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High-quality two-dimensional electron gas in undoped InSb quantum wells
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We report on transport experiments through high-mobility gate-tunable undoped InSb quantum wells (QWs).
Due to the elimination of any Si modulation doping, the gate-defined two-dimensional electron gases in the
QWs display a significantly increased mobility of 260 000 cm2/Vs at a rather low density of 2.4 × 1011 cm–2.
Using magnetotransport experiments, we characterize spin-orbit interactions by measuring weak antilocalization.
Furthermore, by measuring Shubnikov–de Haas oscillations in tilted magnetic fields, we find that the g factor
agrees with k · p theory calculations at low magnetic fields but grows with spin polarization and carrier density
at high magnetic fields. Additionally, signatures of Ising quantum Hall ferromagnetism are found at filling factor
ν = 2 for tilt angles where the Landau level energy equals the Zeeman energy. Despite the high mobility, the
undoped InSb QWs exhibit no fractional quantum Hall effect up to magnetic fields of 25 T.
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I. INTRODUCTION

InSb is a narrow-gap III-V compound known for its light
effective mass, large g factor in bulk material, and strong spin-
orbit interactions (SOIs) [1–5]. These unique properties are
interesting for potential applications such as high-frequency
electronics [1], optoelectronics [6], and spintronics [7]. Re-
cently, InSb, together with InAs, has attracted attention as a
potential platform for topological quantum information pro-
cessing [8]. As introduced in a series of both theoretical
and experimental works, a topological nontrivial phase can
be achieved in a semiconductor-superconductor hybridized
device. It needs a sophisticated control of Zeeman energy,
chemical potential, Rashba SOI, and the phase of supercur-
rent if the system is two-dimensional (2D) to form a pair of
Majorana zero modes on sample terminals [9–12]. Currently,
experimental works on Majorana physics are primarily fo-
cused on InAs and InSb nanowires and InAs quantum wells
(QWs), while the progress in InSb QWs is still hampered,
and related publications are rare [11]. Although InSb QWs
have been successfully grown using molecular beam epitaxy
(MBE) methods [13], the technique to obtain high-quality 2D
electron gases (2DEGs) in InSb QWs is still not as mature as
that in InAs QWs. For instance, the mobility of InAs QWs
has reached values as high as ∼2 400 000 cm2/Vs, while this
value is still ∼300 000 cm2/Vs in InSb QWs [14–16]. In addi-
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tion, the carrier density in InSb QWs is not as stable as those
in InAs and GaAs. A pinched-off channel always becomes
conductive again after minutes when keeping gate voltages
constant. Due to this shortcoming, nanoconstrictions based on
InSb QWs still pose a number of challenges [17,18]. Recently,
Kulesh et al. [19] presented a purely gate-defined quantum dot
in an InSb QW. The instability of carrier density with time
is best reduced by eliminating Si doping during the growth
of the heterostructures. Then the carriers in these undoped
InSb QWs are induced through an electric field applied by
a global top gate. Though stable Coulomb blockade effects
were achieved in their device [19], undoped InSb QWs need
further optimization. As illustrated in the work of undoped
GaAs/AlGaAs heterostructures, the elimination of modulation
doping minimizes remote ionized dopant scattering [20,21].
With the previous work in various III-V compound het-
erostructures as references, we expect that 2DEGs with both
high mobility and stable density can be induced in undoped
InSb QWs.

In this paper, we introduce undoped InSb QWs as a
platform for magnetotransport experiments. Due to the elim-
ination of modulation doping, gate-defined 2DEGs display a
significantly increased mobility compared with modulation-
doped devices at low carrier densities <2.4 × 1011 cm–2.
Second, we manage to probe the tunable SOIs of the 2DEGs
with the measurement of weak antilocalization (WAL). Fur-
thermore, by coincidence measurements of the Shubnikov–de
Haas (SdH) oscillations in tilted magnetic fields, we find
that the g factor agrees with k · p theory calculations in low
magnetic fields but grows with spin polarization and carrier
density in high magnetic fields. Additionally, these 2DEGs
show signatures of Ising quantum Hall ferromagnetism when
the Zeeman energy equals the Landau energy in tilted mag-
netic fields. Finally, fractional quantum Hall effects (FQHEs)
are still absent in high magnetic fields even in these high
mobility devices.
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II. SAMPLE PREPARATION AND
MEASUREMENT METHODS

