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Quantum fluctuations on top of a PT -symmetric Bose-Einstein condensate
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We investigate the effects of quantum fluctuations in a parity-time (PT ) symmetric two-species Bose-Einstein
condensate (BEC). It is found that the PT symmetry, though preserved by the macroscopic condensate, can be
spontaneously broken by its Bogoliubov quasiparticles under quantum fluctuations. The associated PT -breaking
transitions in the Bogoliubov spectrum can be conveniently tuned by the interaction anisotropy in spin channels
and the strength of PT potential. In the PT -unbroken regime, the real Bogoliubov modes are generally gapped,
in contrast to the gapless phonon mode in Hermitian case. Moreover, the presence of PT potential is found to
enhance the mean-field collapse and thereby intrigue the droplet formation after incorporating the repulsive force
from quantum fluctuations. These remarkable interplay effects of PT symmetry and interaction can be directly
probed in cold atoms experiments, which shed light on related quantum phenomena in general PT -symmetric
systems.
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I. INTRODUCTION

The parity-time (PT ) symmetry governs a fascinating
class of non-Hermitian Hamiltonians whose energy spectra
can be purely real and bounded below [1], analogous to the
Hermitian ones. Nevertheless, very different from the Hermi-
tian counterpart, their eigenstates are generally nonorthogonal
and can even coalesce at exceptional points (EPs), where the
PT -breaking transition occurs and the spectra after the transi-
tion become complex [2]. The single-particle PT -symmetric
Hamiltonian and the associated breaking transitions have been
successfully explored earlier in various photonic, electronic,
and acoustic systems (see reviews [3,4]), and recently also in
the quantum walk interferometer [5], superconducting circuit
[6], nitrogen-vacancy center [7], trapped ions [8,9], and ultra-
cold gases [10–12].

Given the intriguing single-particle property of PT sym-
metry, its interplay with interaction has become a rapidly
developing research frontier in recent years [13–26]. Previous
studies have focused on the interacting PT -symmetric bosons
and fermions based on mean-field analyses [13,14,17–20,26],
and the phase transitions and critical phenomena near EPs
[15,16,22–24]. To date, little has been said about beyond-
mean-field effects with PT symmetry, and whether such
effects can generate equally significant quantum phenomena
far from EPs. Answering these questions will help to capture
the very intrinsic physics in the interplay of interaction and
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PT symmetry, which will in turn shed light on related quan-
tum phenomena in a much broader context.

In this paper, we explore the effects of quantum fluc-
tuations on top of a PT -symmetric two-species (↑,↓)
Bose-Einstein condensate (BEC) with the non-Hermitian
potential

VPT = �(σx + iγ σz ), (1)

where σα (α = x, y, z) are the Pauli matrices. Obviously
VPT commutes with the PT operator, with P flipping the
spin(↑↔↓) and T changing i to −i. In the single-particle
level, the physics of VPT has been well studied in literature
[3–12] and the PT symmetry is preserved for γ < 1. Here
we show that when turn on boson-boson interactions, quantum
fluctuations can significantly affect the elementary excitation
of the system even far from the single-particle EP. Specifically,
our main findings are listed as below:

(i) The PT symmetry, though preserved by the condensate,
can be spontaneously broken by the Bogoliubov quasiparti-
cles. The PT -breaking transition in the Bogoliubov spectrum
can be conveniently tuned by the strength of VPT and the
interaction anisotropy in spin channels.

(ii) The quasiparticle in the PT -unbroken regime is gener-
ally gapped, on contrary to the gapless mode in the Hermitian
case. Moreover, the mean-field instability of a non-Hermitian
system does not necessarily lead to imaginary excitations
therein.

(iii) The presence of VPT can enhance the mean-field col-
lapse of the BEC, and thereby extend the droplet formation to
a broader interaction regime than the Hermitian counterpart.

The experimental relevance of our results and the implica-
tion to a general PT -symmetric system will also be discussed
in this paper.

The rest of the paper is organized as follows. In Sec. II
we present the basic model of the system, including the
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single-particle physics and mean-field treatment. The fol-
lowed Sec. III is contributed to the mean-field ground state. In
Sec. IV, we build up a systematic theory for the Bogoliubov
analysis of the non-Hermitian BEC. The resulted excitation
spectrum and the droplet properties are presented, respec-
tively, in Secs. V and VI. Finally, we discuss the experimental
relevance of our results in Sec. VII and summarize the whole
paper in Sec. VIII.

