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Floquet engineering of individual band gaps in an optical lattice using a two-tone drive
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The dynamic engineering of band structures for ultracold atoms in optical lattices represents an innovative
approach to understanding and exploring the fundamental principles of topological matter. In particular, the
folded Floquet spectrum determines the associated band topology via band inversion. We experimentally and
theoretically study two-frequency phase modulation to asymmetrically hybridize the lowest two bands of a
one-dimensional lattice. Using quasidegenerate perturbation theory in the extended Floquet space we derive an
effective two-band model that quantitatively describes our setting. The energy gaps are experimentally probed
via Landau-Zener transitions between Floquet-Bloch bands using an accelerated Bose-Einstein condensate.
Separate and simultaneous control over the closing and reopening of these band gaps is demonstrated. We find
good agreement between experiment and theory, establishing an analytic description for resonant Floquet-Bloch
engineering that includes single- and multiphoton couplings, as well as interference effects between several
commensurate drives.
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I. INTRODUCTION

The quantum states emerging in periodic potentials are
based on the properties of the underlying band structure.
Its symmetry induced topology [1–8] leads to special types
of band insulators which are robust against perturbations
conserving the protecting symmetries [9–11]. The exper-
imental realization of such systems is a crucial step to
further understanding their foundations and studying the dy-
namic properties of the states. The key for engineering such
topological band structures lies in the individual control of
degeneracies at band inversion points [12]. Starting from
a topologically trivial band structure, the induced band in-
version points provide the necessary gap closing transition.
However, it is a challenge to achieve dynamic control of band
structures and couplings in experimental realizations [13–15].

Floquet band engineering introduces a tool to change the
band properties and opens up a path to dynamically study
the basic mechanisms of topological matter [12,16–19]. It
has been studied in photonic systems [20,21], in solid state
materials [22,23] and ultracold atoms [15,24,25], the latter
providing a possibility to introduce tunable interactions [26].
While the usage of bipartite, two-dimensional optical lattices
creates tunable band inversion points in the form of Dirac
points [27], circular shaking in such a system [28] controls the
individual gaps at these points. Besides the two-dimensional
implementations, a fundamental understanding of topological
matter can be gained in one-dimensional implementations.
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This has been pursued either in bipartite lattices [29,30] or
by using synthetic dimensions [31–35] and single-frequency
resonant shaking [36]. In this work we combine a simple,
one-dimensional lattice with Floquet engineering using a two-
frequency driving scheme to obtain full control on the band
inversion points and their gaps. The induced destructive in-
terference by the two commensurate frequencies depends on
quasimomentum. This allows us to engineer the coupling
at individual band inversion points as well as dynamically
decouple a full band. We derive an effective model using
quasidegenerate perturbation theory and probe the band struc-
ture with ultracold atoms in optical lattices.

II. FLOQUET BAND STRUCTURE ENGINEERING

A. Resonant modulation

In the initial one-dimensional lattice the lowest bands are
energetically well separated. If the position of the potential is
modulated periodically in time, we can use Floquet analysis
[37,38] to calculate the quasienergy spectrum for the atoms.
Since the drive provides energy in multiples l of h̄ω, we can
create band inversion points by choosing the drive frequency
resonant to the gap �(q) between s and p band at a specific
quasimomentum value l h̄ω = �(qc).

While this coupling can be used transiently to probe
[39–41] or manipulate [42,43] the state of the static system,
we are interested in the effective physics induced by the Flo-
quet band structure. The direct coupling of s and p band in
a one-dimensional lattice using single-frequency shaking has
been implemented to create hybridized effective bands popu-
lated by a Bose-Einstein condensate (BEC) [44] including the
study of interaction effects [45,46]. Beyond the usage of the
direct coupling mechanism, the understanding of multiphoton
resonances [47,48] enabled the implementation and charac-
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FIG. 1. Floquet band engineering with multifrequency phase modulation. In part (a) the basic experimental setup is sketched: an
optical lattice potential V (x, τ ) created by a retroreflected beam (wave vector kL) is phase modulated by displacing the mirror with a
piezoelectric actuator. The position of the mirror x0(τ ) is proportional to the voltage U (τ ) applied to the piezoelectric device. If the
modulation frequency is resonant to the band gap, the s and p band hybridize to an effective Floquet band, shown in the spectrum
(b) for the quasienergy ε, where ω/2π = 3.55 kHz, Kω = 1, and VX = 6Erec. For a two-color drive with fundamental and second har-
monic (ω, 2ω), there exists a driving waveform at relative phase ϕ = 90◦ for which time-reversal symmetry of the potential V (x, τ )
is broken but time-glide symmetry is conserved (c). The resulting spectrum (d) is asymmetric in quasimomentum and, for driving
strengths of Kω = 1 and K2ω = 0.195, the gap at positive quasimomentum closes. If only fundamental and third harmonic are in-
cluded in the drive (ω, 3ω), we restore both time-reversal and time-glide symmetry for a relative phase of ϕ = 0◦ (e), which makes it
possible to decouple the Floquet s band from higher bands (f), where ω/2π = 2.44 kHz, Kω = 1.5, and K3ω = 0.077. We show the
Floquet-Bloch bands with most overlap to the s, p, and d bands of a static lattice as dots. These bands are obtained via diagonalization of
the evolution operator of one period; see Appendix C. We also show the effective bands (solid lines) of an analytic two-band model derived
using quasidegenerate perturbation theory; see Appendix A.

terization of quasimomentum dependent couplings [36,49].
In addition, by extending purely harmonic modulation to
polyharmonic or anharmonic driving waveforms it is possi-
ble to break time-reversal symmetry, which allows for the
realization of asymmetric band structures [50,51]. The com-
bination of time-reversal symmetry breaking and multiphoton
resonances has been applied to fermions in shaken lattices
resonant to the interaction [52], near-resonant driving to the
sp-band gap [53], resonant amplitude modulations [54,55],
and mixed schemes [51,56]. We extend this method to phase
modulated lattices resonant with the sp-band gap to create
asymmetric, hybridized bands and control the individual gaps.

B. Experimental implementation

The conceptual and experimental setup consists of a
retroreflected laser beam creating the underlying periodic po-
tential for ultracold atoms. The single-particle spectrum is
defined by a one-dimensional lattice Hamiltonian:

Ĥsp = p̂2

2M
− VX cos2[kLx̂ − kLx0(τ )]. (1)

The depth VX and phase kLx0 can be controlled externally
by varying the intensity of the laser and the position of the
retroreflecting mirror. A piezoelectric actuator gives precise
and fast control on the mirror position defining the phase of

the lattice potential [see Fig. 1(a) and Appendix B]

kLx0(τ ) = 2Erec

π h̄ω

[
Kω cos(ωτ ) + Klω

l
cos(lωτ + ϕ)

]
. (2)

The amplitude is parametrized by the recoil energy Erec =
h̄2k2

L/2M, where kL = π/a = 2π/λL is the wave vector of the
lattice laser, the angular frequency ω, and the dimensionless
driving strengths Kω, Klω, with l ∈ [2, 3]. The driving strength
Kω is connected to the expansion of the piezoelectric actuator
�Lω via Kω = π2(�Lω/λL )(h̄ω/Erec). For the experiments
in this paper we use 87Rb and a laser wavelength of λL =
1064 nm, which gives Erec/h = 2026 Hz using the mass M
of 87Rb; see Appendix B for more details.

C. Quasienergy spectra

The frequency of the periodic forcing is set on resonance to
an integer multiple of the band gap between the s and p band
of the lattice leading to band inversion in the folded Floquet
spectrum. The periodic forcing induces interband transitions
versus quasimomentum, creating avoided crossing in this pa-
rameter. In general, the von Neumann–Wigner noncrossing
rule [57] establishes a gap opening in quasimomentum for
single harmonic driving as shown in Fig. 1(b). The lowest
band and first excited band become hybridized. We focus
our studies on the Floquet band with s-band character in
the center of the Brillouin zone and p-band character at the
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edge. The p-band part is dressed with an energy quantum
from the drive which shifts the minimum of the band from
q = 0 to q = ±π/a. Since the structure of this band is mainly
defined by the s and p band, a two-band model is sufficient
to capture the dynamics. The other hybridized bands include
major contribution from d and higher bands and multiband
models are necessary to fully describe their physics.

D. Control individual band gaps via two-tone driving

The addition of higher harmonics to the drive allows us to
use constructive and destructive interference on the interband
couplings and to shape the dispersion of the desired effective
band. The topology of the hybridized bands can be related
to the space-time symmetry of the periodic driving potential
[18,58,59]. In the case of driving the system with the funda-
mental and second harmonic l = 2 at a relative phase of ϕ =
90◦ the potential breaks time-reversal symmetry as shown in
Fig. 1(c), leading to a band structure asymmetric in quasimo-
mentum. However, it preserves time-glide symmetry (space
mirror plus half period time translation), which makes it pos-
sible to close a single gap at only one-half of the Brillouin
zone as shown in Fig. 1(d). The closing and reopening of a
gap in the spectrum signals a possible topological phase tran-
sition and therefore constitutes an optimal handle to engineer
topological one-dimensional structures [12]. If we choose a
fundamental and third harmonic l = 3 driving with ϕ = 0◦,
time-reversal symmetry as well as time-glide symmetry are
preserved as depicted in Fig. 1(e). The resulting spectrum is
symmetric in quasimomentum and the opened gaps are closed
simultaneously at both quasimomenta as shown in Fig. 1(f).
Since the band dispersion is still mainly defined by the l = 1
Floquet drive this method is well suited to suppress heating to
higher bands in a strongly driven lattice [55].

E. Effective description

Single particles in the one-dimensional lattice with two-
frequency modulation can be described in the language of
spatially and temporally periodic Floquet-Bloch wave func-
tions. Their spectrum [Figs. 1(b), 1(d) and 1(f)] is obtained
by diagonalizing the one-period evolution operator [37]. In
addition, we employ quasidegenerate perturbation theory on
the extended Floquet space [60], which has been used for
resonant single-frequency driving [47] and is extended to
two-frequency schemes in this work. This approach allows
us to derive a precise effective Hamiltonian model for the
real experimental implementation. The method is equivalent
to a high-frequency expansion but the extended space picture
in combination with polychromatic driving allows us to in-
tuitively design the driving waveform to construct a specific
effective Hamiltonian. In both approaches, the driving is im-
plemented as a time-dependent gauge field which corresponds
to the Hamiltonian of Eq. (1) via a basis transformation; see
also Appendix C.

