimum should decrease its
elastic energy by rebuckling from θ−

b ≈ −√
ε to θ+

c ≈ √
ε

with simultaneous “jumping out” from the current-carrying
window.

Let us now discuss the general case. First we notice, that
(vg, v) plane can be divided onto several regions, where differ-
ent solutions (28) can be realized. These regions corresponds
to different regions in Eq. (25). For example, solution θ+

a
exists if θ+

a < v−, solution θ+
b if v− < θ+

b < v+, etc. Since
θ±

s do not depend on vg and v, these regions are limited by
lines: v/2 = ±vg + const. They are shown by dashed lines in
Fig. 6, where we plotted only half plane v > 0 (the diagram
is symmetric with respect to change v → −v and change
I → −I). Dashed lines connected by arrowed arcs indicates
regions where different solutions (28) exist, e.g., regions a±
corresponds to solutions θ±

a etc. As seen, these regions over-
lap, so that several solutions can coexist in agreement with
Fig. 5. For example, in the points A three solutions coexist,
(c−, b−, c+). Therefore, one has to calculate energies of co-
existing states (W −

c ,W −
b , and W +

c in the above example) and
to find the global minimum. Within the pink triangle in Fig. 6
the global minimum is given by one of the energies W −

b or
W +

b , corresponding to nonzero current, I = 1/2. Boundary of
this triangular region, shown by two red thick lines, represents
the threshold voltage, vTh = vTh(C1, vg). This voltage sepa-
rates the region with zero current (v < vTh) from the region
(v > vTh), where I = 1/2. Position of the triangle depends on
C1 in a nontrivial way. Analyzing Eqs. (29) and (30) one can
demonstrate that the left (L) and the right (R) boundaries (red
lines) are determined by the following conditions:

L : W −
b = W −

c , R : W −
b = W −

a , for C1 < 0,

L : W −
b = W +

c , R : W −
b = W −

a , for 0 � C1 < α/16,

L : W +
b = W +

c , R : W +
b = W −

a , for α/16 � C1 < α/8,

L : W +
b = W +

c , R : W +
b = W +

a , for α/8 � C1.

(31)

FIG. 6. Phase diagram with schematically shown regions of dif-
ferent solutions θ±

s . As seen, these regions overlap. In the area of
overlapping, several solutions can coexist, giving several local min-
ima of energy [see also Fig. 5(b)]. Pink triangle shows the region with
nonzero current. Thick-red lines encode dependence of the threshold
voltage vTh on vg. At these lines current “jumps” from I = 0 (for
v < vTh) to I = 1/2 (for v > vTh). The evolution of current-carrying
triangle with increasing of C1 is illustrated in top, center, and bot-
tom panels. For 0 < C1 < α/16 the triangle moves up (top panel),
reaches maximal position at C1 = α/16 (center panel), and moves
down with further increase of disorder (bottom panel).

Using these relations and Eq. (29), we find that the threshold
voltage can be written as follows:

vTh = v0(C1) + 2|vg − vg0(C1)|. (32)

Dependence of vTh = vTh(vg,C1) on vg for fixed C1 is shown
by red lines (boundaries of the current-carrying triangle) in
Fig. 6. The dependence on C1 is fully encoded in functions
v0 = v0(C1) and vg0 = vg0(C1):

v0 = 2

α

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2ω−
b −ω−

c −ω−
a , for C1 < 0,

2ω−
b − ω+

c −ω−
a , for 0 � C1 < α/16,

2ω+
b − ω+

c −ω−
a , for α/16 � C1 < α/8,

2ω+
b − ω+

c −ω+
a , for α/8 � C1,

(33)

vg0 = 1

α

⎧⎪⎨
⎪⎩

ω−
a − ω−

c , for C1 < 0,

ω−
a − ω+

c , for 0 � C1 < α/8,

ω+
a − ω+

c , for α/8 � C1,

(34)

Equations (32), (33), and (34) provide a full solution of
the problem for a fixed disorder. Functions ω±

s entering these
equations are given by Eq. (30) with θ±

s found from Eq. (28).
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For a fixed disorder the current-voltage dependence be-
comes

I (v) = sign(v)

2
�(|v| − vTh). (35)

Equations (33) and (34) allow one to find some general
properties of the current-carrying triangle. In particular, one
can easily demonstrate that the curve v0(C1) has a maximum
at C1 = α/16 and is symmetric with respect to this point:
v0(C1) = v0(α/8−C1). Also, one finds vg0 = 0 at C1 = α/16
and is antisymmetric with respect to this point vg0(C1) =
−vg0(α/8−C1).