II. MODEL

We consider the following Hamiltonian for the interacting
two-species bosons under the PT -symmetric potential (we
take h̄ = 1 throughout the paper)

H =
∫

dr
∑
αβ

{
�†

α (r)

[
− ∇2

2mα

δαβ + �
(
σαβ

x + iγ σαβ
z

)]
�β (r)

+gαβ

2
�†

α (r)�†
β (r)�β (r)�α (r)

}
. (2)

Here α, β = {↑,↓}, and {�†
α,�α} are the field operators

of spin-α bosons. In order to ensure the PT symmetry of
(2), we take the equal mass m↑ = m↓ ≡ m and equal in-
traspecies coupling g↑↑ = g↓↓ ≡ g. In this case, the property
of a homogeneous BEC is determined by three dimensionless
parameters: the dissipation parameter γ , and two dimension-
less combinations η ≡ g↑↓/g and �̃ ≡ �/(gn) (n the total
density of the BEC).

A. Single-particle physics

The noninteracting part of (2) can be diagonalized as

H0 =
∑

ν

εν;k�
†
ν;k,R�ν;k,L (3)

where ν = {+,−} is the index of single-particle eigen-
state with eigenenergy εν;k = k2/(2m) + ν�

√
1 − γ 2; �

†
ν;k,R

(�ν;k,L) is the associated creation (annihilation) operator of
the right (left) eigenstate, which satisfies the commutation
relation

[�ν ′;k′,L, �
†
ν;k,R] = δkk′δνν ′ . (4)

This relation is equivalent to the bi-orthogonality of right and
left eigenstates, which is crucially important for building the
theories of non-Hermitian BECs as presented later.

Since VPT decouples from the kinetic term, the right/left
eigenstates can be decoupled as

�
†
ν;k,R/L|0〉 ≡ |k〉|ν〉R/L, (5)

where |0〉 is the vacuum, |k〉 is the plane-wave state with
momentum k, and |ν〉R/L is the spin part of the eigenstate
that is solely determined by VPT. Specifically, the right and left
eigenstates are defined through the Schrödinger equations:

VPT|ν〉R = εν |ν〉R, V †
PT|ν〉L = ε∗

ν |ν〉L, (6)

with εν = ν�
√

1 − γ 2. In the regime γ < 1, |ν〉R/L can be
expressed as

|+〉R = C+,R(u| ↑〉 + | ↓〉); |−〉R = C−,R(| ↑〉 − u| ↓〉).

|+〉L = C+,L(| ↑〉 + u| ↓〉); |−〉L = C−,L(u| ↑〉 − | ↓〉), (7)

with the parameter

u =
√

1 − γ 2 + iγ . (8)

Here Cν,R,Cν,L are all normalization factors. For the Her-
mitian case (γ = 0 and u = 1), we can see that the right
and left eigenvectors become identical, i.e., |+〉R ∼ |+〉L,
|−〉R ∼ |−〉L, and different levels are orthogonal to each other
R,L〈−|+〉R,L = 0. In comparison, for the non-Hermitian case
(γ �= 0 and u is complex), these relations are no longer
satisfied, i.e., |ν〉R �= |ν〉L and R〈−|+〉R �= 0, L〈−|+〉L �= 0.
However, given the definition of right/left eigenstates in
Eq. (6), the bi-orthogonality can be satisfied as long as
ε+ �= ε−:

L〈−|+〉R = 0, L〈+|−〉R = 0. (9)

Therefore, the normalization can be carried out between the
right and left eigenvectors:

L〈ν|ν〉R = 1, ν = ±; (10)

which gives

C∗
ν,LCν,R = 1

u + u∗ , ν = ±. (11)

Note that Eqs. (9) and (10) guarantees the commutation rela-
tion (4). In this paper, we choose a specific gauge such that
the normalization factors are all real and identical:

Cν,R = Cν,L = 1√
u + u∗ . (12)

In this way, when the PT operator acts on these eigenvectors,
we have

PT |ν〉R = νu∗|ν〉R; PT |ν〉L = νu∗|+〉L. (13)

This demonstrates that, in the γ < 1 regime, |ν〉R/L are both
the eigenstates of PT operator with eigenvalue νu∗. If one
chooses a different gauge other than (12), the eigenvalues
in (13) will be changed. However, we have checked that the
gauge choice will not affect the physical quantities studied in
this paper, given that (11) is satisfied.

B. Mean-field treatment of the PT -symmetric BEC

In the mean-field framework, we can write down a general
coherent ansatz for the right state of the BEC:

|�0〉R = A
∑

n

(∑
ν

√
Nνeiθν �

†
ν;k=0,R

)n
n!

|0〉. (14)

Here Nν and θν are respectively the mean number and the
phase of the condensate at level ν. In the regime γ < 1, since
the single-particle state �

†
ν;k,R/L|0〉 preserves the PT symme-

try, it is natural to require the condensate (14) equally preserve
such symmetry. Given Eq. (13), this requirement leads to

e2iθν = νu∗. (15)

Following the same strategy, we can obtain the left state of
the BEC, |�0〉L, which shares the same form as (14) except
replacing �

†
ν;k=0,R by �

†
ν;k=0,L.