To arrive at the extended space quasienergy operator Q̂, we
transform the Hamiltonian to the comoving frame, where it
can be represented in a basis of time-dependent Bloch states,

i.e.,

Ĥ (τ ) =
∑

q(τ ),n

{
εn[q(τ )]ĉ†

q(τ ),nĉq(τ ),n

+Mẍ0(τ )
∑

n′
ηnn′[q(τ )]ĉ†

q(τ ),nĉq(τ ),n′

}
. (3)

In this frame the Hamiltonian separates into the dispersion
εn[q(τ )] of a Bloch state in band n for a time dependent quasi-
momentum q(τ ) = q − Mẋ0/h̄ and the interband coupling
element ηnn′[q(τ )]. The Fourier coefficients of this Hamilto-
nian Ĥm are the building blocks of the quasienergy operator
Q̂ expressed in the extended Floquet-Bloch basis |nqm〉〉 =
|nq〉eimωτ :

〈〈n′q′m′|Q̂|nqm〉〉 = 〈n′q′|Ĥm−m′ |nq〉
+ δmm′δqq′ (m − m′)h̄ω. (4)

We use a tight-binding approximation to find an expression
for the Fourier coefficients for the dispersion εn and the inter-
band coupling ηnn′ . While the tight-binding (nearest neighbor)
approximation is sufficient to describe the lowest band, higher
order terms (longer range tunneling) must be incorporated for
the p band. Equivalently, extended (longer range) interband
coupling terms are taken into account in the calculations to
accurately model the band hybridization; more details can be
found in Appendix A.

F. Measurement technique

To probe the structure, we load a BEC of 87Rb atoms into
the s band of a one-dimensional lattice, creating pancakes of
two-dimensional condensates. After ramping up the shaking
waveform we use a magnetic field gradient to induce Bloch
oscillations as a probe for the Floquet-Bloch spectrum [42].
The atoms sweep through different quasimomentum states.
At the coupling point, they are partially transferred to the
p band in a Landau-Zener process. Subsequent band map-
ping of the cloud reveals the transferred fraction, shown in
Fig. 2(a), and provides a measure for the gap energy using the
Landau-Zener formula [61,62]. The sensitivity of this method
is limited by how slow the Bloch oscillations can be done.
In our system, the main decoherence effect of the hybridized
band is caused by dipole oscillations through the underlying
harmonic confinement. Since this confinement is needed to
support the atoms against gravity we use magnetic levitation
to minimize the trapping frequency to f trap

x = 7.4(3) Hz. We
achieve reliable results for Bloch oscillation frequencies down
to 15 Hz.

III. MEASURING BAND GAPS INDUCED BY
MULTI-PHOTON PROCESSES

We test the method on three different resonances for
hybridizing the bands with a single harmonic waveform.
An estimate of the gap energy is derived using a Landau-Zener
formula on the measured transferred fraction; see Appendix B
for more details. The data is presented in Figs. 2(b)–2(d).
For comparison, we show the evaluation from numerical
Floquet-Bloch simulations as solid lines in the figure plots.
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FIG. 2. Experimental probe of the Floquet band structure. (a) We
load two-dimensional pancakes of a BEC in a one-dimensional
shaken lattice (x direction) and apply a magnetic field gradient ∂x|B|.
The resulting force on the atoms induces Bloch oscillations and
atoms will transfer from the s band to the p band at the coupling
point qc for resonant modulation. (b) The clouds in s and p band are
separately detected using band mapping. We extract the transferred
fraction from the absorption images by fitting a Gaussian to the
optical density (OD). In (c)–(e) we plot the measured gap versus the
dimensionless driving strength Kω and compare it to a numerical sim-
ulation of the Floquet-Bloch spectrum. The gap size is determined
with the Landau-Zener formula from the measured transition rates.
In panel (c) we probe a one-photon resonance h̄ω = �(qc ), for panel
(d) a two-photon resonance, 2h̄ω = �(qc ), and for panel (e) a three-
photon resonance, 3h̄ω = �(qc ). The Bloch oscillation frequency
νBO determines the resolution of the gap measurement; a saturation
effect appears in the data when the resolution limit is reached. Error
bars on the experimental data include the standard error of four
measurements as well as systematic errors due to uncertainties in
the calibration of lattice depth, shaking strength, and Landau-Zener
transition speed. The shaded area for theoretical curves reflects the
statistical and systematic error in the lattice depth.

To cover a larger range of energies, we use different Bloch
oscillation frequencies νBO. In Fig. 2(b) we measure the linear
dependence of the gap on the driving strength in a direct res-
onance situation h̄ω = �(qc) (one-photon transition). If the
gap becomes much larger than the Bloch oscillation frequency
hνBO no atoms are transferred, independent of the gap size,
and a saturation of the data is observed. Figure 2(c) shows
a two-photon resonance 2h̄ω = �(qc) with the approximate
parabolic opening of the gap versus driving strength Kω. A
three photon resonance 3h̄ω = �(qc) transition is probed and
the extracted gap size is plotted in Fig. 2(d).

Since the coupling strength decreases with the order of
the process, we measure overall reduced gap values for equal
driving strengths for three-photon processes compared to two-
and one-photon processes. For intermediate driving strengths
the data agrees with the theoretical prediction. Strong driving
leads to a fragmentation of the Floquet-Bloch spectrum and
the single gap description breaks down.

FIG. 3. Closing individual gaps. Panel (a) shows the band popu-
lations measured after a Bloch oscillation of νBO = 15 Hz through
half the Brillouin zone for a two-frequency modulated (ω/2π =
3550 Hz, 2ω/2π = 7100 Hz), one-dimensional lattice of depth
VX = 6.0Erec. The data is taken at different driving strengths of the
higher harmonic K2ω at fixed Kω = 1.0(1) and ϕ = 90.0(5)◦. In
(b) we plot the gap calculated in an effective Hamiltonian picture
at the critical quasimomenta qc = ±0.587π/a. The gap closes and
opens linearly with K2ω for fixed Kω = 1.0, ϕ = 90◦. Positive and
negative quasimomenta can be individually probed by changing the
direction of the Bloch oscillation denoted as “BO pos.” and “BO
neg.” in panel (c). For the driving parameters Kω = 1.0(1), K2ω =
0.155(2), the band population is measured at various relative phases
ϕ of the drive. The calculated size of the gap is shown versus quasi-
momentum and ϕ in panel (d) for Kω = 1.0, K2ω = 0.18. The y-error
bars on the experimental data reflect a statistical standard error of
four measurements. Statistical and systematic error in the shaking
strength and relative phase amount to 1% and 1◦, respectively. The
shaded area for the theoretical curves represents uncertainties in the
shaking strength Kω and lattice depth.

IV. MEASURING INDIVIDUAL BAND GAPS
CONTROLLED BY TWO-TONE DRIVING

A. Single band gap closing

So far, we have demonstrated the control on the sp-band
coupling in quantitative agreement using a single-frequency
driving protocol. We add a higher harmonic to the drive in
order to control individual gaps in the effective Floquet bands.
In the case of a two-photon resonance [Fig. 2(c)], the gap
value of the single-frequency driven lattice reaches about a
tenth of the recoil energy using a driving strength of Kω = 1.0
at ω/2π = 3550 Hz. If we choose the higher harmonic of the
drive at exactly twice the frequency (2ω/2π = 7100 Hz), we
can resonantly address the same transition. The gap size can
now also be tuned through two additional parameters—the
driving strength K2ω and the relative phase ϕ between the two
harmonics. As shown in Fig. 1(c), we restore time-glide sym-
metry of the driving potential at a relative phase of ϕ = 90◦
and are able to close the gap. To detect the gap closing we use
the same method as for measuring the gap size. In Fig. 3(a) we
plot the band populations after crossing the transition point. If
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the population stays in the initial s band, the gap size is below
the resolution limit given by the Bloch oscillation frequency.
We measure the gap closing to occur at K2ω = 0.155(2),
which is slightly lower than the theoretical value of 0.18(2)
shown in Fig. 3(b). The perturbative effective Hamiltonian is
used for the theoretically obtained data. The two plotted lines
represent the theoretically predicted gap at the two critical
quasimomenta (qc = ±0.585π/a) versus driving amplitude
of the second harmonic. For a phase of ϕ = 90◦, the gap closes
linearly at positive quasimomentum qc, while a linear opening
is induced at the negative quasimomentum qc.

We can individually probe both gaps by reversing the mag-
netic field gradient and inducing a Bloch oscillation in the
opposite direction. Choosing the previously measured critical
strength of K2ω = 0.155, we scan the relative phase and mea-
sure the band populations after moving through the Brillouin
zone, as shown in Fig. 3(c). Bloch oscillations to the left probe
the negative branch of quasimomenta (q ∈ [−1, 0]) and the
gap closing is detected at ϕ = 271(2)◦. Likewise, Bloch oscil-
lations to the right probe the positive branch of quasimomenta
(q ∈ [0, 1]) and the gap closing is detected at ϕ = 92(1)◦. We
calculate the expected gap with quasidegenerate perturbation
theory and plot the results versus quasimomentum and relative
phase in Fig. 3(d). For this calculation we use the critical
driving strengths Kω = 1.0, K2ω = 0.18. At these strengths
the gaps close at the corresponding quasimomenta but stay
finite elsewhere. The finite Bloch oscillation frequency gives
a lower bound on the minimal gap. However, the frequency
is chosen such that on typical experimental timescales (�
100 ms) the gap is effectively closed.