D. Limiting cases

Next, we consider some limiting cases. General equa-
tions derived in the previous section are dramatically simpli-
fied when C1 and α are small:

C1 � ε3/2, α � ε3/2. (36)

Then, keeping in θ±
s terms up to linear order with respect to

C1 and α, and in ω±
s up to quadratic order we get

θ±
s ≈ ±√

ε + 4Cs

ε
, (37)

ω±
s ≈ −16C2

s

ε
∓ 8Cs

√
ε. (38)

Substituting Eq. (38) into Eqs. (33) and (34) we find that
the latter equations can be written in a compact way (it is
convenient to express v0 and vg0 in terms of Cb:

v0(C1) =
{

α
4ε

, for |Cb| > α
16

α
4ε

+ 2
√

ε
(
1− 16|Cb|

α

)
, for |Cb| < α

16 ,
(39)

vg0(C1) =
{ 4Cb

ε
+ sign(Cb)

√
ε, for |Cb| > α

16

Cb
(

4
ε
+ 16

√
ε

α

)
, for |Cb| < α

16 .
(40)

Dependencies of v0 and vg0 on C1 are schematically shown
in Fig. 7. Most interestingly, there is a very sharp increase of
v0 (and, consequently, vTh) within a narrow region of disorder
strength: 0 < C1 < α/8. Hence, we predict the suppression of
the current by the built-in curvature—the phenomenon, which
we call elastic curvature blockade. Physically, curvature-
induced threshold in the current arises due to the need to
choose the bending amplitude θ1 from minimization of W (θ1).
For |v| < vTh, the bending angle found from energy mini-
mization (with account of the electromechanical coupling)
turns out to be beyond the current-carrying window v− <

θ1 < v+.

One can also find dependence of v0 on ε. The results of
corresponding numerical solution are shown in Fig. 8. As
one can see, this dependence is very sensitive to a built-in
curvature. In particular, the change of C1 from negative to
positive values results in qualitative change of the behavior
of v0 with ε.

Equations (39) and (40) can be further simplify in the
absence of disorder, C1 = 0. In this case, v0 = α/4ε vg0 =
−√

ε−α/4ε, so we obtain

vTh = α

4ε
+ 2

∣∣∣vg + √
ε + α

4ε

∣∣∣, for C1 = 0. (41)

FIG. 7. Dependence of position of the lower tip of the current-
carrying triangle on the curvature. Black-thick lines are dependencies
of v0 (top panel) and vg0 (bottom panel) on C1 for weak disorder
and weak electromechanical coupling α (|C1| � ε3/2, α � ε3/2). At
larger C1 (|C1| � ε3/2), v0 starts to decrease very slowly ∼ α/C2/3

1 ,

while linear increase of vg0 with C1 slows down to ∼ C1/3
1 . Dashed

lines show asymptotical behavior of v0 and vg0 for C1 � ε3/2. Thick
curves deviate significantly from dashed ones for |C1| ∼ ε3/2 � α.

This result is in agreement with Refs. [16–18], where it was
found that electromechanical coupling leads to elastic block-
ade. Indeed, we see that there is a finite minimal threshold

FIG. 8. Dependence of the elastic-blockade-induced voltage v0

on ε for α = 2 × 10−3 at different values of C1 ranging from
−1.25 × 10−4 to 1.25 × 10−4 (from red to blue) with the step 0.5 ×
10−4. For ε > 0, the built-in curvature enhances parametrically the
voltage v0.
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voltage, vmin
Th = α/4ε, proportional to electromechanical cou-

pling. This means that at low temperatures and small driving
voltage, the transport through SET is blocked.

In the limit of very small α, one can easily get I − V
curve for arbitrary values of C1. To this end, one should take
limit α → 0 in Eqs. (33), and (34). Simple calculation yields
v0 → 0 and vg0 → θ1(C1) where θ1(C1) is given by Eq. (22).
Therefore, we get

vTh = 2|vg − θ1(C1)|, for α → 0. (42)

Since θ1(C1) has a jump at C1 = 0 (see Fig. 4), current-
carrying triangle also abruptly “jumps” in vg direction on
δvg = 2

√
ε, when C1 changes sign. Exactly at the point vg = 0

and for |C1| � ε3/2, we get vTh ≈ 2
√

ε. Comparing this value
with the value α/4ε for finite α and C1 ≡ 0 [see Eq. (41)], we
find giant, about ε3/2α−1�1, curvature-induced enhancement
of the driving voltage threshold, as compared to the elastic
blockade threshold, in the absence of the curvature [16–18].

Before closing this section, we note that Eqs. (39) and (40)
have finite limit when both C1 and α tends to zero, while the
ratio C1/α = (1 + ξ )/16 remains finite. Then, we find

v0

2
√

ε
=

{
1 − |ξ |, for |ξ | < 1,

0, for |ξ | > 1,

vg0√
ε

=
{
ξ, for |ξ | < 1,

sign[ξ ], for |ξ | > 1.

(43)

Physically, approximation (43) neglects relatively small ef-
fects caused by elastic blockade in the absence of curvature,
but captures much larger curvature-induced blockade. Within
this approximation, position of the current-carrying triangle
is fully determined by parameter ξ = 16Cb/α = 16C1/α−1.

With increasing ξ from −∞ to ∞ the lower tip of the tri-
angle moves in the following way: it remains stationary in
the position (vg0 = −√

ε, v0 = 0) for −∞ < ξ < −1, then
“climbs a hill” with a height 2

√
ε in the interval −1 < ξ < 0,

moves down in the interval 0 < ξ < 1, and finally arrives at
the position (vg0 = √

ε, v0 = 0) and remains stationary for
1 < ξ < ∞. This approximation neglects very slow motion of
the triangle at large |ξ | > 1 (see the bottom panel in Fig. 7).
The change of vg0 from −√

ε to
√

ε with increasing ξ is due
to curvature-induced rebuckling of the nanotube.