Given the commutation relation (4) and the coherent ansatz
(14), we can obtain the following expectation values under the
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bi-orthogonal basis:

L〈�0|�†
ν;k=0,R|�0〉R =

√
Nνe−iθν ,

L〈�0|�ν;k=0,L|�0〉R =
√

Nνeiθν ;

L〈�0|�†
ν;k=0,R�ν ′;k=0,L|�0〉R =

√
NνNν ′ei(θν′ −θν );

L〈�0|�†
ν;k=0,R�

†
ν ′;k=0,R�ν ′′;k=0,L�ν ′′′;k=0,L|�0〉R

=
√

NνNν ′Nν ′′Nν ′′′ei(θν′′′ +θν′′ −θν′ −θν ). (16)

This shows that in the mean-field framework under the
bi-orthogonal basis, one can replace the zero-momentum op-
erators �

†
ν;k=0,R and �ν;k=0,L with their mean values:

�
†
ν;k=0,R →

√
Nνe−iθν , �ν;k=0,L →

√
Nνeiθν . (17)

In this way, we can go on to study the mean-field ground state
and examine the effects of quantum fluctuations on top of it.

Here we would like to emphasize that the mean-field treat-
ment is only valid under the bi-orthogonal basis, but not if
only use one of the basis (right or left). For instance, we cannot
obtain the expectation values as the form in Eq. (16) if only
under the right basis (R〈...〉R) or the left basis (L〈...〉L), and
as a result we cannot replace the operators by their according
mean-field values as in (17).

C. Interaction channels

To facilitate later discussions, we rewrite the interaction
part of (2) in the following form:

U =
∑

ν1ν2ν3ν4

Uν1ν2;ν3ν4

∑
Qkk′

�
†
ν1;Q−k,R�

†
ν2;k,R�ν3;k′,L�ν4;Q−k′,L.

(18)
Here Uν1ν2;ν3ν4 is invariant under the permutation of ν1 ↔ ν2

or ν3 ↔ ν4, and thus there are totally nine different coupling
channels, with five even-parity combinations {ν1ν2; ν3ν4} =
{++; ++}, {−−; −−}, {++; −−}, {−−; ++}, {+−; +−},
and four odd-parity ones {+−; ++}, {+−; −−}, {++; +−},
{−−; +−}. The coupling constants in these channels are:

U++;++ = U−−;−− = g

V

u−
4

; U++;−− = U−−;++ = g

V
u′

+;

U+−;+− = g

V
u+;

U+−;++ = −U+−;−− = U++;+− = −U−−;+− = − g

V
u′′,

(19)

with

u− = 4u′
− = 1 − 2γ 2 + η

1 − γ 2
; u+ = 1 − ηγ 2

1 − γ 2
;

u′
+ = 1 − η

4(1 − γ 2)
; u′′ = − iγ (1 − η)

2(1 − γ 2)
. (20)

Here u−, u+, and u′
+ are the coupling constants for even-

parity channels, and u′′ represents the coupling for odd-parity
ones. u′′ is nonzero and purely imaginary only for the non-
Hermitian case with spin-independent interaction, i.e., when
γ �= 0 and η �= 1. As shown later, the presence of these odd-
parity channels will greatly affect the elementary excitation of
the BEC.

III. MEAN-FIELD GROUND STATE

To determine the mean-field ground state, we examine the
total mean-field energy Emf =L 〈�0|H |�0〉R. It is found that
under the phase constraint (15), Emf solely depends on the pa-
rameter x ≡ N−/N , where N = N− + N− is the total number.
Explicitly, the energy per particle εmf ≡ Emf/N reads

εmf (x) = �
√

1 − γ 2(1 − 2x)

+ gn

1 − γ 2

(
γ 2(η − 1)(x2 − x) + 1 − 2γ 2 + η

4

)
. (21)

For simplicity, in this paper we will focus on the η < 1 regime,
where the minimum of εmf (x) locates at x = 1, i.e., the bosons
condense at the lower branch with energy

εmf = −�
√

1 − γ 2 + gn

1 − γ 2

1 − 2γ 2 + η

4
. (22)

Accordingly, we can obtain the chemical potential μ ≡
∂Emf/∂N and further the compressibility χ ≡ ∂n/∂μ as

χ = 2

g

1 − γ 2

1 − 2γ 2 + η
. (23)

The mean-field stability against density fluctuations would
require χ > 0 and therefore

η > 2γ 2 − 1. (24)

This condition is more stringent than the Hermitian case
(η > −1). In other words, a non-Hermitian BEC (with finite
γ ) can undergo mean-field collapse more easily than its Her-
mitian counterpart (γ = 0). This will be responsible for the
γ -induced droplet formation as discussed later.