B. Simultaneous band gap closing

Changing the ratio of driving frequencies from 1/2 to 1/3
enables us to simultaneously control both gaps. To do so, we
drive resonantly a three-photon transition in combination with
a second frequency that directly addresses the same transition,
therefore, synthesizing the fundamental and third harmonic in
the modulation waveform. The fundamental frequency is fixed
to ω/2π = 2440 Hz with strength Kω = 1.5, which induces
a gap of roughly 75 Hz at the transition point. In Fig. 4(a)
the band population is measured as a function of the driving
strength K3ω of the third harmonic 3ω/2π = 7320 Hz with
relative phase ϕ = 0◦. Since the gap is smaller compared
to the two-photon resonance, the strength of the additional
driving needed to close the gap is also weaker. We estimate a
critical driving strength of K3ω = 0.06(1) to close the gap. The
gap size calculated by the perturbative model is shown versus
the two driving parameters introduced by the third harmonic
(K3ω, ϕ) in Fig. 4(b), in which the minimum gap over the full
Brillouin zone is plotted. For both negative and positive quasi-
momenta, the gap closes at the same relative phase ϕ = 0◦ for
Kω = 1.5 and K3ω = 0.05. In contrast to the two-photon case,
the theoretically estimated critical strength matches the exper-
imentally measured one. The band population measurements
versus relative phase are shown in Fig. 4(c), where the left
panel corresponds to the positive and the right panel to the
negative quasimomenta. We estimate the measured minimal
transfer at a phase of ϕ = −17(4)◦, which deviates from the
expected minimum at ϕ = 0◦. However, this can be attributed

FIG. 4. Closing of both gaps. In (a) we probe the gap opened
by the two-frequency driving of a one-dimensional lattice us-
ing Bloch oscillations with frequency νBO = 15 Hz. The band
population is measured against the driving strength K3ω for
fixed modulation parameters Kω = 1.50(2), ϕ = 0(1)◦, ω/2π =
2440 Hz, and 3ω/2π = 7320 Hz. A low fraction of transferred
atoms indicates a closing of the gap. A theoretical estimation of the
gap is plotted in (b) at fixed Kω = 1.5 for the same driving frequen-
cies as above. We use quasidegenerate perturbation theory to derive
the effective model. Panel (c) shows the experimental measurements
of the individual gap closings at positive and negative quasimomenta.
The extremal points in the band population occur at a relative phase
of ϕ = −17(4)◦. Error bars on the extracted populations combine
a statistical standard error of four measurements with systematic
errors from the fitting protocol. Statistical and systematic error in the
shaking strength and relative phase add up to 1% and 1◦, respectively.

to a systematic shift in the calibration of the relative phase ϕ

at small driving strengths of K3ω.

V. SUMMARY AND OUTLOOK

In this experiment, we have demonstrated full control over
individual gaps in sp-hybridized Floquet bands on a 6Erec

lattice. In general, the results are applicable to a broad range
of lattice depths (see Appendix A for more details) and
various experimental platforms. We developed an effective
model that quantitatively agrees with experimental data for
both single- and multifrequency driving. This constitutes a
flexible platform to explore and test theories and predictions
in the simple setting of one-dimensional lattices. The scheme
extends the possibilities of studying topology in various ladder
models [63], such as the Creutz-ladder model [36,49] or the
inversion symmetric Shockley model [64], where in a tight-
binding picture the s and p bands correspond to the legs of
the ladder. Although the two-band model does not include the
non-negligible couplings between the p-dominated effective
Floquet band and the higher d band, it accurately models
the s-dominated effective Floquet band in which we are in-
terested. In particular, it has been proposed how a similar
two-frequency scheme can be used to adiabatically prepare
a topological insulator from an initially trivial band insulator
of fermions in a simple one-dimensional lattice [65,66]. The
creation of an asymmetric band via the closing of only a single
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gap can be used to create an analog of a one-dimensional heli-
cal edge state [67]. Additionally, we are able to use fermionic
potassium atoms with the same experimental setup, which
allows us to introduce tunable on-site interaction via a Fesh-
bach resonance [68,69]. Interactions can induce new coupling
channels between different bands, in addition to those con-
sidered in this work. In the case of two effective hybridized
bands, unwanted higher band transitions to the d band and
beyond could be avoided by dimerizing the underlying lattice
structure. The closing of both gaps at the same time and
therefore suppressing multiphoton resonances can be used to
prevent heating in phase modulated lattices even for strongly
interacting situations [55].
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APPENDIX A: FLOQUET EFFECTIVE HAMILTONIANS
USING QUASIDEGENERATE PERTURBATION THEORY

An intuitive way to calculate the effective Hamiltonian of a
Floquet system is quasidegenerate perturbation theory on the
extended space [60], which is equivalent to the high-frequency
expansion. This method has been used for modulated two-
level models [70] and for estimating heating effects in driven
optical lattices [47]. Here, we extend this method to two-
color driving waveforms and derive analytical expressions
for effective Hamiltonians. The first step is to formulate the
problem in the Floquet extended space where quasidegenerate
perturbation theory is applied. In addition, it is convenient to
separate the intra- and interband coupling terms. This can be
achieved by a transformation into the comoving frame. We
use the tight-binding approximation with higher order cor-
rections to arrive at an analytical expression for the effective
Hamiltonian.

1. Tight-binding formulation

We start with the single-particle Hamiltonian

Ĥsp(τ ) = p̂2

2M
+ V [x̂ − x0(τ )], (A1)

where the phase modulation takes the form

kLx0(t ) = kL[�Lω cos(ωτ ) + �Llω cos(lωτ + ϕ)]

= 2Erec

π h̄ω

[
Kω cos(ωτ ) + Klω

l
cos(lωτ + ϕ)

]
. (A2)

The expansion of the piezoelectric actuator �Llω is rewritten
in terms of a dimensionless parameter Klω representing the
strength of the modulation. The second harmonic component
is a multiple of the basic driving frequency with multiple l ∈

N. After transforming to the comoving frame

Ĥ ′
sp(τ ) = p̂2

2m
+ V (x̂) + Mẍ0(τ )x̂, (A3)

the Hamiltonian is no longer translational invariant. However,
we still can exploit the Bloch theorem and find Bloch states
ψq(τ ),n with band index n but for a time-dependent quasimo-
mentum

q(τ ) = q − M

h̄
ẋ0(τ ). (A4)

In second quantization, the Hamiltonian can be written as

Ĥ (τ ) =
∑
q(t ),n

εn[q(τ )]ĉ†
q(τ ),nĉq(τ ),n

+ Mẍ0(τ )
∑

q(τ ),n,n′
ηnn′ [q(τ )]ĉ†

q(τ ),nĉq(τ ),n′ , (A5)

with ĉq(τ ),n the annihilation operator for a Bloch state ψq(τ ),n,
εn[q(τ )] the dispersion matrix element, and ηnn′[q(τ )] the
dipole matrix element.

We use a tight-binding approximation to find analytical
expressions for the matrix element of the dispersion

εn

[
q − Mẋ0

h̄

]
� En +

P∑
p=1

2t (p)
n cos

[
pa

(
q − Mẋ0

h̄

)]
, (A6)

where En is the band center energy and t (p)
n are the static

tunneling matrix elements starting of order p, where p =
1 corresponds to nearest neighbor hopping. The maximum
order of the tight-binding approximation is defined by P.
The numerical values of En and t (p)

n are obtained by Fourier
decomposition of the time-independent dispersion; see Ta-
ble I. In the same manner the dipole matrix element can be
expanded in a Fourier series in quasimomentum

ηnn′
[
q − Mẋ0

h̄

]
� η

(0)
nn′ +

P∑
p=1

η
(p)
nn′ (eipaqe−ipaMẋ0/h̄

− (−1)Pn+Pn′ e−ipaqeipaMẋ0/h̄), (A7)

where the expansion is either an even or odd function in
quasimomentum depending on the parity of the bands

Pn =
{+1, if n = s, d, . . . ,

−1, if n = p, f , . . . .
(A8)

The Fourier coefficients of the static dipole matrix elements
η

(p)
n,n′ for couplings between bands n and n′ are calculated in

the Bloch basis using its relation to the momentum operator
[71],

〈ψnq|x̂|ψn′q′ 〉 = − ih̄

M(εnq − εn′,q′ )
〈ψnq| p̂|ψn′q′ 〉. (A9)

The results are presented in Table I. The first order term
(p = 1) corresponds to an interband coupling between neigh-
boring sites.

2. Extended space

The time periodicity of the problem is exploited by com-
bining the Hilbert space H of the Bloch functions with the
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TABLE I. Tight-binding parameters for a VX = 6 Erec lattice, where we use the recoil energy Erec = 2026 Hz for 87Rb in a retroreflected
1064 nm optical lattice. The values are computed including 30 bands and sampling the Brillouin zone with 1001 quasimomentum values.

Band n Coupling nn′

s p d sp sd pd

En/h (Hz) −1700 5754 13393 η
(0)
nn′ 0.16407 0.00000 −0.24241

t (1)
n /h (Hz) −103 779 −1888 η

(1)
nn′ −0.03141 −0.01504 −0.16946

t (2)
n /h (Hz) 4 128 169 η

(2)
nn′ 0.00330 −0.00342 −0.11246

t (3)
n /h (Hz) −0 45 −177 η

(3)
nn′ 0.00001 −0.00343 −0.07592

t (4)
n /h (Hz) 0 18 56 η

(4)
nn′ 0.00034 −0.00048 −0.05102

t (5)
n /h (Hz) 0 9 −56 η

(5)
nn′ 0.00020 −0.00131 −0.03414

space of square integrable, T -periodic functions LT to the
extended Hilbert space F = H ⊗ LT [60]. An orthonormal
basis set in this space is acquired by extending the Bloch basis
to

|nqm〉 = |nq〉eimωτ . (A10)

We call the additional state index m of the extended basis
“photon number.” The time-dependent Schrödinger equa-
tion can be written in the eigenvalue problem for the
quasienergy operator

Q̂|nqm〉 = ε̃nm|nqm〉, (A11)

where the matrix elements of this operator are given by the
Fourier coefficients

Ĥm = 1

T

∫ T

0
Ĥ (τ )e−imωτ dτ (A12)

of the time-dependent Hamiltonian of Eq. (A5),

〈n′q′m′|Q̂|nqm〉 = 〈n′q′|Ĥm−m′ |nq〉
+ δmm′δqq′ (m − m′)h̄ω. (A13)

Since the Hamiltonian is already diagonal in q, we drop the
q dependence in the following notation for clarity. The intra-
band (n = n′) contributions can be calculated using Eq. (A6),