V. DISORDER-AVERAGED I-V CURVE

Next we assume that a random C1 is described by a distri-
bution function P (C1). Changing C1 in the interval, −∞ <

C1 < ∞, one can find the curve (vg(C1), v0(C1)) in (vg, v)
plane parameterized by C1. This curve yields limiting value
vTh(vg), below which the current is equal to zero for any
C1 and consequently, for disorder-averaged I-V curve. Us-
ing general properties of functions v0(C1) and vg0(C1) [see
discussion after Eq. (35)], one can easily find that vTh(vg)
has a maximum at vg = 0 and is symmetric with respect to
this point: vTh(vg) = vTh(−vg). Dependence vTh(vg) is shown
schematically in Fig. 9. For small α obeying inequality (36),
this dependence reads

vTh(vg) =
{ α

4ε
, for |vg| > vg,

2
√

ε
(
1 + α

8ε3/2

)− 2|vg|
1+ α

4ε3/2
, for |vg| � vg,

(44)

FIG. 9. Dependence of the threshold voltage vTh on vg. Below
the curve vTh(vg) disorder-averaged current equals to zero. For 0 <

|vg| − √
ε � √

ε, the threshold voltage is approximately constant
and given by α/4ε (dashed line).

where vg = √
ε[1 + α/(4ε3/2)]. One can also show that for

very large gate voltages vg�√
ε, the threshold voltage decays

as vTh(vg) ≈ α/(6v2
g ).

We stress that vTh(vg) does not depend on the distribution
function of the random curvature P (C1), provided that this
function is nonzero within the whole interval −∞ < C1 < ∞.

To be specific, we assume that the random curvature has
Gaussian distribution with the zero mean and

〈C′(s1)C′(s2)〉 = �δ(s1 − s2), (45)

where C′(s) = dC(s)/ds. Then the eigenmodes Cn are inde-
pendently correlated with the dispersion determined by �,

〈CnCm〉 = �nδnm, �n = 2�L

π2n2
, n = 1, 2, . . . . (46)

Hence, C1 has the normal distribution,

P (C1) = exp
(−C2

1

/
2�1

)
√

2π�1
, (47)

characterized by the variance �1.

The point {vg0(C1), v0(C1)} is the position of the lower tip
of triangle region of nonzero current. This point moves as
C1 is increasing from negative to positive values. As shown
in Fig. 2, for v > vTh(vg), there are two values of curva-
ture CR and CL (CL > CR) for which, respectively, right and
left boundaries of the current-carrying triangle cross a point
(vg, v). Since at any point belonging to the triangle the current
equals I = 1/2, and equals to zero outside the triangle, we get
the following expressions for averaged current and the current
distribution function:

〈I〉 = 1

2

∫ CL

CR

dC1P (C1)

= 1

2

[
erf

(
CL√
2�1

)
− erf

(
CR√
2�1

)]
,

Pcur (I ) = 2〈I〉δ(I − 1/2) + (1 − 2〈I〉)δ(I ). (48)

As follows from Eqs. (32), CR,L are implicitly defined by the
following equations:

v− = vg0(CR) − v0(CR)

2
, v+ = vg0(CL) + v0(CL)

2
. (49)
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FIG. 10. Top panel: Density plot of the averaged current for
ε = 0.2, α = 0.1, and �1 = 2 × 10−4. The blue solid curve is the
threshold vTh(vg). Bottom panel: The current-voltage characteris-
tics for vg = 1, α = 0.02 and different values of disorder variance
�1 = 8 × 10−4 and �1 = 3 × 10−6 (red and blue correspondingly)
for zero temperature. As seen, with increasing �1 an intermediate
plateau appears corresponding to I = 1/4.

Here functions v0(C) and vg0(C) are determined by Eqs. (28),
(30), (33), and (34). Equation (48) suggests that 〈I〉 cannot
exceed the value 1/2.

The density plot of the average current calculated nu-
merically with the use of Eq. (48) as the function of v

and vg is shown in the top panel of Fig. 10. Numerically
calculated current-voltage curve is presented in the bottom
panel of Fig. 10 for two different values of variance �1.

One can also obtain analytical solution for I-V by using ap-
proximation (43). Corresponding calculations are delegated to
Appendix B.

Analysis of the numerical and analytical solutions demon-
strate that at fixed vg, the value 1/2 for the current is reached
at large values of v when CL → ∞, CR → −∞. One of the
most interesting properties of the averaged I-V curve is ap-
pearance of an intermediate plateau at I = 1/4 with increasing
disorder variance. This property is illustrated in the bottom

panel of Fig. 10 and in Fig. 16. In order to understand physics
behind this phenomenon, we will discuss in the next sec-
tion the distribution function of the angle θ1.