IV. BOGOLIUBOV ANALYSIS

Given the PT -symmetric BEC at k = 0 and ν = −, we
now study its elementary excitations due to quantum fluc-
tuations. Following the standard Bogoliubov approach, we
assume �

†
ν;k,R and �ν;k,L (except for {ν = −, k = 0}) are

all small fluctuation operators and only keep in the Hamil-
tonian all the bilinear terms of these operators, which gives
H = Nεmf + HBG with

HBG =
∑

k

∑
ν

(
(εν;k − μ + gnuν )�†

ν;k,R�ν;k,L + gnu′
ν (e2iθ−�

†
ν;k,R�

†
ν;−k,R + e−2iθ−�ν;k,L�ν;−k,L )

)
+gnu′′∑

k

(
e2iθ−�

†
+;k,R�

†
−;−k,R + e−2iθ−�+;k,L�−;−k,L + 2�

†
+;k,R�−;k,L + 2�

†
−;k,R�+;k,L

)
. (25)

Here HBG naturally inherits PT symmetry from the full
Hamiltonian (2), since we have taken the condensate (14)

as PT symmetric. The first line in HBG is reduced from
even-parity channels, and the second line from odd-parity
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ones. Obviously, the effect of odd-parity channels is to couple
fluctuations in different branches (− ↔ +), and the coupling
constant u′′ is purely imaginary in the presence of both non-
Hermiticity and interaction anisotropy.

To facilitate the diagonalization of the bilinear Hamiltonian
(25), we rewrite it as

HBG =
′∑
k

{
F T

k M(k)Gk −
∑

ν

(εν;k − μ + gnuν )

}
, (26)

where
∑′ implies the summation be taken over half of k space

to avoid the double counting; the vectors are

Fk =

⎛
⎜⎜⎜⎜⎝

�
†
−;k,R

�−;−k,L

�
†
+;k,R

�+;−k,L

⎞
⎟⎟⎟⎟⎠, Gk =

⎛
⎜⎜⎜⎜⎝

�−;k,L

�
†
−;−k,R

�+;k,L

�
†
+;−k,R

⎞
⎟⎟⎟⎟⎠; (27)

and the matrix M is

M(k) =

⎛
⎜⎜⎜⎜⎝

ε−;k − μ + gnu− 2gnu′
−e2iθ− 2gnu′′ gnu′′e2iθ−

2gnu′
−e−2iθ− ε−;k − μ + gnu− gnu′′e−2iθ− 2gnu′′

2gnu′′ gnu′′e2iθ− ε+;k − μ + gnu+ 2gnu′
+e2iθ−

gnu′′e−2iθ− 2gnu′′ 2gnu′
+e−2iθ− ε+;k − μ + gnu+

⎞
⎟⎟⎟⎟⎠. (28)

We aim to diagonalize HBG as the following form:

HBG =
′∑
k

F̃ T
k

⎛
⎜⎜⎜⎝

E1k

E2k

E3k

E4k

⎞
⎟⎟⎟⎠G̃k + const, (29)

where Eik are the four eigenmodes for Bogoliubov quasiparti-
cles, and the two eigenvectors are

F̃k =

⎛
⎜⎜⎜⎜⎝

α
†
1,k,R

α2,k,L

α
†
3,k,R

α4,k,L

⎞
⎟⎟⎟⎟⎠, G̃k =

⎛
⎜⎜⎜⎜⎝

α1,k,L

α
†
2,k,R

α3,k,L

α
†
4,k,R

⎞
⎟⎟⎟⎟⎠. (30)

The eigenoperators are required to satisfy the commutation
relation

[αi,k,L, α
†
j,k′,R] = δi jδkk′ , i, j = 1, 2, 3, 4. (31)

To find out eigenspectra Eik as well as the relation between
F̃k, G̃k and Fk, Gk, we start from the equation of motions
(EoM) of these vectors. Based on the Heisenberg equation for
non-Hermitian system (see derivation in Appendix), we can
write down the EoM of Gk and G̃k:

i
∂

∂t
Gk =

⎛
⎜⎜⎜⎝

1

−1

1

−1

⎞
⎟⎟⎟⎠M(k)Gk;

i
∂

∂t
G̃k =

⎛
⎜⎜⎜⎝

E1k

−E2k

E3k

−E4k

⎞
⎟⎟⎟⎠G̃k. (32)

This implies that by diagonalizing the matrix diag
(1,−1, 1,−1)M(k), we can obtain the four Bogoliubov
modes from its eigenenergies. Explicitly, by introducing a

transformation matrix A in Gk = AG̃k, we have

A−1

⎡
⎢⎣
⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠M(k)

⎤
⎥⎦A

=

⎛
⎜⎝

E1k
−E2k

E3k
−E4k

⎞
⎟⎠. (33)

Similarly, we can write down the EoM for Fk and F̃k, and
by introducing a transformation matrix B in F T

k = F̃ T
k B, we

have

B

⎡
⎢⎢⎢⎣M(k)

⎛
⎜⎜⎜⎝

−1

1

−1

1

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦B−1

=

⎛
⎜⎜⎜⎝

−E1k

E2k

−E3k

E4k

⎞
⎟⎟⎟⎠. (34)

Therefore, the Bogoliubov modes can also be obtained by
diagonalizing the matrix M(k)diag(−1, 1,−1, 1).