εn,m−m′ = 〈n|Ĥm−m′ |n〉

= Enδ0,m−m′ +
P∑

p=1

t (p)
n (gm−m′eipaq + g∗

m′−me−ipaq ),

(A14)

with the Fourier coefficients

gm−m′ = 1

T

∫ T

0
eipaMẋ(τ )/h̄e−i(m−m′ )ωτ dτ. (A15)

Similarly, the interband (n 
= n′) transitions follow from
Eq. (A7),

ηnn′,m−m′ = 〈n′|Ĥm−m′ |n〉

= −h̄ωη
(0)
nn′ fm−m′ − h̄ω

P∑
p=1

η
(p)
nn′

m − m′

p

× [
gm−m′eipaq − (−1)Pn+Pn′ g∗

m′−me−ipaq
]
,

(A16)

with the Fourier coefficients

fm−m′ = Kω

2
(δ1,m−m′ + δ−1,m−m′ )

+ lKlω

2
(δl,m−m′eiϕ + δ−l,m−m′e−iϕ ). (A17)

In order to find the matrix elements (A14) and (A16) we can
use the Jacobi-Anger expansion [72] for Eq. (A15)

e−ipaMẋ0/h̄ =
∞∑

r,r′=−∞
Jr (pKω )Jr′ (pKlω )

× eiωτ (r+lr′ )eir′φ, (A18)

where Jr are the Bessel functions of the first kind of order r.
We approximate this sum by neglecting all terms which are
lower than 10−3 in magnitude using the driving parameters in
the paper. The results of the quasienergy matrix elements are
presented in Table II.

For a given q the block matrix form of Q̂ written with the
Fourier coefficients of the Hamiltonian takes the form

Q̂ =

⎡
⎢⎢⎢⎢⎢⎣

. . .
... . .

.

Ĥ0 − h̄ω Ĥ1 Ĥ2

· · · Ĥ−1 Ĥ0 Ĥ1 · · ·
Ĥ−2 Ĥ−1 Ĥ0 + h̄ω

..
. ...

. . .

⎤
⎥⎥⎥⎥⎥⎦, (A19)

with the block matrices

Ĥm−m′ =

⎡
⎢⎢⎢⎣

εs,m−m′ ηsp,m−m′ ηsd,m−m′ · · ·
η∗

sp,m−m′ εp,m−m′ ηpd,m−m′

η∗
sd,m−m′ η∗

pd,m−m′ εd,m−m′

...
. . .

⎤
⎥⎥⎥⎦, (A20)

where we have labeled the lowest three bands as n = s, p, d .
The negative Fourier coefficients (|m − m′| < 0) are related
by complex conjugation to the positive Fourier coefficients
(|m − m′| > 0).

3. Quasidegenerate perturbation theory

The unperturbed system is given by the time-averaged
Hamiltonian H0 and its photon copies H0 + mh̄ω. The diag-
onal elements εn,0 − mh̄ω correspond to the static bands and
their photon copies which are renormalized by the driving.
Any set of unperturbed states, which are degenerate or almost
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TABLE II. Matrix elements of the quasienergy operator Q̂ from Eqs. (A14) and (A16) in the Floquet extended space F with photon number
difference �m = m − m′. A tight-binding approximation of order P is used to describe the dispersion of band n in the one-dimensional lattice
using the band center energies En, tunneling elements t (p)

n , and dipole matrix elements η
(p)
nn′ . The sum in Eq. (A18) is approximated to only

include terms larger than 10−3 with respect to the largest one for the driving strengths used.

Single frequency

�m Intraband coupling εn,m−m′ Interband coupling ηnn′,m−m′

0 En + ∑P
p=1 2t (p)

n cos(paq)J0(pKω ) 0

1
∑P

p=1 2t (p)
n i sin(paq)J1(pKω ) −h̄ω{ 1

2 Kωη
(0)
nn′ + ∑P

p=1
1
pη

(p)
nn′J1(pKω )[eipaq + (−1)Pn+Pn′ e−ipaq]}

2
∑P

p=1 2t (p)
n cos(paq)J2(pKω ) −h̄ω

∑P
p=1

2
pη

(p)
nn′J2(pKω )[eipaq − (−1)Pn+Pn′ e−ipaq]

3
∑P

p=1 2t (p)
n i sin(paq)J3(pKω ) −h̄ω

∑P
p=1

3
pη

(p)
nn′J3(pKω )[eipaq + (−1)Pn+Pn′ e−ipaq]

4
∑P

p=1 2t (p)
n cos(paq)J4(pKω ) −h̄ω

∑P
p=1

4
pη

(p)
nn′J4(pKω )[eipaq − (−1)Pn+Pn′ e−ipaq]

Two frequency, l = 2

�m Intraband coupling εn,m−m′

0 En + ∑P
p=1 2t (p)

n {cos(paq)J0(pKω )J0(pK2ω ) − sin(paq)2J2(pKω )J1(pK2ω ) sin(ϕ)}
1

∑P
p=1 2t (p)

n {i sin(paq)J1(pKω )J0(pK2ω ) − cos(paq)[J1(pKω )J1(pK2ω )eiϕ + J3(pKω )J1(pK2ω )e−iϕ]}
2

∑P
p=1 2t (p)

n {cos(paq)[J2(pKω )J0(pK2ω ) + J2(pKω )J2(pK2ω )ei2ϕ]

+i sin(paq)[J0(pKω )J1(pK2ω )eiϕ − J4(pKω )J1(pK2ω )e−iϕ]}
3

∑P
p=1 2t (p)

n {i sin(paq)[J3(pKω )J0(pK2ω ) − J1(pKω )J2(pK2ω )ei2ϕ] + cos(paq)J1(pKω )J1(pK2ω )eiϕ}
4

∑P
p=1 2t (p)

n {cos(paq)[J4(pKω )J0(pK2ω ) + J0(pKω )J2(pK2ω )ei2ϕ] + i sin(paq)J2(pKω )J1(pK2ω )eiϕ}
�m Interband coupling ηnn′,m−m′

0 0

1 −h̄ω 1
2 Kωη

(0)
nn′ − h̄ω

∑P
p=1

1
pη

(p)
nn′ {[eipaq + (−1)Pn+Pn′ e−ipaq]J1(pKω )J0(pK2ω )

−[eipaq − (−1)Pn+Pn′ e−ipaq][J1(pKω )J1(pK2ω )eiϕ + J3(pKω )J1(pK2ω )e−iϕ]}
2 −h̄ωK2ωη

(0)
nn′ eiϕ − h̄ω

∑P
p=1

2
pη

(p)
nn′ {[eipaq − (−1)Pn+Pn′ e−ipaq][J2(pKω )J0(pK2ω ) + J2(pKω )J2(pK2ω )ei2ϕ]

+[eipaq + (−1)Pn+Pn′ e−ipaq][J0(pKω )J1(pK2ω )eiϕ − J4(pKω )J1(pK2ω )e−iϕ]}
3 −h̄ω

∑P
p=1

3
pη

(p)
nn′ {[eipaq + (−1)Pn+Pn′ e−ipaq][J3(pKω )J0(pK2ω ) − J1(pKω )J2(pK2ω )ei2ϕ]

+[eipaq − (−1)Pn+Pn′ e−ipaq]J1(pKω )J1(pK2ω )eiϕ}
4 −h̄ω

∑P
p=1

4
pη

(p)
nn′ {[eipaq − (−1)Pn+Pn′ e−ipaq][J4(pKω )J0(pK2ω ) + J0(pKω )J2(pK2ω )ei2ϕ]

+[eipaq + (−1)Pn+Pn′ e−ipaq]J2(pKω )J1(pK2ω )eiϕ}
Two frequency, l = 3

�m Intraband coupling εn,m−m′

0 En + ∑P
p=1 2t (p)

n cos(paq)[J0(pKω )J0(pK3ω ) − 2J3(pKω )J1(pK3ω ) cos(ϕ)]

1
∑P

p=1 2t (p)
n i sin(paq)[J1(pKω )J0(pK3ω ) + J2(pKω )J1(pK3ω )eiϕ − J4(pKω )J1(pK3ω )e−iϕ]

2
∑P

p=1 2t (p)
n cos(paq)[J2(pKω )J0(pK3ω ) − J1(pKω )J1(pK3ω )eiϕ]

3
∑P

p=1 2t (p)
n i sin(paq)[J3(pKω )J0(pK3ω ) + J0(pKω )J1(pK3ω )eiϕ]

4
∑P

p=1 2t (p)
n cos(paq)[J4(pKω )J0(pK3ω ) + J1(pKω )J1(pK3ω )eiϕ + J2(pKω )J2(pK3ω )ei2ϕ]

�m Interband coupling ηnn′,m−m′

0 0

1 −h̄ω 1
2 Kωη

(0)
nn′

−h̄ω
∑P

p=1
1
pη

(p)
nn′ [eipaq + (−1)Pn+Pn′ e−ipaq][J1(pKω )J0(pK3ω ) + J2(pKω )J1(pK3ω )eiϕ − J4(pKω )J1(pK3ω )e−iϕ]

2 −h̄ω
∑P

p=1
2
pη

(p)
nn′ [eipaq − (−1)Pn+Pn′ e−ipaq][J2(pKω )J0(pK3ω ) − J1(pKω )J1(pK3ω )eiϕ]

3 −h̄ω 3
2 K3ωη

(0)
nn′ eiϕ − h̄ω

∑P
p=1

3
pη

(p)
nn′ [eipaq + (−1)Pn+Pn′ e−ipaq][J3(pKω )J0(pK3ω ) + J0(pKω )J1(pK3ω )eiϕ]

4 −h̄ω
∑P

p=1
4
pη

(p)
nn′ [eipaq − (−1)Pn+Pn′ e−ipaq][J4(pKω )J0(pK3ω ) + J1(pKω )J1(pK3ω )eiϕ + J2(pKω )J2(pK3ω )ei2ϕ]
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FIG. 5. Couplings in the extended Floquet space. Part
(a) presents a schematic spectrum of a single unperturbed
quasimomentum state in s and p band in the extended space. The
dashed box defines a set of quasidegenerate states for which an
effective Hamiltonian can be calculated using perturbation theory.
The intraband εs,m−m′ (blue) and interband ηsp,m−m′ (red) matrix
elements of the quasienergy operator connect different photon
number (m, m′) states indicated by the digit label. Contributions to
the effective diagonal ε̃s (b) and off-diagonal η̃sp (c) terms can be
visualized as loops and paths involving couplings to virtual states
(outside of the dashed box). The different orders of perturbation
theory are defined by the amount of virtual states involved and are
indicated with different colors.

degenerate, forms a subsystem that typically is energetically
separated from the rest of the system (virtual states). More
precisely, this is the case if the driving frequency is a large
energy scale compared to the width of the bands of interest.
The unperturbed states are coupled via inter- and intraband
transitions and their combination. However, very high order
resonances (photon number difference m − m′ of two degen-
erate states is large) are very weak and can often be neglected
for experimentally relevant time scales.