The InSb QW sample we investigate here was grown on a
(100) GaAs substrate by MBE. The growth process is based
on a previous publication by Lehner et al. [13]. First, a spe-
cialized interfacial misfit transition to a GaSb buffer and an
interlayer InAlSb buffer was employed to overcome the lattice
mismatch between GaAs and InSb. The total thickness of the
buffer system amounted to ∼3 μm. Then the 21-nm-thin InSb
QW was surrounded by In0.9Al0.1Sb confinement barriers. On
top of the QW, the thickness of the In0.9Al0.1Sb barrier was
50 nm. The bottom barrier was a 2-μm-thick In0.9Al0.1Sb
layer. There was no Si modulation doping performed during
growth.

In contrast to the doped structure, the microfabrication of
undoped InSb needs more optimization and additional steps
and is presented in the following. First, a standard 400 ×
200 μm Hall bar was defined using chemical etching with
an etching depth of ∼80 nm, deeper than the QW. Like the
undoped GaAs/AlGaAs heterostructures, ohmic contacts are
more challenging to achieve in undoped InSb QWs [20,21].
Here, layers of metals were evaporated after an Ar milling
step to provide ohmic contacts. Because there were no carriers
without an electric field applied, we needed to anneal the
sample for the contact material to diffuse into the QWs both
in the growth and the lateral direction. Therefore, the chance
of avoiding an insulating gap between the alloyed contacts
and 2DEGs was maximized. Ge/Ni/Au as contact metals were
adopted because this alloy diffuses into III-V semiconductors
even at relatively low temperatures. We also recommend a
shallow (∼10 nm) etch on the areas where contacts locate
to remove the oxidized layer on the surface and decrease
the distance of metal diffusion to the QWs. In the next step,
the sample was coated with a 40-nm-thick aluminum oxide
(ALO) dielectric layer using atomic layer deposition (ALD)
at a temperature of 150 ◦C for 1.5 h. These ALD parameters
were optimized considering metal diffusion, dielectric layer
quality, and preserving the mobility of 2DEGs. On the one
hand, a longer heating time or higher temperature will reduce
the mobility of the 2DEG, though the ALO layer will have
better quality. On the other hand, the metal will not diffuse
sufficiently if the heating is not enough. Finally, a Ti/Au top
gate covering the Hall bar and the contacts was deposited
by electron-beam evaporation. With this method, we success-
fully made 11 working devices from three nominally identical
wafers. For all working samples, the contacts were measured
to be ohmic, and the 2-terminal resistances of samples were
within 10 k� when the carrier densities were maximum.

The transport measurements were accomplished using
standard low-frequency lock-in techniques in a cryostat with a
base temperature of 1.7 K. First, with the top gates grounded,
the QWs were completely insulating. We verified that a
high-quality single-channel InSb 2DEG was formed when a
positive top gate voltage VTG was applied. Figure 1(a) shows
the density n determined via the classical Hall effect in small
magnetic fields and the corresponding Drude mobility μ of the
2DEG as a function of VTG. This measurement was performed
on a Hall bar oriented along the crystal direction [1 −1 0].
With the increase of VTG, n increases up to 2.4 × 1011 cm–2,

FIG. 1. (a) Data measured from the Hall bar along the [1 −1 0]
direction. The blue line shows the density n as a function of the top
gate voltage VTG. The Drude mobility μ is presented vs VTG with the
red line. There is a mismatch between the capacitance obtained from
Hall measurement CHall and the parallel board model CGeo. (b) The
plots of μ-n when the Hall bar is along [1 −1 0] (red) and [1 1 0]
(blue), respectively. Black dashed lines are a linear fit of μ-n with
high density.

