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Variational quantum simulation for periodic materials
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We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such
as ground states and quasiparticle band structures. By extending the unitary coupled cluster (UCC) theory to
describe crystals in arbitrary dimensions, for a hydrogen chain, we numerically demonstrate that the UCC
ansatz implemented on a quantum circuit can be successfully optimized with a small deviation from the exact
diagonalization over the entire range of the potential energy curves. Furthermore, by using the quantum subspace
expansion method, in which we truncate the Hilbert space within the linear response regime from the ground
state, the quasiparticle band structure is computed as charged excited states. Our work establishes a powerful
interface between the rapidly developing quantum technology and modern material science.

DOI: 10.1103/PhysRevResearch.4.013052

I. INTRODUCTION

Achieving decisive ab initio descriptions of electronic
properties in solid systems is one of the most significant
issues in modern material science. For weakly correlated sys-
tems, the development of the density functional theory (DFT)
[1–3] and GW approximation [4,5] have realized increas-
ingly accurate numerical simulations. Wave-function-based
techniques have also been studied intensively: time-dependent
Hartree-Fock theory [6], second-order Møller-Plesset pertur-
bation theory (MP2) [7,8], and coupled-cluster (CC) theory
with single and double excitations (CCSD) [7,9,10]. More
recent reports include CCSD with perturbative triple ex-
citations (CCSD(T)) [11] and full configuration-interaction
(FCI) quantum Monte Carlo method for periodic solids [12].
Meanwhile, it must be noted that periodic systems contrast
sharply with molecular systems in that one must simulate
the thermodynamic limit. In general, a large number of parti-
cles, or the Brillouin zone sampling, are required to achieve
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convergence to the thermodynamic limit. The growth of
computational resources requirements rapidly exceeds super-
computing capacity, which severely limits the exploration of
realistic materials. Therefore algorithms with both favorable
scaling and high accuracy beyond the current schemes are
indispensable.

The surging development in quantum technology may of-
fer a path to achieving this goal. The variational quantum
eigensolver (VQE) algorithm and its variants, for instance,
enable the simulation of eigenstates of a given Hamilto-
nian on noisy intermediate-scale quantum (NISQ) devices
[13]. Although the rigorous computational speed-up by the
VQE-based calculations over classical algorithms still re-
mains elusive (a situation related to the present lack of
quantum error correction) [14], many studies have focused
on its demonstration in actual quantum devices [15–19]
and its extension to solve a various classes of problems
[20–28]. From a quantum chemistry perspective, an intrigu-
ing question is whether the NISQ devices become capable
of implementing classically intractable wave-function ansatz
such as the unitary coupled cluster (UCC) ansatz [29–34], a
variational parametrization of CC wave functions based on
unitary transformation. Although classical computers suffer
from an exponential increase in the computational cost, quan-
tum computers naturally simulate such ansatze with only a
polynomial number of quantum gates. For efficient implemen-
tation on the NISQ devices, more hardware-friendly and/or
sophisticated ansatze have been proposed [35–37]. However,
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to the best of our knowledge, existing VQE algorithms and
their demonstrations have been mainly performed for small
molecules, and periodic systems have not been successfully
simulated.

In the present work we propose and demonstrate that a
VQE-based framework enables simulations of solid materials
at the ab initio level. Our work shows that electronic ground
states of periodic systems such as the hydrogen chain can be
computed accurately even in the strongly correlated regime
where the classical gold-standard methods such as CCSD(T)
break down. Furthermore, we present a method to calcu-
late the quasiparticle band structure from the VQE quantum
state. Our approach is to describe quasiparticle excitations by
linear-response-based calculations, i.e., the quantum subspace
expansion (QSE) [38]. The present work establishes a pow-
erful interface between two major fields, namely, the rapidly
developing quantum computing technology and modern ma-
terial science.