The quasienergy operator is then block diagonalized with
respect to the blocks of nearly degenerate states in perturbative
fashion. The resulting effective matrix elements are given by
the expansion

ε̃n = ε̃(0)
n + ε̃(1)

n + ε̃(2)
n + · · · , (A21)

η̃nn′ = η̃
(0)
nn′ + η̃

(1)
nn′ + η̃

(2)
nn′ + · · · , (A22)

where the different orders are computed according to quaside-
generate perturbation theory; see, for example, Refs. [47,60]
or Appendix B of [73].

Figure 5(a) shows schematically the spectrum of the un-
perturbed lowest two bands for an individual quasimomentum
value in the extended space. The dashed box indicates a pair
of quasidegenerate states which are mixed via the driving
induced coupling. These two states define the subspace with
respect to which we block diagonalize Q̂ to get an effective
Hamiltonian for these two bands. All off-diagonal matrix el-
ements of the quasienergy operator Q̂ coupling the |s, 0〉 to

the other states are depicted as arrows. Intraband couplings
εs,m′−m (blue) leave the band index fixed but change the photon
number m of the state by m′ − m. Typically, small changes in
photon number lead to much stronger couplings than larger
ones. On the other hand, interband couplings ηsp,m′−m (red)
change the band index (from s to p) with or without shift of the
photon number state. The situation depicted shows a s-band
state resonant with a two-photon transition to a p-band state.
The states outside the box form the virtual states because these
states are energetically detuned by the drive energy.

In perturbation theory the effective diagonal and coupling
terms can be calculated creating all relevant paths between the
quasidegenerate states. The paths are built from the coupling
elements given by Q̂ shown in Fig. 5(a). For a contribution
to the diagonal effective terms ε̃n, all loops are considered,
i.e., paths starting and ending at one of the quasidegenerate
states. An effective coupling between two quasidegenerate
states η̃nn′ is composed of all paths that start at the first state
and end at the second one. The order of the perturbation is
determined by the amount of virtual states which are included
in such a coupling path. Figure 5(b) shows an example of first
(red), second (blue), and third (green) order contribution to the
effective diagonal s-band term for a three-photon resonance.
The zeroth order is given by the unperturbed Hamiltonian
and by our choice of unperturbed states there is no first order
correction to the diagonal terms. An example of the respective
off-diagonal contributions is shown in Fig. 5(c).

a. Effective Hamiltonians

We benchmark the effective two-band Hamiltonians
against the exact spectrum obtained by diagonalization of the
one-period evolution matrix (see Appendix C) for the different
driving regimes covered in the main text. The basic Hamilto-
nian is denoted

H̃ =
(

ε̃s η̃sp

η̃∗
sp ε̃p

)
, (A23)

where the tilde indicates that the quantities are results
of the perturbation approach. The results obtained for the
quasienergy operator matrix elements (see Table II) together
with the relevant paths in perturbation theory (see Fig. 6)
provide the effective matrix elements.

In the case of single-frequency driving resonant to the sp-
band gap, the matrix elements are

ε̃s = εs,0 + |ηsp,1|2
δ − 2h̄ω

, (A24)

ε̃p = εp,0 − h̄ω − |ηsp,1|2
δ − 2h̄ω

, (A25)

η̃sp = ηsp,1 + ηsp,2(ε∗
p,1 − ε∗

s,1)

2

(
1

δ + h̄ω
+ 1

h̄ω

)

+ η∗
sp,1(εp,2 − εs,2)

2

(
1

δ − 2h̄ω
+ 1

2h̄ω

)
, (A26)

where δ = εs,0 − εp,0 + h̄ω is the detuning from the reso-
nance. Here, we have used the most dominant contributions
to the perturbation series shown in Figs. 6(a) and 6(b).
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FIG. 6. Effective couplings for one- (a),(b), two- (c),(d), and
three-photon (e),(f) resonances. The dominant perturbative contri-
butions to the diagonal ε̃s (a),(c),(e) and off-diagonal η̃sp (b),(d),(f)
terms in the effective two-band Hamiltonian. Only the perturbations
on the s-band state are shown. The perturbative order of the contribu-
tions is indicated by the color. These are the dominant contributions
for the parameters given in Table I.

At the two-photon resonance, we take into account the
effective elements

ε̃s = εs,0 + |ηsp,1|2
δ + h̄ω

+ |ηsp,1|2
δ − 3h̄ω

+ |ηsp,2|2
δ − 4h̄ω

, (A27)

ε̃p = εp,0 − 2h̄ω − |ηsp,1|2
δ + h̄ω

− |ηsp,1|2
δ − 3h̄ω

− |ηsp,2|2
δ − 4h̄ω

,

(A28)

η̃sp = ηsp,2 + ηsp,1(εp,1 − εs,1)

2

(
1

δ − h̄ω
− 1

h̄ω

)

+ ηsp,3(ε∗
p,1 − ε∗

s,1)

2

(
1

δ + h̄ω
+ 1

h̄ω

)
, (A29)

with the two-photon detuning δ = εs,0 − εp,0 + 2h̄ω. The in-
cluded coupling contributions are shown in Figs. 6(b) and
6(c).

The three-photon resonance contributions are depicted in
Figs. 6(e) and 6(f), and lead to effective elements for the
diagonal terms

ε̃s = εs,0 + |ηsp,1|2
δ − 2h̄ω

+ |ηsp,1|2
δ − 5h̄ω

+ |ηsp,2|2
δ − h̄ω

+ |ηsp,2|2
δ − 5h̄ω

, (A30)

ε̃p = εp,0 − 3h̄ω − |ηsp,1|2
δ − 2h̄ω

− |ηsp,1|2
δ − 5h̄ω

− |ηsp,2|2
δ − h̄ω

− |ηsp,2|2
δ − 5h̄ω

. (A31)

The effective coupling term amounts to

η̃sp = ηsp,3 + ηsp,1(εp,2 − εs,2)

2

(
1

δ − 2h̄ω
− 1

2h̄ω

)

+ ηsp,2(εp,1 − εs,1)

2

(
1

δ − h̄ω
− 1

h̄ω

)

+ ηsp,1(ε2
p,1 − ε2

s,1)

4(h̄ω)2

(
2(h̄ω)2

(δ − 2h̄ω)(δ − h̄ω)
+ 1

)

+ ηsp,1εs,1εp,1

2h̄ω(δ − h̄ω)
+ η3

sp,1

2h̄ω(δ − 2h̄ω)
, (A32)

with the three-photon detuning δ = εs,0 − εp,0 + 3h̄ω.
For the three configurations, we plot in Fig. 7 the spectrum

of the effective Hamiltonians (solid lines) on top of the results
from a Floquet-Bloch band calculation (dots in light blue). We
take up to fifth order terms into account for the tight-binding
expansion (P = 5) used to calculate the matrix elements from
Table II. In Fig. 7(a) the single-photon coupling is shown.
The gap opens around a quasimomentum value q ≈ 0.25 π/a
between the two lowest bands and is well captured by the
effective theory. Since we only take into account two bands,
the second appearing gap at q ≈ 0.5π/a is not captured.
In addition, the third band is inducing strong energy shifts
around the band center, especially for the upper effective band.
A more precise model is gained by expanding the effective
Hamiltonian to a three band system.

In the case of the three-photon resonance, see Figs. 7(b)
and 7(c), we compare effective theory and Floquet-Bloch
calculation for the single-frequency driving (b) as well as
two-frequency driving (c) with additional third harmonic. The
parameters are chosen such as to arrive at the gap closing
transition measured in the main text.

In the situation of a two-photon resonance, see Figs. 7(d)–
7(f), the effective spectra are benchmarked in the three
situations of single-frequency driving (d) and two-frequency
driving at the critical values for right (e) as well as left (f) gap
closing transitions.

The Floquet-Bloch data includes the third band which hy-
bridizes quite strongly with the second band but does not
disturb the effective lowest band. Therefore, this method is
very well suited to engineer a single band model that is de-
fined by the lowest band. Expanding the effective theory to
three bands makes it possible to get a more precise model in
the single-photon resonance case. The effective Hamiltonian
matrix is extended to

H̃ =
⎛
⎝ ε̃s η̃sp η̃sd

η̃∗
sp ε̃p η̃pd

η̃∗
sd η̃∗

pd ε̃d

⎞
⎠, (A33)

with the diagonal elements

ε̃s = εs,0 + |ηsp,1|2
δsp − 2h̄ω

+ |ηsd,1|2
δsd − h̄ω

+ |ηsd,1|2
δsd − 3h̄ω

, (A34)

013056-10



FLOQUET ENGINEERING OF INDIVIDUAL BAND GAPS … PHYSICAL REVIEW RESEARCH 4, 013056 (2022)

ε̃p = εp,0 − h̄ω − |ηsp,1|2
δsp − 2h̄ω

+ |ηpd,1|2
δpd − 2h̄ω

+ |ηpd,2|2
δpd − 3h̄ω

+ |ηpd,2|2
δpd + h̄ω

+ |ηpd,3|2
δpd + 2h̄ω

+ |ηpd,3|2
δpd − 5h̄ω

, (A35)

ε̃d = εd,0 − 2h̄ω − |ηsd,1|2
δsd − h̄ω

− |ηsd,1|2
δsd − 3h̄ω

− |ηpd,1|2
δpd − 2h̄ω

− |ηpd,2|2
δpd − 3h̄ω

− |ηpd,2|2
δpd + h̄ω

− |ηpd,3|2
δpd + 2h̄ω

− |ηpd,3|2
δpd − 5h̄ω

.