VI. THE DISTRIBUTION FUNCTION OF THE
BENDING ANGLE, θ1

The probability distribution function (PDF) for the bending
angle θ1 is given by

P(θ1) = 〈δ[θ1 − θ1(C1)]〉C1 , (50)

where function θ1(C1) gives solution of equation f (θ1) = 0,

corresponding to the global minimum of W and angular brack-
ets stand for the averaging with function P (C1) [see Eq. (47)].
Average current can be found [instead of integration over C1,

according to Eq. (48)] with the use of P(θ1) by integration
within the current-carrying window:

〈I〉 =
∫ v+

v−
P(θ1)dθ1. (51)

A. Distribution of the bending angle in the absence of
electromechanical coupling

Let us first consider the case of zero electromechanical
coupling. For α = 0, θ1(C1) is shown in Fig. 4 and for ε > 0
is expressed in terms of θ±(C) according to Eq. (24).

Integration of the delta functions in Eq. (50) over C1 yields

P(θ1) = 1√
2π�1

[
dθ1(C1)

dC1

]−1

e−[C1(θ1 )]2/(2�1 ) (52)

=
(
3θ2

1 − ε
)
�

(
θ2

1 − ε
)

8
√

2π�1
exp

[
−

(
θ3

1 − εθ1
)2

128�1

]
. (53)

Here, we took into account that C1 = C1(θ1) is given by
Eq. (22) and used the following equation:

J (θ1) = dC1(θ1)

dθ1
= 3θ2

1 − ε

8
(54)

for the Jacobian [we write here J (θ1) instead of |J (θ1)|, since
J (θ1) > 0 in the region |θ1| >

√
ε where P(θ1) > 0]. The

� function entering Eq. (53) reflects opening a gap in the
distribution function.

In the limit of a very weak disorder, the distribution func-
tion consists of two delta peaks,

P(θ1)
∣∣
�1→0 = 1

2 [δ(θ1 − �ε ) + δ(θ1 + �ε )]. (55)

Here �ε = √
ε �(ε) is the buckling-induced gap. The disor-

der broadens the delta functions in Eq. (55).
The function P(θ1), described by Eq. (53), is plotted in

Fig. 11. for a fixed weak disorder and two values of ε, below
and above instability threshold. Above the threshold ε > 0
there is a gap |θ1| < �ε inside which P(θ1) ≡ 0. We also
notice that slightly above the gap the distribution function
increases despite of the presence of the damping exponent in
Eq. (53). This increase is due to the Jacobian J (θ1).

Although the terms involving higher curvature harmon-
ics Cn>1 are small, they can modify the result (53) in the
region where P(θ1) is very small. In particular, they lead
to appearance of tails inside the gap, |θ1| < �ε , for ε > 0
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FIG. 11. The distribution function for α = 0, as determined by
Eq. (53), for a fixed weak disorder, �1 = 5 × 10−4, and for ε =
±0.2 (red and blue curves, respectively).

and to some modification of P(θ1) for ε < 0. We discuss in
detail the effects of the higher harmonics in Appendix A and
demonstrate that these modifications do not lead to significant
change of the distribution function. In particular, as one can
see from Fig. 14, even in the case of a moderate disorder,
when delta peaks in the distribution function at θ1 = �ε are
essentially broadened, the smearing of the gap edges is quite
small. Therefore, we shall neglect the corrections due to the
high-order harmonics to P(θ1) in the rest of the paper.

B. Effect of the electromechanical coupling

As we demonstrated above, equation f (θ1) = 0 has several
solutions belonging to the manifold θ±

s (C1) (see Fig. 5). These
solutions and corresponding energies depend on C1. Since
function f (θ1) has jumps at points θ1 = v− and θ1 = v+, the
function θ1(C1), which, by definition, represents the solution
with the minimal energy, might have mini-jumps in addition

to a large jump existing in the case α = 0. Existence of these
mini-jumps as well as their positions and position of the large
jump depends on vg, v, and on the value of α. For illustration,
in Fig. 12 we plotted θ1(C1) and corresponding distribution
function,

P(θ1) = [dθ1(C1)/dC1]−1P (C1)|C1=C1(θ1 ) (56)

[here C1(θ1) is the inverse function for θ1(C1)], for the case
v > vTh(vg) and relatively large vg such that CR > α/8.

As seen from this figure, there are three major effects of
the electromechanical coupling: (i) the curve θ1(C1) becomes
asymmetric with respect to the inversion: θ1 �→ −θ1; (ii) sev-
eral vertical mini-jumps form on this dependence in addition
to the large jump; (iii) large jump between values of the
bending angle close to −√

ε and
√

ε shifts from C1 = 0 to
the point C1 = α/8 [this specific value depends on a position
of point in the (vg, v) plane].