II. SECOND QUANTIZED AB INITIO CRYSTAL
HAMILTONIAN

An ab initio fermionic Hamiltonian with periodic boundary
conditions is given in the second quantization representation
as

Ĥ =
∑

pq

∑
k

tk
pqĉ†

pkĉqk

+
∑
pqrs

′∑
kpkqkr ks

v
kpkqkr ks
pqrs ĉ†

pkp
ĉ†

qkq
ĉrkr ĉsks , (1)

where ĉpk (ĉ†
pk) is the annihilation (creation) operator of the

pth Bloch or crystalline orbital (CO) with crystal momen-
tum k. The complex coefficients tk

pq and v
kpkqkr ks
pqrs are one-

and two-body integrals between COs. Note that because of
translational symmetry, the two-body term must obey the con-
servation law written as

kp + kq − kr − ks = G, (2)

where G is a reciprocal lattice vector of the unit cell. Such a
requirement is indicated by the primed summation in Eq. (1).
In the present work we determine COs from the crystal
Hartree-Fock theory with the Gaussian-based atomic orbitals
(AOs), for which we employ minimal basis sets (i.e., STO-
3G) [39,40]. Two remarks concerning the computation of
integrals are in order. First, the divergence corrections for
exchange integrals are computed separately. Because the G =
0 contribution in the exchange integrals simply shifts the
band structure according to their particle number, we initially
neglect the divergent term and add the corresponding cor-
rection after computing the correlation energy [41]. Second,
the Gaussian density fitting technique [42] is used for the
two-body coefficients v

kpkqkr ks
pqrs to accelerate the integral cal-

culation.
To solve the Schrödinger equation defined by the Hamilto-

nian (1) on a quantum computer, we map fermionic operators
into spin-1/2 operators. A widely known technique is the
Jordan-Wigner transformation [43], which naturally encodes
the fermionic anticommutation relation as the parity of the

FIG. 1. Encoding crystalline orbitals into variational quantum
circuits. The example is for a linear hydrogen chain where each unit
cell contains two atoms. The number of the qubits increases linearly
with respect to the number of k points sampled from the Brillouin
zone.

particle number. Although we adopt the Jordan-Wigner trans-
formation in the present work, one may also consult on other
techniques with improved nonlocality [44], which may be-
come crucial for suppressing Pauli measurement error in noisy
devices. Here, the fermion-qubit mapping algorithm is no
different in the case of crystalline systems than in molec-
ular systems. However, the number of qubits required in a
periodic system could be considerably larger than that in an
isolated system; if the number of k-point samples is set to Nk ,
the number of qubits required is increased by Nk (see Fig. 1
for a graphical description).

III. VARIATIONAL QUANTUM EIGENSOLVER AND
UNITARY COUPLED CLUSTER THEORY FOR SOLIDS

Once the qubit representation of the crystal Hamiltonian is
prepared, the ground-state wave function and its energy can
be calculated on a quantum computer using the VQE algo-
rithm. That is, one constructs a quantum circuit Û (θ ), where
θ denotes the circuit parameters, and a trial wave function
|ψ (θ )〉 = Û (θ ) |0〉, where |0〉 is an input quantum state. The
ground state is approximated by the variational ansatz |ψ (θ∗)〉
whose parameters are taken to minimize the energy function
as follows:

θ∗ = arg min
θ

E (θ ), (3)

E (θ ) := 〈ψ (θ )|Ĥ |ψ (θ )〉. (4)

Various quantum circuits (i.e., ansatze) have been proposed
for the VQE to describe many-body wave functions accu-
rately and compactly. In this study we choose the unitary
coupled cluster singles and doubles (UCCSD) ansatz [29–34]
with one-step Trotter expansion, or the disentangled UCCSD
ansatz [45]:

|ψ〉 =
⎛
⎝∏

pq

∏
kpkq

eÂ
kpkq
pq

⎞
⎠

⎛
⎝∏

pqrs

∏
kpkqkr ks

eÂ
kpkqkr ks
pqrs

⎞
⎠ |0〉 , (5)
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where Â
kpkq
pq = a

kpkq
pq ĉ†

pkp
ĉqkq − c.c. and Â

kpkqkr ks
pqrs = a

kpkqkr ks
pqrs

ĉ†
pkp

ĉ†
qkq

ĉrkr ĉsks − c.c. are cluster operators for single and dou-
ble excitations, respectively. The Hartree-Fock state is chosen
as the input state |0〉. The coefficients a are the variational
parameters and correspond to θ . Note that the variational
parameters a of the UCCSD ansatz are in general complex
values for a periodic system, while those with a standard
time-independent molecular Hamiltonian are real because its
matrix elements can be chosen to exclude imaginary values.