(A36)

If we consider the coupling paths between the states, we
obtain the off-diagonal elements

η̃sp = ηsp,1 + ηsp,2(ε∗
p,1 − ε∗

s,1)

2

(
1

δsp + h̄ω
+ 1

h̄ω

)

+ η∗
sp,1(εp,2 − εs,2)

2

(
1

δsp − 2h̄ω
+ 1

2h̄ω

)
, (A37)

η̃sd = ηsd,2 + ηsd,1(εd,1 − εs,1)

2

(
1

δsd − h̄ω
− 1

h̄ω

)

+ ηsp,3η
∗
pd,1

2

(
1

δsp + h̄ω
− 1

δpd − h̄ω

)

+ ηpd,3η
∗
sp,1

2

(
1

δsp − h̄ω
− 1

δpd + h̄ω

)
, (A38)

FIG. 8. Compare effective two- and three-band models for
single-photon resonance (εp,0 − εs,0 � h̄ω). The points displayed on
the plots correspond to the Floquet-Bloch calculation. The solid lines
are the dispersion for the two-band model (a) and the three-band
model (b) with VX = 6Erec, ω/2π = 8.5 kHz, and Kω = 0.8.

η̃pd = ηpd,1 + η∗
pd,2εd,1

2

(
1

δpd + h̄ω
+ 1

h̄ω

)

+ η∗
pd,1εd,2

2

(
1

δpd − 2h̄ω
− 1

2h̄ω

)
, (A39)

where the detunings are δsp = εs,0 − εp,0 + h̄ω, δsd = εs,0 −
εd,0 + 2h̄ω, and δpd = εp,0 − εd,0 + h̄ω. The three band
model is in very good agreement to the exact spectrum as
shown in Fig. 8(b) in direct comparison to the two-band
model, Fig. 8(a). Only for the third band at the band edges
we can see a clear difference. It would be necessary to include
the next higher bands to correct for this deviation. However, at

FIG. 7. Benchmark effective two-band models. The dispersion of the effective two-band Hamiltonians (solid lines) are compared to the
numerical exact solution of the Floquet-Bloch band structure (points, three lowest bands). In (a) the two lowest bands tune in resonance
with a single-photon transition for VX = 6Erec, ω/2π = 8.5 kHz, and Kω = 0.8. Parts (b),(c) show the single- and two-frequency driving (ω,
3ω) case for a three photon resonance with ω = 2.44 kHz, Kω = 1.5, and in (c) additionally K3ω = 0.05, ϕ = 0◦. The plot in (d) shows a
single-frequency driving of a two photon resonance where ω/2π = 3.55 kHz and Kω = 1. For the same resonance we achieve individual gap
closing of the right (e) and left (f) gap using a two-frequency driving (ω, 2ω) with K2ω = 0.19 and relative phase ±90◦, respectively.
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the chosen lattice depth of VX = 6Erec it is very inconvenient
to use a tight-binding approximation and the perturbation
calculation becomes unpractical.

b. Extracting gaps

The effective models can be used to extract the gap for
various driving parameters. In the case of a two-band model
the Hamiltonian can be written in Bloch form

H̃ = E (q)1 − h(q) · σ, (A40)

where σ = (σx, σy, σz )T is the Pauli matrix vector. The
eigenenergies are

ε± = E (q) ±
√

h2
x + h2

y + h2
z , (A41)

and the gap is simply proportional to the second term

� = 2
√

h2
x + h2

y + h2
z = 2|h|. (A42)

The theory plots in Fig. 3 and Fig. 4 of the main text are
calculated using the effective theory.

Since the effective theory captures the Floquet-Bloch band
structure very well, we also use it to estimate the gradients
of the dispersion which are used to calculate the transition
speed for the Landau-Zener formula given in Appendix B. In
the case of the single-photon resonance we use the three band
model to obtain higher precision in this gradient.

c. Deeper lattices

For deeper lattices the sp gaps scale differently depending
on the order of the process. In general, interband coupling
to neighboring sites {η(p)

nn′ |p � 1} and hopping beyond nearest
neighbors {t (p)

n |p � 1} become negligible processes and the
static band gap increases leading to larger driving frequencies
to match the resonance condition. While this means that,
for odd photon number processes the strongest term always
scales proportional to ∼h̄ω, a slight decrease of the interband
coupling η(0)

sp leads overall to larger gaps for the single-photon
resonance and lower gaps for the three photon resonance at
deeper lattices. In the case of even photon number processes,
the strongest process is independent of the driving frequency
and scales with the tunneling matrix element. Therefore, the
two-photon gap decreases for deeper lattices. However, for all
processes a decrease of the coupling can be compensated by
enhancing the driving strength because undesired higher band
couplings also become weaker at deeper lattices.

APPENDIX B: EXPERIMENTAL METHODS

The experiment starts with a gas of 87Rb bosonic atoms in
the sublevel mF = 2 of the F = 2 manifold, which is trapped
in a harmonic optical dipole trap. The atoms are evaporatively
cooled down to Bose-Einstein condensate at the background
scattering length. The atom number is calibrated with a strong
saturation absorption imaging technique [74]. We then ramp
up a magnetic gradient to counteract gravity and ramp down
the dipole trap at the same time. The dipole trap is further
ramped to zero when we ramp up the optical lattice. Be-
fore loading the lattice we have a mean number of atoms of
15(2) × 103 with a condensate fraction of 44(6)%.

TABLE III. Parameters of the lattice used in this experiment.
Errors in the lattice depths account for an uncertainty of the lattice
calibration and an additional statistical error due to fluctuations of
the lattice depth. The value and error on the tunneling rates tx,z

result from the uncertainty of the lattice depth. The trap frequency
is measured by kicking the atoms using magnetic gradient without
retroreflected beam.

Parameter Value

VX,Z (Erec ) 6.0(1),0.82(2)
tx,z/h(Hz) 224(6),812(3)
f trap
x,y,z /h(Hz) 7.4(3),23(2),21(3)

The one-dimensional optical lattice consists of a retrore-
flected laser beam of wavelength λ = 1064 nm. The lattice
potential seen by the atoms is

V (x) = VX cos2(kLx), (B1)

with kL = 2π/λ. The lattice depth VX is measured in units
of the recoil energy Erec = h2/2Mλ2 (h is the Planck con-
stant and M the mass of the rubidium atoms). The lattice
depth is calibrated using amplitude modulation on a 87Rb
Bose-Einstein condensate. There is also a very shallow lattice
along the z direction to trap the atoms against a residual
gradient along the y direction. The parameters of our lattice
configuration are shown in Table III. The Hubbard parameters
t are numerically calculated from the Wannier functions of
the lattice potential, which we obtain from band-projected
position operators [75]. Our red-detuned lattice also induces
an external confinement and the corresponding trap frequency
is also shown in Table III.

1. Periodic driving

The periodic driving is realized with a piezoelectric actua-
tor which modulates the position of the retroreflecting mirror
for the X lattice beam at a frequency ω/2π and displacement
amplitude �L. The phase of the retroreflected X lattice beam
is therefore shifted with respect to the incoming one such that
the time-modulated (τ ) lattice potential can be expressed as
V (x, τ ) = V [x − x0(τ )]. For a two-frequency driving scheme
we use the waveform

x0(τ ) = �Lω cos(ωτ ) + �Llω cos(lωτ + ϕ), (B2)

where l denotes the order of the higher harmonic contribution
that is used and ϕ the relative phase to its fundamental coun-
terpart. The length displacements �Llω are associated with the
dimensionless amplitude via

Klω = M�Llωlωa/h̄, (B3)

where a is the lattice constant along the x direction (h̄ =
h/2π ). The amplitude and phase of the mirror displacement
is calibrated by measuring the phase modulation caused by
the periodic driving using a Michelson interferometer. The
previously used design of the actuator-mirror configuration
in [52] has been updated. The first mechanical resonance of
the actuator-mirror configuration is pushed to high frequen-
cies (∼60 kHz) by using a single-stack, piezoelectric actuator
(Noliac NAC2013) combined with a tungsten mount (216 g)
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and a quarter-inch mirror (3 mm thick). The residual fre-
quency and phase dependence is caused by the capacitive load
(∼190 nF) of the piezoelectric actuator driven via a voltage
amplifier (PiezoDrive PX200) and shows a smooth behavior
that is calibrated out via the above mentioned method. The
systematic error due to this calibration method amounts to
0.5% of the driving strength and 0.25◦ on the relative phase.
Furthermore, we acquire a statistical error on the strength and
phase of the same amount. Since the phase calibration method
only works reliable for strengths as low as Kω = 0.5, we ex-
trapolate the calibration values for lower driving strengths. We
detect a systematic phase shift for the optimal phase for a gap
closing in a three-photon resonance correlated to low values
of K3ω < 0.3. In principle, we can reach with this system a
bandwidth of 100 kHz with driving strengths up to Kω = 3.5
for ω/2π � 2 kHz.

2. Bloch oscillation

The Bloch oscillation used to detect the gap is induced
by a magnetic gradient which is calibrated by measuring its
frequency. The center and the size of the Brillouin zone is
measured with Bragg diffraction where we flash the lattice
and extract the position of the 2h̄kL diffraction peaks.

The frequency of the Bloch oscillation νBO gives the energy
resolution with which we can probe the Floquet-Bloch gaps.
In our setup the resolution is limited by the minimal trapping
frequency in the direction of the Bloch oscillation which we
can achieve without untrapping the atoms. If we use the levita-
tion scheme described in the previous section we can achieve
the minimal trapping frequency in the x direction stated in
Table III. It is given by the confinement of the orthogonal
lattice beam. On the other hand, at large Kω some other gaps
(multiphoton resonance to higher bands) which we do not
want to probe become non-negligible. In that case we increase
the frequency of the Bloch oscillation so that the detection is
only sensitive to the largest gap that we are interested in.