Let us discuss these properties in more detail. First, we
notice that W +

s −W −
s change sign when Cs = 0 (in particular,

for |Cs| � ε3/2, we get W +
s −W −

s ≈ −16Cs
√

ε). Since, by
assumption, CR > α/8, large jump occurs with increasing C1

at the point Ca = 0, i.e., at C1 = α/8, where W +
a = W −

a and,
consequently, there happens a jump from θ−

a to θ+
a . With

further increase of C1 it reach the value C1 = CR, where solu-
tion jump into current-carrying triangle θ+

a → θ+
b , and further

jumps out the triangle, θ+
b → θ+

c at C1 = CL. The values of
CL,R can be found from Eqs. (39), (40), and (49):

CR ≈ 3α

32
+ ε

4
(v−−√

ε), CL ≈ α

32
+ ε

4
(v+ + √

ε). (57)

The averaged current is given by Eq. (48), while the
amplitudes of jumps read: δθR = θ+

b (CR) − θ+
a (CR), δθL =

θ+
c (CL) − θ+

b (CL). For small α, obeying Eq. (36), we obtain

δθR ≈ δθL ≈ α

4ε
. (58)

As seen from Fig. 12, probability that the bending angle
is close to the value −√

ε is larger than the probability that

FIG. 12. Left: Dependence of θ1 corresponding to the absolute minimum of the energy, on disorder strength C1 for ε = ±0.2 (red and
blue) and α = 0.4, vg = 1, v = 0.2. Dependence consists of several parts described by functions θ−

a (C1), θ+
a (C1), θ+

b (C1), and θ+
c (C1). Large

jump occurs at C1 = α/8, while two small mini-jumps occur at the values C1 = CR and C1 = CL, corresponding to the intersection of the point
(vg, v). by the right and left boundaries of current carrying triangle, respectively. Right: Bending angle distribution function for the curvature
variance �1 = 5 × 10−3 and ε = 0.2. Grey area in both panels corresponds to nonzero current. Voltages v− and v+ are situated in the centers
of mini-gaps.
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θ1 ≈ √
ε. The probability imbalance increases with decreas-

ing �1. For
√

�1 � α, the bending angle with exponential
precision is concentrated near −√

ε.

Let us now discuss the physics behind the additional
random-curvature-induced plateau in the I-V curve. The key
point is the competition between two symmetry breaking
mechanisms: electromechanical coupling and random cur-
vature. Remarkably, the limits α → 0 and �1 → 0 do not
commute. Indeed, for α ≡ 0 and variance tending to zero,
�1 → 0, energy W (θ1) has two degenerate minima for ε > 0.
Thus, distribution function is given by the sum of two delta
functions:

P� = P(θ1)�1→0,α=0 � 1
2 [δ(θ1 + √

ε) + δ(θ1−
√

ε)].

Although a weak disorder slightly broadens the delta func-
tions, the symmetry P�(θ1) = P�(−θ1) remains intact. In the
considered limit, �1 → 0 and α = 0, expression for average
current reads

〈I〉 = 1

2

∫ v+

v−
P�(θ1)dθ1.

One can easily check that this expression contains an interme-
diate plateau with 〈I〉 = 1/4 in a wide interval of v in addition
to the plateau with 〈I〉 = 1/2 for v → ∞. By contrast, setting
�1 = 0 first and, then, sending α → 0, we find asymmetrical
distribution function,

Pα = P�1=0,α→0(θ1) = δ(θ1 + √
ε).

Corresponding expression for the average current,

〈I〉 = 1

2

∫ v+

v−
Pα (θ1)dθ1,

has only a single plateau with 〈I〉 = 1/2 for v → ∞. The
competition between two mechanisms is controlled by the pa-
rameter

√
�1/α (see also Appendix B). An additional step in

the I − V curve appears when this parameter becomes large:√
�1/α � 1. Remarkably, the current can be enhanced by

disorder contrary to naive expectations [see the bottom panels
in Fig. 10 and Fig. 16(b)].

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we predict curvature-induced enhance-
ment of elastic blockade. The maximal position of the
tip of the current-carrying triangle is given by eV max

0 =
(a1EL/π )v0(Cb = 0) [see Eqs. (15) and (39)]. Hence,

eV max
0 ∼ eEL

√
ε. (59)

For E � 10 kV/cm, L � 0.1 μm, and ε ∼ 1 it gives eV max
0 ∼

0.1 eV that is larger than the charging energy Ec ∼ 10 meV.
We note that enhanced bias-voltage threshold of the order
of eV max

0 exists for a sufficiently weak built-in curvature, in
a narrow window, 0 < C1 < α/8. Away from this window
the bias-voltage threshold is parametrically reduced (for α �
ε3/2) and becomes of the order of the threshold in the clean
case [16–18]. From Eq. (41), we find vcl

0 = α/4ε, so that

eV cl
0 ∼ α

ε
eEL � eV max

0 . (60)

Equations (59) and (60) imply that bias threshold voltage
very sharply depends on disorder: it changes by a large factor
ε3/2/α in a very narrow region of small C1. For the exper-
iments of Ref. [46] we can roughly estimate absolute value
of curvature |C1| � 0.1÷1. For this estimate we used Eq. (9)
with F = 0 (i.e., ε = −8) and values of θbuilt−in

1 estimated
from images of bent nanotubes in Ref. [46]. We also assumed
that in equilibrium C1 ∼ θbuilt−in

1 [this estimate follows from
Eq. (5) for F = 0 and small α]. Although the microscopic
model of built-in curvature is absent so far, one may expect
that disorder-induced bending angle is not very sensitive to
length of the nanotube. Due to smallness of α, the above es-
timates imply that built-in curvature might dominate electron
transport through a nanotube-based SET for typical values of
experimental parameters. It is worth noting that the threshold
voltage given by Eq. (59) does not depend on the curvature
but increases with length. Therefore, for long nanotubes used
in Ref. [46], the effect of elastic blockade, which we discuss
in the current paper, is even higher and value eV max

0 is even
larger compared to the estimate presented above. A more
detailed comparison with experiment requires development of
the microscopical theory of the elastic disorder, and therefore
is out of scope of the current work devoted to development of
the phenomenological approach.