One of the strengths of the UCC in general is that it en-
ables the symmetry, such as the number of particles or the
total spin angular momentum, to be easily introduced into
the ansatz (i.e., quantum circuit) because the UCC is based
on the fermionic representation. In addition, the translational
symmetry can be straightforwardly implemented into the
UCC by limiting Â

kpkq
pq and Â

kpkqkr ks
pqrs to the operators satisfying

the crystal momentum conservation law [Eq. (2)]. Nonethe-
less, in this work, for simplicity, we limit the variational
parameters to real numbers and do not impose the momentum
conservation condition. We tentatively refer to this variant
of the UCCSD ansatz as the broken-translational-symmetry
UCCSD ansatz with real variables (bUCCSD-Real) here. The
quantum circuit of the bUCCSD-Real ansatz is virtually iden-
tical to UCCSD’s quantum circuit for molecular systems. See
Ref. [46] for a detailed description of how to realize a UCC
ansatz on a quantum circuit.

A further strength of UCC is the practicality of parameter
optimization. Physics-based ansatze such as UCC allow for
the preparation of appropriate initial values and removing
redundant parameters. Such features make physics-inspired
ansatze less prone to the vanishing gradient problem in the
cost function, called the barren plateau problem [47–49].
However, such ansatze are unsuitable for NISQs, as the depth
of such ansatze is typically long [e.g., O(N4) for the UCCSD]
and sensitive to quantum hardware noise. Hardware noise
not only makes the results inaccurate but also causes barren
plateaus in deep quantum circuits such as UCC, which can
make optimization hard [50]. Crucially, the quantum circuit is
to be shallow in order to perform the VQE on NISQs, while it
is known that a constant depth circuit cannot achieve sufficient
expressive power [51]. It is thus vital to strike a good balance
between noise and circuit complexity to achieve a practical
ansatz. The variational quantum compiling would be a way
to find such a compromise point [52]. Nevertheless, this point
is beyond the scope of this paper and will not be discussed
further here.

IV. COMPUTING QUASIPARTICLE BANDS FROM
THE VQE WAVE FUNCTION

Of course, the ground-state energy is not the only important
and interesting property for solids. The force on each nucleus,
for example, is often essential in practical calculations and can
be obtained from the energy derivatives. Energy derivatives
for periodic systems can be calculated in the same manner as
those for molecules. The analytical energy derivative calcula-
tion methods for the VQE quantum state have already been
established and applied [25,53]. Another example is the band
structure, which is a property peculiar to solids. It is a common

and indispensable concept or tool for analyzing the electronic
structure of a crystal. Band calculations for quantum many-
body systems are often performed by simulating quasiparticle
excitations, assuming that the theoretical framework defined
in the one-body picture still holds. In this context, various
classical algorithms, including the GW approximation, have
already been proposed to find the quasiparticle bands [4,5].
In the present study we also employ a similar assumption and
extend the QSE method to calculate quasiparticle bands from
the VQE quantum state.

The aim of the QSE method is to compute a subset of the
entire eigenspectrum in a subspace defined from a reference
quantum state |ψ〉. Concretely, we first prepare a set of many-
body basis |�i〉 = R̂i |ψ〉, where |ψ〉 is the VQE quantum
state and R̂i = ĉ†

pkp
ĉ†

qkq
. . . ĉrkr ĉsks . . . is an excitation operator

with a multi-index i specifying a string of annihilation and cre-
ation operators. Then, we diagonalize a subspace Hamiltonian
Hsub defined in a truncated Hilbert space spanned by {|�i〉}.
The nonorthogonality of such many-body bases requires us to
solve the following generalized eigenvalue problems:

HsubC = SsubCE, (6)

where Ssub is a metric of the subspace given by the overlap
between bases, C are eigenvectors, and the diagonal matrix
E yields eigenenergies. The matrix elements of the subspace
Hamiltonian Hsub and the metric Ssub are given by