The value of the Floquet-Bloch gap Egap is calculated from
measured transition rates Ptrans with the Landau-Zener formula

Ptrans = 1 − exp

(
−π2

E2
gap

�ν/�τ

)
, (B4)

where Egap is in units of Hz and �ν/�τ is the energy sweep
rate in units of Hz2. The energy sweep rate is calculated
from the frequency of Bloch oscillation νBO and the effective
dispersion relations of s- and p-band ε̃s,p(q) using a two-band
approximation:

�ν

�τ
= νBO

h̄

∂

∂q
[ε̃p(q) − ε̃s(q)]q=qgap . (B5)

For details on the calculation of the effective dispersion rela-
tion, see Appendix A.

3. Detection methods

The transferred fraction is obtained from the band-mapping
detection, where we ramp down the optical lattice slowly (1
ms) after the modulation such that the atoms stay adiabatically
in their band and the quasimomentum (q) is mapped to the real
momentum. After that we switch off the magnetic levitation

and allow for 25 ms time of flight (TOF) to map momentum
onto position and then take an absorption image. To deter-
mine the transferred fraction we fit two Gaussian functions
to the two clouds which correspond to the transferred and
not-transferred part and capture the atom number for each
cloud from the fitting.

APPENDIX C: FLOQUET BLOCH BAND STRUCTURE
OF A SHAKEN OPTICAL LATTICE

The single-particle spectrum of a periodically shaken opti-
cal lattice with translational symmetry is derived via Floquet’s
theorem and the Trotter decomposition. In this derivation we
closely follow [37].

1. Static band structure of an optical lattice

The spectrum of a single particle in a static cosine lattice
[see Eq. (B1)] can be obtained by numerically solving the
eigenvalue problem(

− d2

dz2
− 2i

q

kL

d

dz
+

( q

kL

)2
+ VX

2Erec
cos(2z)

)
un

q(z)

= E (q)

Erec
un

q(z) (C1)

for the periodic Bloch functions un
q(z) at quasimomentum q

with band index n. The periodicity of the lattice is a = λ/2 =
π/kL and VX = 6.0 Erec is the lattice depth. Equation (C1)
has been made dimensionless by scaling energy in units of
recoil Erec = (h̄kL )2

2M with m being the mass of a 87Rb atom
and by introducing the dimensionless coordinate z = kLx. The
operators − d2

dz2 , d
dz , and cos(2z) can be written as matrices in

the basis of π -periodic functions [37]. We typically truncate
the lattice Hamiltonian to 15 × 15 entries.

2. Floquet-Bloch band structure

The Floquet drive is realized by sinusoidally modulating
the position of the retroreflecting mirror [see Eq. (B2)] that
creates the optical standing wave. Typical values of �Lω in
this work are on the order of 0.01a–0.3a. In order to incor-
porate the periodic drive into the lattice eigenvalue problem
[Eq. (C1)] it is most convenient to work in a frame rotating
with the modulated position x. This can be achieved by apply-
ing a unitary transformation which yields a time-dependent
“vector potential” that is added to the momentum operator in
the Hamiltonian

Hrot(τ ) = [ p̂ − A(τ )]2

2M
+ V (x̂). (C2)

Sometimes this frame of reference is also referred to as the
“rotating frame.” For the “vector potential” A(τ ) we then have

A(τ ) = Mẋ0(τ ) = − h̄

a
[Kω sin(ωτ ) + Klω sin(lωτ + ϕ)].

(C3)
The dimensionless driving strengths Kω, Klω defined in
Eq. (B3) will be convenient in the calculation following below.
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Since the resulting time-dependent Hamiltonian

Hrot(τ ) = − d2

dz2
− 2i

[ q

kL
+ Kω

π
sin(ωτ )

+Klω

π
sin(lωτ + ϕ)

] d

dz
+

( q

kL

)2
+ VX

2Erec
cos(2z)

(C4)

is periodic both in time and in space, we can apply Floquet’s
theorem and find solutions as spatiotemporal Bloch waves.
The energy shift resulting from the square of the vector po-
tential is rotated away. We obtain the time-evolution operator
U (τ0 + T, τ0) over one driving period T = ω/(2π ) via the
Trotter decomposition

U (τ0 + T, τ0) = T exp

[
− i

h̄

∫ τ0+T

τ0

Hrot(τ )dτ

]
(C5)

� exp

[
− i

h̄

N−1∑
j=0

Hrot(τ j )�τ

]

=
N−1∏
j=0

exp
[
− i

h̄
Hrot(τ j )�τ

]
+ O(�τ 2), (C6)

where T denotes time ordering. The driving period [τ0, τ0 +
T [ is discretized in N steps as τ j = τ0 + j�τ with �τ =
T/N . For typical driving strengths of Kω � 1 a discretization
into N = 50 is sufficient; obtaining faithful results for larger
driving strengths requires a finer discretization. Alternatively,
the time-evolution operator U (T, 0) can be obtained by di-
rectly integrating the time-dependent Schrödinger equation.
However, we find that for our purposes the Trotter decompo-
sition is more efficient. Since we are only interested in the
quasienergy spectrum, we can take the Floquet gauge τ0 = 0
without loss of generality.

The resulting quasienergies εn(q) are encapsulated in the
Floquet multipliers {e−iεn (q)T/h̄}, which are the eigenvalues
of U (T, 0). The quasienergies form the Floquet-Bloch band

structure, which describes the exact spectrum of a single par-
ticle in a homogeneous, shaken optical lattice, limited only by
the numerical discretization and the truncation of the Hilbert
space. This description includes all transitions to and within
higher bands, as well as any additional nonperturbative ef-
fects beyond the usual high-frequency regime (rotating-wave
approximation, high-frequency expansion, and Magnus ex-
pansion).

3. Numerical evaluation of the Floquet-Bloch gaps

Single- and multiphoton resonances between Bloch bands
lead to gap openings in the Floquet-Bloch quasienergy spec-
trum. In order to numerically evaluate the size of these
gaps the evaluated Floquet states [eigenstates of U (T, 0)]
are sorted according to their overlap with the static Bloch
bands. At the quasimomentum value where an interband cou-
pling occurs the order of this sorting is changed and we
can extract the size of the gap. For large driving strengths
the single-gap picture breaks down and additional reso-
nances appear. In the case of the single-photon resonance,
we can reliably extract the gap until Kω = 1.0. For the two-
and three-photon resonances, we can evaluate the gap until
Kω = 1.25 and Kω = 1.6, respectively. For the largest values
of shaking strength, specifically for the three-photon reso-
nances above Kω > 0.68, we linearly increase the shaking
frequency in order to keep the resonance roughly fixed at a
specific quasimomentum, thereby counteracting the ac-Stark
shift.

For the computation of the single-frequency gap openings,
we sample quasimomentum between zero and π/a in 501
steps. Doubling the q sampling does not change the absolute
gap values by more than 3 Hz. At large driving strengths the
admixture of higher (static) bands can lead to “outliers” in
the maximum gap values. We ignore these in the calculations
for Fig. 2 of the main text. For the computation of the two-
frequency gap closings, we sample quasimomentum between
zero and π/a in 101 steps.
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group classification of topological band-insulators, Nat. Phys.
9, 98 (2013).

[6] X. Y. Dong and C. X. Liu, Classification of topological crys-
talline insulators based on representation theory, Phys. Rev. B
93, 045429 (2016).

[7] C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[8] R. Roy and F. Harper, Periodic table for Floquet
topological insulators, Phys. Rev. B 96, 155118
(2017).

[9] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[10] X. L. Qi and S. C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[11] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University Press,
Princeton, NJ, 2013).

[12] M. S. Rudner and N. H. Lindner, Band structure engineering
and non-equilibrium dynamics in Floquet topological insula-
tors, Nat. Rev. Phys. 2, 229 (2020).

[13] Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82,
102001 (2013).

013056-14

https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevB.93.045429
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.7566/JPSJ.82.102001


FLOQUET ENGINEERING OF INDIVIDUAL BAND GAPS … PHYSICAL REVIEW RESEARCH 4, 013056 (2022)

[14] Y. Ando and L. Fu, Topological crystalline insulators and topo-
logical superconductors: From concepts to materials, Annu.
Rev. Condens. Matter Phys. 6, 361 (2015).

[15] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).

[16] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[17] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Floquet topo-
logical insulators, Phys. Status Solidi 7, 101 (2013).

[18] Á. Gómez-León and G. Platero, Floquet-Bloch Theory and
Topology in Periodically Driven Lattices, Phys. Rev. Lett. 110,
200403 (2013).

[19] T. Oka and S. Kitamura, Floquet engineering of quantum mate-
rials, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

[20] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature (London) 496,
196 (2013).

[21] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Topological photonics, Rev. Mod. Phys. 91, 015006
(2019).

[22] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Ob-
servation of Floquet-Bloch states on the surface of a topological
insulator, Science 342, 453 (2013).

[23] J. W. McIver, B. Schulte, F. U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Light-induced anomalous Hall ef-
fect in graphene, Nat. Phys. 16, 38 (2020).

[24] N. Goldman, J. C. Budich, and P. Zoller, Topological quantum
matter with ultracold gases in optical lattices, Nat. Phys. 12, 639
(2016).

[25] C. Weitenberg and J. Simonet, Tailoring quantum gases by
Floquet engineering, Nat. Phys. 17, 1342 (2021).

[26] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke,
Dan Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and
M. Greiner, Microscopy of the interacting Harper-Hofstadter
model in the two-body limit, Nature (London) 546, 519 (2017).

[27] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Creating, moving and merging Dirac points with a Fermi gas in
a tunable honeycomb lattice, Nature (London) 483, 302 (2012).

[28] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the
topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[29] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T.
Kitagawa, E. Demler, and I. Bloch, Direct measurement of the
Zak phase in topological Bloch bands, Nat. Phys. 9, 795 (2013).

[30] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L.
Wang, M. Troyer, and Y. Takahashi, Topological Thouless
pumping of ultracold fermions, Nat. Phys. 12, 296 (2016).

[31] Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-
coupled Bose-Einstein condensates, Nature (London) 471, 83
(2011).

[32] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum
gases, Nature (London) 494, 49 (2013).

[33] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M.
Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L.
Fallani, Synthetic Dimensions and Spin-Orbit Coupling with an
Optical Clock Transition, Phys. Rev. Lett. 117, 220401 (2016).