In the previous sections we assumed that T = 0. Let
us now discuss the effect of nonzero temperature. For a
clean SET these effects were analyzed in Refs. [16–18].
The current depends on T due to at least two reasons. At
first, temperature enters the Fermi distribution functions in
the expressions (6) and (7) for the average excess elec-
tron number and the current, respectively. Secondly, there
are thermal fluctuations of the generalized coordinate Y ,
i.e., θ1. In the fundamental mode approximation these ther-
mal fluctuations of the bending angle are described by the
Gibbs factor exp[−Eeff (θ1)/T ] = exp (−Weff (θ1)/T̃ ) where
Weff (θ1) and Eeff (θ1) are obtained from Eqs. (16) and (18)
by replacement (see Eqs. (19) and (25) of Ref. [18]) wd →
wd,eff (θ1) = (T̃ /2)

∑
λ=± ln[ fF(α(vλ−θ1))/ fF(αvλ)]. The ef-

fective dimensionless temperature is defined as

T̃ = 16LT

π2κ
. (61)

As usual, a nonzero temperature results in smearing of the
bias-voltage threshold in the current. For a fixed curvature C1,
our results for the current are valid provided temperature is
much smaller than the threshold voltage,

T � eV0(C1). (62)

Here voltage V0(C1) = (a1/π )ELv0(C1), cf. Eq. (32), is a very
sharp function of curvature within the window 0 < C1 < α/8,

changing within the interval V cl
0 < V0(C1) � V max

0 . As follows
from the estimates presented above, T is always smaller than
V max

0 up to the room temperatures but can be much larger
than V cl

0 . Hence, the effect of temperature is negligible for
0 < C1 < α/8, but it can wash out the bias-voltage threshold
for C1 outside this interval.

In the case of a randomly distributed curvature the en-
hanced bias-voltage threshold (59) occurs near zero gate
voltage, Vg � 0. Away from the elastic blockade peak the
bias-voltage threshold is suppressed down to V cl

0 , cf. Eq. (60).
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FIG. 13. The current-voltage characteristics for vg = 1, α =
0.02, and different values of disorder variance �1 = 8 × 10−4 and
�1 = 3 × 10−6 (red and blue correspondingly) for T̃ = 0, 2.5 ×
10−3, 5 × 10−3 (solid, dashed, dotted curves, respectively).

The thermal smearing is not important at temperatures T �
eV̄Th(Vg) where V̄Th(Vg) = (a1/π )ELv̄Th(vg), cf. Eq. (44). For
a random curvature distributed continuously, the average cur-
rent is given as the average over P(C1) and the Gibbs weight
exp ( − Weff (θ1)/T̃ ). The result of the corresponding numeri-
cal computation is shown on the Fig. 13. It illustrates blurring
of the disorder-induced step in the I-V curve at intermediate
voltages by a finite temperature.

One of the most interesting problems to be solved in fu-
ture is to study effect of disorder on high-quality resonances
observed in Refs. [33–36].

To summarize, we considered transport properties of a SET
based on elastic nanotube with a regular or random built-in
curvature in the strong Coulomb blockade regime. We demon-
strated that close to the buckling transition, the I-V curve of
the transistor is extremely sensitive to such curvature.

Most importantly, we predict the following:
(i) for fixed built-in curvature: a giant curvature-induced

enhancement of the bias-voltage threshold (59) below which
the current is exactly zero;

(ii) for random curvature: the existence of an additional in-
termediate curvature-induced plateau in average I − V curve,
see Fig. 10.

Our predictions can be tested experimentally in systems
similar to those studied in Refs. [33–36].
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APPENDIX A: EFFECT OF HIGHER HARMONICS
OF THE CURVATURE

In this Appendix, we estimate effect of higher modes
and demonstrate that this effect is small. We will focus

on modification of the distribution function of θ1 caused
by higher harmonics, neglecting electromechanical coupling.
Generalization for the case α �= 0 is straightforward but quite
cumbersome and does not change our main conclusion about
irrelevance of the higher order terms.

In order to find the equation for θ1, we perform an ex-
pansion of sin θ to the third order, sin θ ≈ θ−θ3/6. Next, we
use expansion (8) and, then, project the result onto the first
harmonic n = 1. We keep terms up to the θ3

n . After some
algebra, we arrive at the following cubic equation,

θ3
1 − (ε − δε)θ1 + θ2

1 θ3 − 8C1 = 0, (A1)

where

δε = 2
∞∑

n=2

θn(θn + θn+2). (A2)

Here harmonics with n > 1 for |ε| � 1 can be calculated
within linear approximation, so we obtain

θn ≈ Cn
q2

n

q2
n − q2

1

, for n = 2, 3, . . . (A3)

They turn out to be finite at the instability threshold ε = 0.