H sub
i j = 〈�i|H |� j〉 = 〈ψ (θ )|R̂†

i Ĥ R̂ j |ψ (θ )〉, (7)

Ssub
i j = 〈�i|� j〉 = 〈ψ (θ )|R̂†

i R̂ j |ψ (θ )〉. (8)

These quantities are evaluated as the expectation value of non-
Hermitian operators R̂†

i Ĥ R̂ j and R̂†
i R̂ j , which can be realized

by measuring real and imaginary parts separately, for instance.
Thus far, the QSE method has been used with particle-

number conserving excitation operators, which corresponds to
the so-called multireference configuration interaction (MRCI)
method in the classical algorithms of quantum chemistry
[54,55]. The QSE method differs from the MRCI method
in that it uses quantum measurements to evaluate the matrix
elements. Here, we propose a QSE method for calculating
quasiparticle bands using many-body bases created by ioniza-
tion or electron-attachment operators, which remove or add
one particle from the VQE quantum state |ψ〉. The valence-
band energies are obtained at individual k by performing
the QSE using ionization operators R̂IP

lk = ĉlk, where l runs
over the occupied orbitals. In contrast, the conduction bands
are obtained by using electron-attachment operators R̂EA

bk =
ĉ†

bk, where b runs over unoccupied orbitals. Our method is
closely related to a variant of the equation-of-motion coupled
cluster (EOM-CC), namely, ionization-potential/electron-
attached EOM-CC (IP-EOM-CC, EA-EOM-CC) [10].

V. NUMERICAL EXAMPLES

Now that the theoretical framework is readily provided, we
are ready to demonstrate our algorithms in periodic systems.
First, we compute the ground state of the linear hydrogen
chain, which is known for its rich physical feature that is still
not completely understood despite its simplicity [56–63]. The

013052-3



NOBUYUKI YOSHIOKA et al. PHYSICAL REVIEW RESEARCH 4, 013052 (2022)

FIG. 2. (a) Potential energy curves of the linear hydrogen chain computed at bUCCSD-Real, CCSD, MP2, RHF, and FCI with the STO-3G
basis sets. Each unit cell consists of two hydrogen atoms each, and three k points are sampled from grid. Twelve qubits are used for the
bUCCSD-Real. (b) Absolute error from the FCI calculation. In the weakly correlated region, the bUCCSD-Real ansatz are slightly more
accurate than CCSD, whose deviation crosses from positive to negative near 2.6 Bohr. The dotted line indicates the chemical accuracy (1.6 ×
10−3 Hartree).

outcome of the electronic interaction varies diversely along
the atom separation; the system experiences a metal-insulator
transition with a strongly correlated regime in between. As
shown in Fig. 2, the bUCCSD-Real ansatz correctly captures
such a complex behavior. It is evident from the potential en-
ergy curve shown in Fig. 2(a) that strong electronic correlation
develops as atoms become separated. Therefore, the classi-
cal gold-standard CCSD and CCSD(T) methods result in a
large deviation from the exact diagonalization, or the FCI; see
Fig. 2(b). In contrast, the bUCCSD-Real ansatz can describe
the behavior of hydrogen atoms much more accurately, ow-
ing to the enhanced representability of the variational ansatz.
The bUCCSD-Real ansatz can simulate the weakly correlated
region as precise as the CCSD method and suppresses the
deviation in the strongly correlated regime. Considering the
fact that the ansatz is not designed to capture the whole Hilbert
space with higher-order electronic excitations, we expect that
the calculation can be systematically improved by applying
more powerful and sophisticated ansatze such as the ADAPT
or cluster-Jastrow ansatze [36,37].

It should be noted that although the result by the bUCCSD-
Real ansatz is presented in the current work, it may be
desirable to employ an ansatz with complex variables (such
an example is shown in Appendix C). Extending real variables
to complex variables results in effectively doubling the num-
ber of variables. Nonetheless, the disadvantages of extending
to complex variables are presumably compensated by using
the momentum conservation law [Eq. (2)]; the translational
symmetry leads to a considerable reduction in the number of
parameters, especially when many k points must be consid-
ered, such as in the three-dimensional systems.