[34] S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E.
Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin-orbit-
coupled fermions in an optical lattice clock, Nature (London)
542, 66 (2017).

[35] E. J. Meier, F. A. An, and B. Gadway, Observation of the topo-
logical soliton state in the Su-Schrieffer-Heeger model, Nat.
Commun. 7, 13986 (2016).

[36] J. H. Kang, J. H. Han, and Y. I. Shin, Creutz ladder in a
resonantly shaken 1D optical lattice, New J. Phys. 22, 013023
(2020).

[37] M. Holthaus, Floquet engineering with quasienergy bands of
periodically driven optical lattices, J. Phys. B 49, 013001
(2015).

[38] A. Eckardt, Colloquium: Atomic quantum gases in periodically
driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).

[39] C. Schori, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger,
Excitations of a Superfluid in a Three-Dimensional Optical
Lattice, Phys. Rev. Lett. 93, 240402 (2004).

[40] J. Heinze, S. Götze, J. S. Krauser, B. Hundt, N. Fläschner,
D. S. Lühmann, C. Becker, and K. Sengstock, Multiband
Spectroscopy of Ultracold Fermions: Observation of Reduced
Tunneling in Attractive Bose-Fermi Mixtures, Phys. Rev. Lett.
107, 135303 (2011).

[41] N. Fläschner, M. Tarnowski, B. S. Rem, D. Vogel, K.
Sengstock, and C. Weitenberg, High-precision multiband spec-
troscopy of ultracold fermions in a nonseparable optical lattice,
Phys. Rev. A 97, 051601(R) (2018).

[42] C. J. Fujiwara, K. Singh, Z. A. Geiger, R. Senaratne, S. V.
Rajagopal, M. Lipatov, and D. M. Weld, Transport in Floquet-
Bloch Bands, Phys. Rev. Lett. 122, 010402 (2019).

[43] M. Arnal, V. Brunaud, G. Chatelain, C. Cabrera-Gutiérrez, E.
Michon, P. Cheiney, J. Billy, and D. Guéry-Odelin, Evidence
for cooling in an optical lattice by amplitude modulation, Phys.
Rev. A 100, 013416 (2019).

[44] C. V. Parker, L. C. Ha, and C. Chin, Direct observation of ef-
fective ferromagnetic domains of cold atoms in a shaken optical
lattice, Nat. Phys. 9, 769 (2013).

[45] L. C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and
C. Chin, Roton-Maxon Excitation Spectrum of Bose Conden-
sates in a Shaken Optical Lattice, Phys. Rev. Lett. 114, 055301
(2015).

[46] B. Song, S. Dutta, S. Bhave, J.-C. Yu, E. Carter, N. Cooper,
and U. Schneider, Realizing discontinuous quantum phase
transitions in a strongly-correlated driven optical lattice,
arXiv:2105.12146.

[47] M. Weinberg, C. Ölschläger, C. Sträter, S. Prelle, A. Eckardt, K.
Sengstock, and J. Simonet, Multiphoton interband excitations
of quantum gases in driven optical lattices, Phys. Rev. A 92,
043621 (2015).

[48] C. Cabrera-Gutiérrez, E. Michon, M. Arnal, G. Chatelain, V.
Brunaud, T. Kawalec, J. Billy, and D. Guéry-Odelin, Resonant
excitations of a Bose Einstein condensate in an optical lattice,
Eur. Phys. J. D 73, 170 (2019).

[49] J. H. Kang, J. H. Han, and Y. Shin, Realization of a Cross-
Linked Chiral Ladder with Neutral Fermions in a 1D Optical
Lattice by Orbital-Momentum Coupling, Phys. Rev. Lett. 121,
150403 (2018).

[50] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A.
Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Tunable Gauge Potential for Neutral and Spinless Particles

013056-15

https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1038/nature12066
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1126/science.1239834
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/s41567-021-01316-x
https://doi.org/10.1038/nature22811
https://doi.org/10.1038/nature10871
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/PhysRevLett.117.220401
https://doi.org/10.1038/nature20811
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1088/1367-2630/ab61d7
https://doi.org/10.1088/0953-4075/49/1/013001
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevLett.93.240402
https://doi.org/10.1103/PhysRevLett.107.135303
https://doi.org/10.1103/PhysRevA.97.051601
https://doi.org/10.1103/PhysRevLett.122.010402
https://doi.org/10.1103/PhysRevA.100.013416
https://doi.org/10.1038/nphys2789
https://doi.org/10.1103/PhysRevLett.114.055301
http://arxiv.org/abs/arXiv:2105.12146
https://doi.org/10.1103/PhysRevA.92.043621
https://doi.org/10.1140/epjd/e2019-90672-4
https://doi.org/10.1103/PhysRevLett.121.150403


KILIAN SANDHOLZER et al. PHYSICAL REVIEW RESEARCH 4, 013056 (2022)

in Driven Optical Lattices, Phys. Rev. Lett. 108, 225304
(2012).

[51] C. Grossert, M. Leder, S. Denisov, P. Hänggi, and M. Weitz,
Experimental control of transport resonances in a coherent
quantum rocking ratchet, Nat. Commun. 7, 10440 (2016).

[52] F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M.
Messer, and T. Esslinger, Realization of density-dependent
Peierls phases to engineer quantized gauge fields coupled to
ultracold matter, Nat. Phys. 15, 1161 (2019).

[53] K.-X. Yao, Z. Zhang, and C. Chin, Dynamics of domain walls in
a Bose-Einstein condensate driven by density-dependent gauge
field, arXiv:2105.15052.

[54] L. Niu, D. Hu, S. Jin, X. Dong, X. Chen, and X. Zhou, Ex-
citation of atoms in an optical lattice driven by polychromatic
amplitude modulation, Opt. Express 23, 10064 (2015).

[55] K. Viebahn, J. Minguzzi, K. Sandholzer, A. S. Walter, M.
Sajnani, F. Görg, and T. Esslinger, Suppressing Dissipation
in a Floquet-Hubbard System, Phys. Rev. X 11, 011057
(2021).

[56] C. Zhuang, C. R. Paul, X. Liu, S. Maneshi, L. S. Cruz, and A. M.
Steinberg, Coherent Control of Population Transfer between
Vibrational States in an Optical Lattice via Two-Path Quantum
Interference, Phys. Rev. Lett. 111, 233002 (2013).

[57] J. von Neumann and E. P. Wigner, Über das verhalten von
eigenwerten bei adiabatischen prozessen, Z. Phys. 30, 467
(1929).

[58] T. Morimoto, H. C. Po, and A. Vishwanath, Floquet topological
phases protected by time glide symmetry, Phys. Rev. B 95,
195155 (2017).

[59] S. Xu and C. Wu, Space-Time Crystal and Space-Time Group,
Phys. Rev. Lett. 120, 096401 (2018).

[60] A. Eckardt and E. Anisimovas, High-frequency approximation
for periodically driven quantum systems from a Floquet-space
perspective, New J. Phys. 17, 93039 (2015).

[61] C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc.
London, Sect. A 137, 696 (1932).

[62] L. D. Landau, Zur theorie der energieübertragung, Phys. Z. 2,
46 (1932).

[63] X. Li, E. Zhao, and W. Vincent Liu, Topological states in a
ladder-like optical lattice containing ultracold atoms in higher
orbital bands, Nat. Commun. 4, 1523 (2013).

[64] J. N. Fuchs and F. Piéchon, Electric polarization of one-
dimensional inversion-symmetric two-band insulators, Phys.
Rev. B 104, 235428 (2021).

[65] X. C. Sun, C. He, X. P. Liu, M. H. Lu, S. N. Zhu, and Y. F. Chen,
Two-dimensional topological photonic systems, Prog. Quantum
Electron. 55, 52 (2017).

[66] J. H. Kang and Y. I. Shin, Topological Floquet engineering of
a one-dimensional optical lattice via resonant shaking with two
harmonic frequencies, Phys. Rev. A 102, 063315 (2020).

[67] J. C. Budich, Y. Hu, and P. Zoller, Helical Floquet Channels in
1D Lattices, Phys. Rev. Lett. 118, 105302 (2017).

[68] M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger,
Fermionic Atoms in a Three Dimensional Optical Lattice: Ob-
serving Fermi Surfaces, Dynamics, and Interactions, Phys. Rev.
Lett. 94, 080403 (2005).

[69] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[70] J. Hausinger and M. Grifoni, Dissipative two-level system un-
der strong ac driving: A combination of Floquet and Van Vleck
perturbation theory, Phys. Rev. A 81, 022117 (2010).

[71] B. Gu, N. H. Kwong, and R. Binder, Relation between the inter-
band dipole and momentum matrix elements in semiconductors,
Phys. Rev. B 87, 125301 (2013).

[72] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs and Mathematical Tables
(Dover, Mineola, NY, 1964), Vol. 55.

[73] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems, Springer Tracts in Modern Physics
(Springer, Berlin, 2003).

[74] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin, Strong
saturation absorption imaging of dense clouds of ultracold
atoms, Opt. Lett. 32, 3143 (2007).

[75] T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U.
Bissbort, and T. Esslinger, Artificial Graphene with Tunable
Interactions, Phys. Rev. Lett. 111, 185307 (2013).

013056-16

https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1038/ncomms10440
https://doi.org/10.1038/s41567-019-0615-4
http://arxiv.org/abs/arXiv:2105.15052
https://doi.org/10.1364/OE.23.010064
https://doi.org/10.1103/PhysRevX.11.011057
https://doi.org/10.1103/PhysRevLett.111.233002
https://doi.org/10.1103/PhysRevB.95.195155
https://doi.org/10.1103/PhysRevLett.120.096401
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1038/ncomms2523
https://doi.org/10.1103/PhysRevB.104.235428
https://doi.org/10.1016/j.pquantelec.2017.07.004
https://doi.org/10.1103/PhysRevA.102.063315
https://doi.org/10.1103/PhysRevLett.118.105302
https://doi.org/10.1103/PhysRevLett.94.080403
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevA.81.022117
https://doi.org/10.1103/PhysRevB.87.125301
https://doi.org/10.1364/OL.32.003143
https://doi.org/10.1103/PhysRevLett.111.185307