The two diagonalization schemes, i.e., one is based on (33)
and the other is based on (34), produce the same solution of
Eik, which satisfy

Ek =

√√√√−bk ±
√

b2
k − 4ck

2
, (35)

with

bk = − (ε−;k − μ + gnu−)2 − (ε+;k − μ

+ gnu+)2 − (gn)2(6u′′2 − 4u′2
+ − 4u′2

−);

ck = [(ε−;k − μ + gnu−)2 − (2gnu′
−)2][(ε+;k

− μ + gnu+)2 − (2gnu′
+)2]
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+ (gnu′′)2[9(gnu′′)2 − 40(gn)2u′
−u′

+
− 10(ε−;k − μ + gnu−)(ε+;k − μ + gnu+)

+ 16gnu′
+(ε−;k − μ + gnu−)

+ 16gnu′
−(ε+;k − μ + gnu+)]. (36)

The four eigenmodes in (35) fall into two identical pairs,
and we choose E1k = E2k and E3k = E4k. This is also a nat-
ural choice since in noninteracting limit, M(k) can exactly
reduce to the diagonal matrix diag(E1k, E2k, E3k, E4k ) with
E1k = E2k and E3k = E4k.

In fact, based on the commutation relations (4) and (31),
we can find out the relation between the two transformation
matrices:

A

⎛
⎜⎜⎜⎝

1

−1

1

−1

⎞
⎟⎟⎟⎠B =

⎛
⎜⎜⎜⎝

1

−1

1

−1

⎞
⎟⎟⎟⎠, (37)

and then one can prove straightforwardly that BM(k)A =
diag(E1k, E2k, E3k, E4k ). It follows that the first term in
Eq. (26) is equal to the first term in Eq. (29). Therefore the
constant terms in (26) and (29) are also identical. Now we can
rewrite Eq. (29) as

HBG =
′∑
k

4∑
i=1

Eikα
†
i,k,Rαi,k,L + 1

2

∑
k

{
E1k + E3k

−
∑

ν

(εν;k − μ + gnuν )

}
, (38)

Further incorporating the regularization of bare couplings g
and g12 from the mean-field interaction energy (22), we can
obtain the Lee-Huang-Yang (LHY) energy as:

ELHY = 1

2

∑
k

{
E1k + E3k −

∑
ν

(εν;k − μ + gnuν )

+ 1 − 2γ 2 + η2

2(1 − γ 2)

m(gn)2

k2

}
. (39)

We have checked that the summation in above equation con-
verges at large k and the ultraviolet divergence can be avoided.

V. EXCITATION SPECTRUM

In this section, we present the result of Bogoliubov excita-
tion spectrum for the PT -symmetric BEC. Since E1k = E2k
and E3k = E4k, we will only show the results of E1k and E3k.

To highlight the effect of non-Hermiticity to Bogoli-
ubov excitations, we first go through the Hermitian case
(γ = 0). In this case, all odd-parity terms in (25) are ab-
sent (u′′ = 0) and the fluctuations in + and − branches
are well decoupled. This leads to a gapless spectrum
E1k =

√
(k2/2m)2 + 2μ−k2/(2m) and a gapped one E3k =√

(k2/2m + 2�)2 + 2μ+(k2/2m + 2�), with μ± = gn(1 ∓
η)/2. Clearly, in the mean-field collapse regime with η < −1,
the lower spectrum E1k becomes purely imaginary near k ∼ 0,
signifying the dynamical instability. In addition, we note that
under certain condition the two spectra become degenerate,

FIG. 1. Diagrams in (γ , η) plane that exhibit different excitation
properties. Here �̃ = 0.2. “I” marks the region where the excitation
spectrum at low k is purely imaginary. “II” is the region where all
spectra are real and gapped. The gray dashed line sets the mean-field
collapse boundary, which further divides II into II(a) (χ < 0) and
II(b) (χ > 0). PT -breaking transition of Bogoliubov modes occurs
in regions III, IV, and V, where the spectra become complex either
within intermediate |k| ≡ k(III), or at large k(IV), or low k(V). In
VI, the complex spectra occur for all k. These regions are separated
by the curves of γ0 and γ∞, which, respectively, are the values of γ

when the spectra becomes complex at k = 0 and k → ∞.

i.e., E1k0 = E3k0 at:

|k0| =
√

2m�((η − 2�̃)−1 − 1), if 0 < η − 2�̃ < 1.

(40)
The according plot is given in Fig. 2(a). This feature will lead
to interesting excitation property when turn on γ .

In the presence of non-Hermiticity (γ �= 0), the in-
terbranch fluctuations give two important impacts on
the Bogoliubov modes, namely, the spontaneous PT -
symmetry breaking and the gapped excitation, as detailed
below.