and the corresponding μ increases to 260 000 cm2/Vs. The
density n here is limited because of the breakthrough of the
ALO dielectric layer when a large electric field was applied.
Compared with Si-doped InSb of our previous work [16],
the mobility increases by ∼60% for equivalent density. This
mobility is more than twice as high as in the undoped wafer
used in the work by Kulesh et al. [19] at the same density,
and it is comparable with the previous doped wafer in Ref. [2]
where, nevertheless, the carrier density cannot easily be tuned.
In our samples, the gate capacitance CHall was estimated to be
0.47 mF/m2 from the linear part of the n-VTG line, which is
only ∼40% of the value calculated from the geometry of the
layer structure through a parallel-plate capacitor model CGeo.
We found this mismatch between expected and measured
capacitance consistently for a number of samples and sub-
strates, doped and undoped structures. This mismatch, which
has been reported previously by both our group and another
group independently [16,19], might be caused by screening
between the top gates and the 2DEGs. Figure 1(b) shows the
n-μ traces of both the Hall bars along crystal orientations
[1 −1 0] and [1 1 0], respectively. The data for the [1 −1 0]
direction are the same as in Fig. 1(a). We find an anisotropy
of the mobility in the two perpendicular crystal orientations,
probably related to an anisotropic growth. For comparison,
we also tried to grow undoped InSb QWs on undoped GaSb
substrates with the same growth sequence. Because there
is much less lattice mismatch between GaSb and InSb, the
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growth of the buffer layer is not necessary and therefore was
not implemented. However, we did not manage to produce
conducting Hall bars with the same microfabrication process.
Interestingly, a 2DEG with mobility μ = 330 000 cm2/Vs
at density n = 2.4 × 1011 cm–2 is induced by VTG in QWs
grown on GaSb substrate when a tiny amount of modulation Si
doping is added. Here, the doping dose is so low that a 2DEG
cannot be induced when the top gate is grounded. However,
the channel of the QW is switched on with a positive VTG of
<1 V applied. The quality in terms of mobility of this InSb
grown on GaSb substrate with tiny Si doping is even higher.
Nevertheless, we find that the ohmic contacts on InSb QWs
with GaSb substrate are much worse than those on GaAs
substrates because the contacts do not work in magnetic fields
>3 T.

III. WAL MEASUREMENT

The high-quality 2DEGs in undoped InSb QWs also
display tunable SOI, which is characterized by WAL measure-
ments. Data presented here are from the Hall bar along the
[1 1 0] direction. Figure 2(a) presents the WAL effects at tem-
peratures T varying from 1.7 to 9 K for n = 2.1 × 1011 cm–2.
To increase the signal-to-noise ratio, each trace presented
here is an average of >5 consecutive measurements. We
find the conductivity peak of WAL at zero magnetic field by
converting the longitudinal resistance and Hall resistance to
longitudinal conductivity σxx and subtracting a polynomial
background. The height of the peak decreases with increasing
T. The precise measurement of σxx(B) enables us to extract
coherence and SOI lengths using the Hikami-Larkin-Nagaoka
(HLN) expression [22,23]. Similar methods are also adopted
in papers where WAL effects are measured in doped InSb
QWs [11] and InSb nanosheets [24]. The conductivity cor-
rection �σxx(B) of WALs reads

�σxx(B) = e2
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Here, Hφ and HSO are phase coherence field and spin-orbit
field, respectively, and ψ is the digamma function. These two
fitting parameters can be converted to phase coherence length

lφ and spin-orbit length lSO. Using lφ =
√

h̄
4eHφ

, we present

lφ as a function of T in Fig. 2(b) when n = 1.7 × 1011 and
2.1 × 1011 cm–2. The dashed line here is a fitting of the
power law lφ ∝ T −α . In both sets of measured data, α is very
close to 1. This implies that our system is in the standard 2D
diffusive regime. A similar lφ ∝ 1/T α relation is observed in
other 2DEG systems [25–27]. Additionally, a three-parameter
model by Iordanskii et al. [23], which in principle allows
extracting Rashba and Dresselhaus contributions separately,
does not give additional information for the range of data
considered here.

FIG. 2. (a) The temperature dependence of weak antilocalization
with n = 2.1 × 1011 cm−2. The open circles are data points, and the
solid black lines are fits using the Hikami-Larkin-Nagaoka (HLN)
expression. The traces have a constant offset for a better presentation.
(b) Phase coherence length lφ vs T when n = 1.7 × 1011 cm−2 (blue)
and 2.1 × 1011 cm−2 (black), respectively. The dashed line is the
fitting with the power law lφ ∝ T −α . The fitting shows that α = 0.95
and 0.94 when n are 1.7 × 1011 and 2.1 × 1011 cm−2, respectively.