Consequently, the first harmonics dominate over higher-order
ones. Hence, we can consider effect of higher harmonics
perturbatively. As it follows from Eq. (A3), the amplitudes
θn with n � 2 in Eqs. (A1) and (A2) are fixed by the disorder.
Therefore, the problem is reduced to the analysis of the closed
equation (A1) for the most singular zero mode with the am-
plitude θ1. Just as in the case of single-mode approximation,
for a fixed realization of disorder there are one or three real
solutions of Eq. (A1) for θ1.

Next, we discuss the effect of higher harmonics on the
distribution function. We shall perform calculations in two
steps. First, we average over fundamental harmonic C1 for
fixed Cn>1. Next, we do averaging over higher harmonics. Let
us introduce a new variable,

θ1,eff = θ1 + θ3

3
= θ1 + 3C3

8
. (A4)

Here we used Eq. (A3). Substituting Eq. (A4) into Eq. (A1),
we get

θ3
1,eff − εeffθ1,eff = 8C̃1, (A5)

where

εeff = ε − δε + 27

64
C2

3 ,

C̃1 = C1 − 1

4

(
3C3

8

)3

− 3C3

64
(ε − δε).

(A6)

Equation (A5) is equivalent to Eq. (22) up to a change of
variables. Hence, by using calculations presented in the main
text, we derive equation analogous to Eq. (53)

P(θ1) = exp

[
−

(
θ3

1 − εθ1
)2

128�1

]〈
3θ2

1 − ε + δε + 9θ1C3/4

8
√

2π�1

×
[
�

(
θ1 + 3C3

8
− �εeff

)

+ �

(
−θ1 − 3C3

8
− �εeff

)]〉
(A7)
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Here we calculated Jacobian by using Eq. (A1). We also took
into account that corrections due to high harmonics are small
and can be fully neglected in the argument of the the exponent.
The averaging in Eq. (A7) is taken over Cn>1.

Further consideration depends on relation between �1 and
ε. Below, we consider limits of both weak and strong disorder.

1. Weak disorder, �1 � |ε| � 1

In this case, one can neglect disorder everywhere except
the arguments of the step function, where we can also neglect
the difference between εeff and ε. Then disorder averaging is
reduced to averaging of the step functions:〈

�

(
±

[
θ1 + 3C3

8

]
− �ε

)〉
C3

= 1

2
erfc

[
8(�ε ∓ θ1)√

2�1

]
. (A8)

Here we used �3 = �1/9 [cf. Eq. (46)]. The distribution
function becomes

P(θ1) = 3θ2
1 − ε

16
√

2π�1
exp

[
−

(
θ3

1 − εθ1
)2

128�1

]

×
{

erfc

[
8(�ε − θ1)√

2�1

]
+ erfc

[
8(�ε + θ1)√

2�1

]}
.

(A9)

Hence, for weak disorder, the only effect of the higher har-
monics is blurring the step-like edge of the gap (for ε > 0)
over a very narrow window δθ1 ∼ √

�1 � √
ε.

2. Strong disorder, ε � �1 � 1

For strong disorder, one can neglect contribution of ε to
εeff . Then, εeff ≈ −δε + 27C2

3 /64. Then using the relation

2
∞∑

k=2

(
θ2

k + θkθk+2
)

= [
θ2

2 + (θ2 + θ4)2 + (θ4 + θ6)2 + . . .
]

+ [
θ2

3 + (θ3 + θ5)2 + (θ5 + θ7)2 + . . .
]
, (A10)

we prove that εeff < 0. Hence, �εeff = 0, so that the sum of
two step functions in Eq. (A7) equals to 1. Hence, we only
need to average δε in Eq. (A7). Straightforward calculation
yields

〈δε〉Cn>1 = 2�1

n=∞∑
n=2

n2

(n2 − 1)2
= �1

3 + 4π2

24
. (A11)

Here, we used Eqs. (46) and (A2). Substituting 〈δε〉Cn>1
into

Eq. (A7), we obtain distribution function for |ε| � �1 � 1:

P(θ1) = 3θ2
1 + (3 + 4π2)�1/24

8
√

2π�1
exp

[
−θ2

1

(
θ2

1 − ε
)2

128�1

]
.

(A12)

3. Interpolation formula and gap formation

One can easily find a cross-over function that interpolates
between weak and strong disorder limits. We note that both

FIG. 14. Distribution function calculated with the use of
Eqs. (53) (blue) and (A13) (red) for �1 = 0.02 and ε = 0.25.

�1 and ε are still assumed to be smaller than unity. The cross-
over function reads

P(θ1) � 3θ2
1 − ε + (3 + 4π2)�1/24

16
√

2π�1
exp

[
−

(
θ3

1 − εθ1
)2

128�1

]

×
[

erfc

(
8(�ε − θ1)√

2�1

)
+ erfc

(
8(�ε + θ1)√

2�1

)]
.