A. Spontaneous PT -symmetry breaking

Although PT symmetry is preserved by H, HBG, and the
condensate |�0〉R,L, it can be spontaneously broken by the
Bogoliubov quasiparticles, as manifested by the appearance
of complex Eik. The PT -broken region in k space sensitively
depends on parameters �̃, η, and γ . In Fig. 1, we have
divided (γ , η) plane into different regions (I-VI) according to
different PT -breaking properties in the Bogoliubov spectra
for a fixed �̃ = 0.2. The complex spectra occur in regions
III-VI.

Let us start from region III with a small γ and 2�̃ < η < 1
[satisfying the condition in (40)]. In this case, a finite γ will
lead to the PT breaking of excitation spectra near k0. As
shown in Figs. 2(b1) and 2(b2), for γ = 0.15, E1k and E3k are
complex and conjugate to each other within a finite window
|k| ≡ k ∈ (k1, k2). Thus, as increasing k from zero, the PT
symmetry breaks at k1 and then revives at k2. The critical
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boundaries k1, k2, which are determined by the solutions
to b2

k − 4ck = 0, sensitively depend on γ , see Fig. 2(c). At
small γ , we find that k1,2 deviate from k0 by a small shift
δ ≡ |k − k0|, with

δ

k0
= γ

(1 − η)
√

16k̃4
0 + 2k̃2

0 (4 + 3η + 10�̃) + (1 + η)(2�̃ − η + 1)

4k̃2
0 (η − 2�̃)

+ o(γ 2). (41)

Here k̃0 = k0/
√

2mgn. As shown by the dashed lines in
Fig. 2(c), the dominant linear shifts based on above equa-
tion fit well to k1,2 in small γ limit.

Continuously increasing γ , k2, and k1 respectively flow to
∞ and 0 at γ∞ and γ0. This tells that the spectra at large k
become complex if γ > γ∞, and the complex spectra extend
to k = 0 if γ > γ0. Numerically, γ0 is determined by satis-
fying b2

k=0 = 4ck=0. To find out γ∞ accurately, we expand
the function Fk ≡ b2

k − 4ck at large k → ∞ and only keep its
leading order ∼k4. Then γ∞ is determined by the coefficient

FIG. 2. Spontaneous PT -symmetry breaking in the Bogoliubov
spectra. Here �̃ = 0.2, and η = 0.6 for (a)–(c). (a) Two real spec-
tra for Hermitian case (γ = 0), which merge at k ≡ |k| = k0 [see
Eq. (40)]. [(b1,b2)] Real and imaginary parts of the spectra at γ =
0.15 (staying in region III), which shows PT -symmetry breaking for
k ∈ (k1, k2). (c) PT -breaking boundaries k1 and k2 as functions of γ .
Dashed lines show linear fits for small γ [see Eq. (41)]. k1 touches
zero at γ0 and k2 goes to ∞ at γ∞. [(d),(e)] Excitation spectra for
η = 0.4, γ = 0.3 (region IV) and for η = −0.8, γ = 0.45 (region
V), where the PT breaking occurs, respectively, at high k and low
k. Here the momentum and energy units are, respectively,

√
2mgn

and gn.

of this leading term crossing zero, which gives the equation:

η2 + 4γ 2
∞(η − 1)

1 − γ 2∞
+ 4�̃2(1 − γ 2

∞
) = 4�̃(η + γ 2

∞(η − 2))√
1 − γ 2∞

.

(42)
We can see that the above equation support a solution γ∞ = 0
at η = 2�̃. This is also consistent with Eq. (40), which tells
that the degenerate point k0 goes to ∞ in the Hermitian case
if η = 2�̃.

In Fig. 1, γ0 and γ∞ are plotted as functions of η, and
accordingly regions III-IV are separated. Specifically, the PT
breaking of Bogoliubov modes occur within a finite k window
in III (with γ < γ0, γ∞), at large k in IV (γ∞ < γ < γ0), at
small k in V (γ0 < γ < γ∞), and extend the whole k space
in VI (γ > γ0, γ∞). The typical spectra in regions IV and V
are given in Figs. 2(d) and 2(e). Therefore, the PT -breaking
transition takes place twice in III, once in IV and V, and
no transition in VI. This shows that the PT symmetry of
Bogoliubov modes can be conveniently tuned by γ and η.