The SOI of the InSb 2DEG can be tuned by n with VTG,
which is probed with WAL measurements as well. Figure 3(a)
shows the WAL with n varying from 1.67 × 1011 to 2.2 ×
1011cm–2 at 1.7 K. Here, we utilize the HLN expression again
to analyze the SOI as a function of n. Figure 3(b) presents the
splitting �SO vs n at the Fermi level due to SOI. Here, �SO is

obtained with �SO =
√

2h̄2

τDτSO
. Note that the spin-orbit time τSO

is calculated with the formula τSO = h̄
4eDHSO

, where D is the
diffusion constant in 2D. With the increase of n in the range
of the measurements, �SO increases from 0.5 to 0.74 meV.
The values obtained here agree with the previous publication
by Ke et al. [11], where their �SO is slightly larger due to a
higher n. Then we normalize �SO to get the coefficient αSO of
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FIG. 3. (a) The density dependence of weak antilocalization with
T = 1.7 K. The open circles are data points. Black solid lines are
fits using the Hikami-Larkin-Nagaoka (HLN) expression. The traces
are vertically offset for clarity. (b) The spin-orbit splitting at the
Fermi level �SO vs density n. A tendency that �SO increases with
the increase of n is observed. Inset: the spin-orbit coefficient αSO as
a function of n. αSO also grows with n. (c) Phase coherence length lφ
vs n. lφ increases with higher n.

the SOI with αSO = �SO
2kF

, where kF is the Fermi wave number.
As shown in the inset of Fig. 3(b), αSO also increases when n
is higher. Because InSb is a material with both strong Rashba
and Dresselhaus SOIs, we expect that the contribution of
Rashba and Dresselhaus SOIs are comparable. Additionally,
since the Dresselhaus coefficient βD is an intrinsic material

parameter, the increase of αSO is likely due to a larger Rashba
contribution from a higher electric field in the high-density
regime. Furthermore, as presented in Fig. 3(c), lφ increases
when n is higher, which means that the decoherence is reduced
with higher density and mobility.

IV. SCATTERING MECHANISM ANALYSIS

Next, we study these high-quality InSb 2DEGs with mag-
netotransport measurements in magnetic fields up to 8 T.
Here, we present measurements on the Hall bar along the
[1 −1 0] direction. As shown in Fig. 1(b) before, in our
2DEGs, μ is proportional to n. This indicates that long-range
remote ionized impurity scattering and short-range back-
ground impurity scattering are comparable [28–30]. More
insight into the scattering mechanisms can be obtained from
analyzing SdH oscillations with the Ando formula [27]. Fig-
ure 4(a) presents the effective mass of InSb 2DEGs m∗ as
a function of magnetic field B when n is 1.4 × 1011 and
2.1 × 1011 cm–2. The method to measure m∗ is like our pre-
vious publications [16,31]. In the range with small amplitude
SdH oscillations compared with the magnetoresistance back-
ground, m∗ has a roughly constant value of 0.015 me in both
low- and high-density regimes, where me is the free electron
mass. This shows that the nonparabolicity of the conduction
band is still negligible within the range of n in which we
are interested. This value agrees with the k · p calculations
and our previous measurement in QWs with the same width
[16]. With the obtained m∗ plugged into the Ando formula,
the quantum lifetime of Landau levels τq is extracted in the
following. Figure 4(b) shows |�ρxx|/[ρ̄xx f (B, T )] vs 1/B with
n = 1.4 × 1011 cm–2 at 2.1 K. Here, �ρxx is the oscillating
part of the magnetoresistance obtained by subtracting a poly-
nomial background ρ̄xx, and

f (B, T ) =
2π2kBT

h̄ωc

sinh
( 2π2kBT

h̄ωc

) .

Then τq is extracted to be 0.067 ps using a linear fit. This value
is much smaller than the Drude mean free time τD, which
is defined as the mean time interval between two scattering
events. Here, τD is calculated to be 1.26 ps from the mobility
μ with the same n using the formula τD = m∗μ/e. The large
ratio of τD vs τq implies a significant contribution of long-
range scattering [32,33].