Next, we turn to the band-structure calculation of the hy-
drogen dimer chain. Such two-leg ladder systems are of strong
interest from both the theoretical and experimental aspects,
because synthesized compounds on ladder structures may
show exotic phenomena such as the unconventional super-
conductivity and spin-liquid behavior [64]. In particular, the
half-filled Hubbard model on a two-leg ladder is gapped by
both charge and spin excitations, as opposed to that on the
linear chain. Such a state with spin singlets on each rung has
been found to evolve into a superfluid phase by additional
spin-exchange interaction between rungs [65]. Here, we take a

large distance between hydrogen dimers so that the system is
described by the coherent spin singlet state. The quasiparticle
spectrum of the system is obtained by the ionized/electron-
attached QSE method introduced previously. As can be seen
from Fig. 3, both the highest occupied and lowest unoccupied
bands are simulated precisely. In particular, the direct band
gap estimated at crystal momentum kL = π/4 (L: unit-cell
length) is 1.5047 Hartree, which is consistent with the EOM-
CCSD calculation with an error less than 3 × 10−4 Hartree.

VI. SUMMARY AND OUTLOOK

We have presented a framework for simulat-
ing the electronic structures of solids using NISQ

FIG. 3. (a) Band structure of the hydrogen dimer chain computed
at bUCCSD-Real, CCSD, and RHF with the STO-3G basis sets. The
energy is shifted so that the highest energy of the occupied band
is zero. Two bands are well separated by a gap owing to the co-
herent spin singlet formation. (b) Absolute deviation of the electron
affinity (upper panel) and ionization potential (lower panel) from the
equation-of-motion CCSD calculation. A unit cell considered in the
calculation consists of a pair of hydrogen atoms that are 1.2 Bohr
apart from each other, and the distance between dimers is taken as
4 Bohr. Two k points are sampled from a uniform grid. Eight qubits
are used for the bUCCSD-Real.
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devices at the ab initio level. The numerical results
demonstrate that our VQE-based algorithm simulates the
hydrogen chain well, not only in the weakly correlated
electronic structures but also for the strongly correlated
regimes. Furthermore, we have shown that the quasiparticle
band structure can be computed by applying the QSE method,
which diagonalizes the Hamiltonian in a truncated space
described by the linear response, to charged excited states.
The use of ionization/electron-attachment operators yields a
substantial improvement in the measurement cost that scales
quadratically with respect to the qubit count, as opposed to
the quartic (or higher) scaling required in the standard QSE
method which employs particle-number-conserved excitation
operators.

Our VQE-based framework is expected to provide an
approach for investigating otherwise intractable systems. In
addition to the insulating low-dimensional materials calcu-
lated in the present work, real solid surface systems and
strongly correlated materials are core targets that should be
investigated once the quantum computers become sufficiently
mature. To address target materials having a tangible impact,
not only for scientific knowledge but also for industrial ap-
plications, it would be necessary to develop a qubit reduction
technique that explicitly makes use of the symmetry.

Note added. Shortly after completion of this work we be-
came aware of two independent works [66,67] that have been
carried out in parallel.
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APPENDIX A: NUMERICAL RESULTS FOR MOMENTUM
CONSERVATIONS AND FIDELITIES

As explained in the main text, we adopt the broken-
translational-symmetry UCCSD ansatz with real variables
(bUCCSD-Real) for demonstration of the variational quantum
simulation for periodic materials. The total crystal momentum
can be different from the input state of the ansatz, i.e., the
Hartree-Fock state, in this ansatz. We numerically check the
total crystal momentum K of the optimized wave function
|ψbUCCSD−R〉 for the linear hydrogen chain investigated in
Fig. 2 of the main text. We compute the expectation value of
the translation operator T̂L defined for the unit-cell length L
as 〈ψbUCCSD−R | T̂L | ψbUCCSD−R〉, and this expectation value is