B. Gapped excitation

In the PT -unbroken region, such as II in Fig. 1, the real
Bogoliubov modes are gapped, instead of gapless as in Her-
mitian case. For γ � 1, we find that the excitation gap scales
linearly with γ :

E1k=0

gn
= γ

1 − η

2

√
1 + η

2�̃
. (43)

Such a gapped spectrum is in distinct contrast to the gap-
less mode in the Hermition BEC. It is closely related to
the presence of imaginary odd-parity terms in (25), such as
�

†
+;k,R�−;k,L, which directly couple the condensed atoms at

“−′′ branch with higher “+′′ branch crossing a finite energy
gap. Such coupling takes no effect for a PT symmetric BEC
in the mean-field level but plays an important role in its
quantum fluctuations. Because such imaginary coupling only
exists for γ �= 0 and η �= 1, the quasiparticle is gapped in the
same regime [see (43)]. In Fig. 3, we extract the energy gap
as a function of γ for two typical η, which fit well to (43) in
small γ regime.

Interestingly, the gapped excitation appears not only in the
mean-field stable regime [region II(b)], but can also extend to
the collapse regime [II(a)]. This is in distinct contrast to the
Hermitian case where the low-k spectrum is purely imaginary
in the mean-field collapse side. It is to say, the mean-field
instability in non-Hermitian system does not necessarily lead
to imaginary excitations. In fact, for a given η < −1, the
excitation spectra can turn from purely imaginary to purely
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FIG. 3. Excitation gap as a function of γ for η = −0.6 and 0.6.
Dashed lines show the respective function fit according to Eq. (43).
Here �̃ = 0.2. The energy unit is gn.

real as increasing γ across a critical γc, at which point the
spectrum is gapless E1,k=0 = 0. In Fig. 1, we mark the γ < γc

region (“I”) as shaded area, where the low-energy excitation
spectra are purely imaginary.

Numerically, γc is determined by ck=0 = 0, and thus

9γ 2
c (1 − η)2

4
= −(1 + η − 2γ 2

c

)[
2�̃
(
1 − γ 2

c

)3/2

+ (1 − η)
(
1 + γ 2

c

)]
. (44)

We can see that γc = 0 when η = −1, reproducing the mean-
field collapse point for the Hermitian case. When η slightly
deviates from −1, we have

γc =
√

−(1 + η)
2�̃ + 2

5 − 4�̃
, (45)

which shows that γc scales as the square root of the deviation,
as displayed by the orange dash-dot line in Fig. 1.

VI. γ-INDUCED DROPLET

The fact that the non-Hermiticity γ enhances the mean-
field collapse [as inferred by Eq. (24)] renders the formation
of a self-bound droplet after incorporating the LHY correction
from quantum fluctuations. In general, Eq. (39) gives ELHY ≡
ELHY/V as:

ELHY = (2m)3/2(gn)5/2 f (γ , η, �̃), (46)

where f is a dimensionless functional. In Fig. 4, we show the
contour plot of f in (γ , η) plane given a fixed �̃ = 0.2. We
can see that f , or equivalently ELHY, decreases continuously as
γ increases and can even turn negative. Fortunately, in region
II(a), which is the mean-field collapse regime with real and
gapped spectra, the LHY force is always repulsive. A self-
bound droplet state can then be supported in this region with
zero pressure, i.e., ∂ (E/N )/∂n = 0, with E = Emf + ELHY.
This gives the equilibrium density of the droplet as

neq =
(

1 − 2γ 2 + η

1 − γ 2

)2 1

36(2mg)3 f 2(γ , η, �̃)
. (47)

FIG. 4. Contour plot of f -function [see Eq. (46)] in the (γ , η)
plane with �̃ = 0.2.

At small particle number N , the quantum pressure becomes
important and drives the droplet to gas transition. To estimate
the critical number Nc at the transition, we take the similar
strategy as in Ref. [27] and write down the extended Gross-
Pitaevskii (GP) equation as

i∂t�(r) =
(

− 1

2m
∇2

r + 1 − 2γ 2 + η

2(1 − γ 2)
g|�|2 + ∂ELHY

∂n

)
�(r),

(48)
where �(r) is the wave function of the BEC and the parti-
cle number is determined by N = ∫ d3r|�(r)|2. By rescaling
r, �, t through

r = r̃ξ, � = �̃
√

neq, t = t̃mξ 2, (49)

with

ξ =
√

6(1 − γ 2)

mgneq|1 − 2γ 2 + η| , (50)

we can reduce the GP equation to

i∂t̃ �̃(r̃) = (− 1
2∇2

r̃ − 3|�̃|2 + 5
2 |�̃|3)�̃(r̃). (51)

It is found that Eq. (51) shares the same structure as the
reduced GP equation in Hermitian case [27], which leads to
the rescaled critical number Ñc ≡ ∫ d3r̃|�̃|2 = 18.65 at the
vanishing of droplet solution (droplet-gas transition). Given
the scaling relation in (49), we can obtain the critical Nc =
neq ξ 3Ñc in our system as

Nc = 2
√

2 f Ñc

(
6(1 − γ 2)

|1 − 2γ 2 + η|
)5/2

. (52)

We can see that both neq and Nc can be conveniently tuned by
γ and η.