(A13)

Equation (A13) describes formation of the gap in the dis-
tribution function. Due to coupling with higher harmonics, the
edge of the gap is not infinitely sharp. Formally this is due to
presence of ercf functions in Eq. (A13) instead of �[θ2

1 − ε]
in Eq. (53). Deep inside the gap, say for θ1 = 0, perturbative
expansion over harmonics fails and Eq. (A13) becomes in-
valid. Correct calculation of exponentially small tails of the
distribution function in the middle of the gap can be done by
using optimal fluctuation method. Such calculation is out of
scope of the current work. We also notice that comparison of
Eqs. (A13) and (53) shown in Fig. 14 shows that difference
between distribution functions calculated with and without
account of high harmonics is quite small.

APPENDIX B: SIMPLIFIED MODEL

Here, we discuss in more detail averaged current obtained
within simplified model, when both C1 and α tend to zero in
such a way that the ratio C1/α remains finite, cf. Eq. (43) and
ε > 0. Approximation (43) allows us to find exactly values of
CL and CR entering Eq. (48), and, consequently, to find simple
analytical equation for the curvature-averaged I-V curve.

Using Eq. (43), one can easily find how left and right
boundaries of the current-carrying triangle move with chang-
ing ξ in the interval −1 < ξ < 1:

vL(vg, ξ ) = 2(
√

ε − vg) + 4
√

ε ξ�(−ξ ), (B1)

vR(vg, ξ ) = 2(
√

ε + vg)−4
√

ε ξ�(ξ ). (B2)

For ξ < −1, the triangle does not move and is limited by
lines vL(vg,−1) and vR(vg, 0). For ξ > 1, the triangle is also
stationary and is bounded by lines vL(vg, 0) and vR(vg, 1).

We notice that in the interval −1 < ξ < 0, the left bound-
ary changes according to Eq. (B1), while right boundary
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FIG. 15. Phase diagram of the simplified model. The averaged
current is equal to zero in the region 1. It is equal to 1/2 in the region
4. Dashed lines show positions of the right and left boundaries of the
current-carrying triangle for ξ = −1, 0, 1. Voltage-current curves for
vg = vg1 and vg = vg2 are plotted in Fig. 16.

remains stationary and is still given by vR(vg, 0). For 0 < ξ <

1, left boundary stops and is given by vL(vg, 0), while right
boundary starts to move according to Eq. (B2). This is very
similar to Fig. 2 with two minor distinctions: in the simplified
model the boundaries of the current-carrying triangle are par-
allel to blue lines and we neglect slow motion of triangle for
C1 < 0 and C1 > α/8.

Using Eqs. (49), (B1), and (B2) one can derive CL,R in the
regions 1,2,3,4 of the phase diagram shown in Fig. 15. For any
value of the curvature, points in the region 1 are not covered by
the current-carrying triangle, so that CL = CR = ∞ and I ≡
0. By contrast, all points of the region 4 belong to the current-
carrying cone for any C1, hence, I ≡ 1/2.

For region 2 we find CR = −∞, and

CL = α

64

v + 2(
√

ε + vg)√
ε

, 0 < CL <
α

16
. (B3)

Here CL is found from the condition v = vL(vg, 16CL/α−1).
The averaged current in the region 2 reads

I (2) = 1

2

∫ CL

−∞
P(C1)dC1 = 1

4

[
1 + erf

(
CL√
2�1

)]
. (B4)

In the region 3 we get CL = ∞ and

CR = α

64

2(3
√

ε + vg) − v√
ε

,
α

16
< CR <

α

8
. (B5)

FIG. 16. Voltage-current curves calculated within simplified
model for two values vg, corresponding to lines vg = vg1 = −0.7

√
ε

(a) and vg = vg2 = 0.7
√

ε (b) (see also Fig. 15) for α = 0.016 and
different values of variance �1:

√
�1 = 0.001, 0.002, 0.004, 0.2,

which increases from bottom to top in panel (a) and from top to
bottom in panel (b). In both cases, for large �1, an intermediate step
with I = 1/4 is formed.

This result for CR is derived from the condition v =
vR(vg, 16CR/α−1). Averaged current in the region 3 reads

I (3) = 1

2

∫ ∞

CR

P(C1)dC1 = 1

4
erfc

(
CR√
2�1

)
. (B6)

Voltage-current curves calculated within simplified model
for two values of the gate voltage vg = vg1 and vg = vg2 are
shown in Fig. 16. The parameter α is kept fixed whereas
the disorder strength varies. In both cases, for small driving
voltage, in region 1, the current is equal to zero, while at very
large v, in region 4, the current is equal to 1/2. In the region 2
[see Fig. 16(a)] the current is given by Eq. (B4). In the region
3 [see Fig. 16(b)] the current is given by Eq. (B6). The main
difference of the simplified model as compared to the exact
one is the presence of sharp jumps between different regions
of the I-V curve. These jump are smoothed in a more accurate
model (compare bottom panel of Fig. 10 and Fig. 16).
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