1×10-11

FIG. 4. (a) Crystal momentum of the optimized bUCCSD-Real
wave function whose energy is shown in Fig. 2(a) of the main text.
A unit cell with the length L consists of two hydrogen atoms each,
and three k points are sampled from a uniform grid. Twelve qubits
are used for the bUCCSD-Real. Crystal momentum K is determined
by the equation eiKL = 〈ψbUCCSD−R | T̂L | ψbUCCSD−R〉, where T̂L is
the translation operator of the length L. (b) Infidelity between the
optimized bUCCSD-Real wave function and the exact wave function
obtained by the FCI calculation.

identified with eiKL. The result is shown in Fig. 4(a). As is
expected from the uniform geometry of the chain, the total
crystal momentum K is apparently zero within the numerical
error caused by slight imperfectness of the optimization of the
wave function in the VQE: the mean of real and imaginary
parts of KL/π for all data points are below 10−11.

In addition, we present infidelity between |ψbUCCSD−R〉 and
the exact wave function computed by the full configuration-
interaction (FCI) |ψFCI〉, namely, 1 − |〈ψbUCCSD−R | ψFCI〉|,
in Fig. 4(b). The infidelity is small and varies with the
hydrogen-hydrogen distance of the chain in a similar way to
the deviation from the exact energy [Fig. 2(b)]. This result also
indicates that our choice of the ansatz properly reproduces the
exact wave function of the system.
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APPENDIX B: DETAILS OF QUANTUM CIRCUITS USED
IN NUMERICAL EXPERIMENTS

We used the software QULACS to simulate quantum circuits
employed in our numerical calculations of the VQE with the
bUCCSD-Real ansatz. The VQE parameters were optimized
using the BFGS algorithm implemented in the SCIPY pack-
age. The number of qubits employed were 12 qubits and 8
qubits for the linear hydrogen chain and the hydrogen dimer
chain, respectively. The depth of the bUCCSD-Real quantum
circuits were 964 and 192 for the linear chain and the dimer
chain; the number of the VQE parameters θ were 1044 and
208. Note that the quantum circuits used in this study were
not prepared as a directly transferable one to any particular
quantum computer architecture that currently exists. First, the
quantum circuits were not prepared with a specific qubit con-
nectivity in mind. Second, the multiqubit gates appearing in
UCC ansatze (including the bUCCSD-Real) were not decom-
posed into two-qubit or one-qubit gates. Also, we performed a
perfect simulation without considering any noise in this study.
Nonetheless, these differences between the existing quantum
computers do not affect numerical simulation results, as long
as the absence of noise is assumed.

APPENDIX C: COMPARISON OF REAL- AND
COMPLEX-VARIABLE UCC ANSATZE

The UCC without imaginary amplitudes (bUCC-Real) re-
produced the FCI results well for the systems studied in the
main text. However, as mentioned in the main text, this is
not always the case. Indeed, there are systems where the
bUCC-Real has a lower descriptive power because of the
lack of complex coefficients. A hydrogen chain with four
k points is such an example. A comparison of UCC-Real
with the UCC with complex amplitudes (iUCC) was per-
formed for this system. To reduce computational costs, we
reduced the number of parameters by using UCC with double
excitations (UCCD), where singles excitations are omitted.

FIG. 5. Potential energy curves of the linear hydrogen chain
computed with four k points at bUCCD-Real, complex variable
UCCD (iUCCD) with translational symmetry, RHF, CCSD, and FCI
with the STO-3G basis sets. Each unit cell consists of two hydrogen
atoms each, and k points are sampled from a uniform grid.

The UCCD with complex coefficients (iUCCD) employed the
translational symmetry for further reduction in the number
of circuit parameters. Figure 5 shows the potential energy
curves (PECs) of the hydrogen chain calculated by iUCCD
and the real-variable UCCD with broken translational sym-
metry (bUCCD-Real). The PEC of iUCCD shows a good
agreement with FCI, whereas that of bUCCD-Real has larger
deviation from FCI in the strongly correlated regime. At
R = 4.5 Bohr, the errors with respect to the FCI are 4.8 and
10.3 kcal/mol for iUCCD and bUCCD-Real, respectively. In
the weakly correlated regime, the difference between iUCCD
and bUCCD-Real becomes smaller. The deviations from FCI
are 2.78 and 3.28 kcal/mol for iUCCD and bUCCD-Real,
respectively, at R = 2.0 Bohr.
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