VII. EXPERIMENTAL RELEVANCE

A PT -symmetric two-species BEC can be realized us-
ing two hyperfine states of 87Rb bosons, |↑〉 = |F = 1,

mF = 1〉 and |↓〉 = |F = 2, mF = −1〉. The intraspecies scat-
tering lengths are a↑↑ = 95aB, a↓↓ = 100aB, which have very
small relative asymmetry |a↑↑ − a↓↓|/(a↑↑ + a↓↓) ∼ 2.5%.
Such a small asymmetry is expected to take little effect as long
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as it is much smaller than �̃, γ . The interspecies coupling
is highly tunable via Feshbach resonance around B0 = 9.1G
[28–30].

For the PT -symmetric potential (1), the σx term can be
implemented through the two-photon microwave and rf tran-
sition [31], and iσz can be realized using the laser-induced
state-selective dissipation up to a constant loss term i�γ

[10–12]. For realistic atomic system with such constant loss,
the overall number of the system decays with time. However,
the physics governed by the effective non-Hermitian Hamil-
tonian can still be probed under the postselection scheme, as
have been successfully explored in the noninteracting atomic
gases [10,12]. The validity of the effective non-Hermitian
Hamiltonian requires a short-time dynamics within timescale
t � 1/(�γ ), where the impact of quantum jump can be ne-
glected. As here we consider the weak coupling regime with
na3 � 1, which is a natural extension of and can be smoothly
connected to the noninteracting regime, we do not expect the
validity of the effective non-Hermitian Hamiltonian would
alter too much. Moreover, it should be noted that the existing
experiments on quantum droplet have exactly made use of the
atom loss to observe the droplet-gas transition [32–36]. We
thus expect that the γ -induced droplet can be directly probed
in realistic experiments.

The property of excitation spectrum can be explored by
the Bragg spectroscopy as implemented previously in various
cold atoms systems [37–40]. Since such spectroscopy detects
the linear response of the system to external perturbations, we
expect it can directly probe the excitation spectrum of non-
Hermitian system as predicted in this work. Our results, which
are directly relevant to atomic gases confined in a uniform
trap [41–45], can also be utilized for the trapped system under
local density approximation, as successfully implemented in
previous experiments [37,38,40].

VIII. SUMMARY AND DISCUSSION

In summary, we have revealed the ground state and ex-
citation properties of a PT -symmetric BEC, including the
spontaneous PT breaking and gapped spectrum for Bogoli-
ubov quasiparticles, and the enhanced mean-field collapse and
the facilitated droplet formation. These results show that the
quantum fluctuations on top of a PT -symmetric BEC can lead
to important and visible collective phenomena even far from
the single-particle EPs, thus demonstrating the significant in-
terplay of interaction and non-Hermiticity in bosonic system.

Finally, we point out that the intriguing excitation prop-
erties revealed in this paper can be traced back to the
fundamental character of non-Hermitian systems, i.e., the
nonorthogonality of eigenstates. Such nonorthogonality char-
acter covers both the single-particle states and the elementary

quasiparticles. This is why the PT -symmetry breaking can
also occur in the latter. We thus expect the phenomena re-
vealed here are not limited to the specific PT potential
considered in this paper, but applicable to a broad class of
non-Hermitian systems with PT symmetry. Indeed, a recent
paper has pointed out the spontaneous PT breaking of ele-
mentary excitations on top of a fermion superfluid [25]. These
PT -breaking phenomena are generally associated with the
collective many-body EP and may lead to giant fluctuation
effect [22,23]. In future, it is worth to explore the impact of
collective EPs in the quantum and thermal depletions, as well
as the property of BEC in other parameter regime (γ , η, �̃)
beyond the scope of this paper.
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APPENDIX: HEISENBERG EQUATION FOR
NON-HERMITIAN SYSTEM

We first derive the Heisenberg equation for non-Hermitian
system under the bi-orthogonal basis. Given the definition of
right and left states, at time t they evolve as

|φR(t )〉 = e−iHt |φR(0)〉, (A1)

|φL(t )〉 = e−iH†t |φL(0)〉, (A2)

here |φR(0)〉 (|φL(0)〉) is the initial right (left) state at t = 0.
Define the time-dependent expectation value of operator Â as

〈Â〉t ≡ 〈φL(t )|Â|φR(t )〉, (A3)

we then have

〈Â〉t = 〈φL(0)|eiHt Âe−iHt |φR(0)〉, (A4)

and thus the Heisenberg equation can be written as

i
∂

∂t
〈Â〉t = 〈[Â, H]〉t . (A5)

We can see that the form of Heisenberg equation (A5) is iden-
tical to the Hermitian case. Nevertheless, it has a remarkable
consequence for the non-Hermitian case, i.e., 〈Â†〉t �= 〈Â〉∗t ,
which is very different from the Hermitian case. Similar rela-
tion for the time-dependent non-Hermitian operators has been
given in Ref. [46].
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