Knowing τq, we can estimate the g factor of the 2DEGs
from an activation energy measurement. Figure 4(c) plots
the longitudinal conductance σxx of filling factor ν = 1 and
2 as a function of T with n = 1.4 × 1011 cm–2 he σxx-T
diagrams follow the expression σxx ∝ exp[−EA,1(2)/2kBT ],
where EA,1(2) is the activation energy of filling factor ν = 1(2).
From the linear fit in Fig. 4(c), EA,1 and EA,2 are found to
be 12.78 and 8.41 meV, respectively. Without considering
the Landau level broadening due to scattering, we can write
g∗μBB ≈ EA,1 at filling factor ν = 1. Therefore, the g factor
at filling factor ν = 1 is g∗ ∼ 36. Though this is a lower
limit of g∗, it is already close to the value calculated from
the k · p model [16]. A better estimation of the g factor
through the activation energy is the following. As shown in
Fig. 4(d) schematically, with the consideration of a Landau
level broadening �, the activation energies EA,1 and EA,2
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FIG. 4. (a) Effective mass m∗ obtained from Ando formula fitting as a function of the magnetic field B. Two sets of data with n = 1.4 ×
1011 cm−2 (black) and 2.4 × 1011 cm−2 (blue) are measured. Within the error bar from fitting, we determine m∗ = 0.015 me as a constant
value within the measurement range of our experiment. (b) The fitting to obtain quantum lifetime τq with n = 1.4 × 1011 cm−2. The method is
introduced in the main text. Here, the black squares are the data points, and the dashed line is a linear fitting. (c) Temperature dependences of
the longitudinal conductivity σxx when ν = 2 (red) and ν = 1 (green), respectively. The activation energies EA,2(1) are obtained from the linear
fits (dashed lines) presented in the figure. (d) A schematic diagram to depict the relationship between the Landau level broadening �, Zeeman
energy g∗μBB, Landau energy h̄ωc, and the measured activation energy EA,2 and EA,1. In the figure, E is the energy, and D(E) is the density of
states.

then read EA, 1 = g∗μBB−� and EA, 2 = h̄ωc − g∗μBB−�,
respectively. Here, h̄ωc is the Landau level energy. Assuming

� =
√

1
2π

h̄ωc
h̄
τq

as suggested in Ref. [27], g∗ for ν = 1 and

2 are calculated to be ∼64 and 46, respectively. These values
are larger than the calculation from the single-particle picture,
where g∗ ∼ 39 with the same width of QWs. More about the
larger g factor will be discussed in the following section.

V. COINCIDENCE MEASUREMENT

Next, we present our results of the coincidence measure-
ment on the Hall bar along the [1 −1 0] direction. This method
has been introduced in previous publications [16,34–36]. The
Landau level energy is proportional to the perpendicular mag-
netic field B⊥, while the Zeeman energy is proportional to the
total magnetic field Btot. The ratio between these two energies
can be changed continuously by changing the angle θ between
the direction of sample normal and the total magnetic field
Btot [inset of Fig. 5(a)]. Therefore, B⊥, the projection of the
magnetic field along the sample normal, is B⊥ = Btotcos(θ ).
Here, we introduce a parameter r = g∗μBBtot/h̄ωc. Hence, we
obtain r cos(θ ) = g∗m∗/2me. The number of r can be obtained
by monitoring the behavior of local maxima and minima of
ρxx at different tilt angles θ . In a single-particle picture, for
instance, at r = 1, i.e., when the Zeeman energy equals the
Landau energy, the minima of SdH traces of longitudinal
resistivity ρxx will only occur at odd filling factors, such as
ν = 3, 5, and 7. In contrast, at r = 2, the minima of ρxx occur
at even filling factors, such as ν = 4, 6, and 8. Additionally,
the minima of ρxx for ν = 1 and 2 remain the minima when
r = 2 because the gaps are always open.

Figure 5(a) depicts the dependence of ρxx on B⊥ with a
continuous change of θ at 0.5 K when n = 2.4 × 1011 cm–2.
The value of θ is calibrated with the slope of the Hall trace
at low magnetic field with high accuracy. For a better deter-
mination of r = 1 and 2, we extract the ρxx with even (ν = 4,

FIG. 5. (a) The Shubnikov–de Haas (SdH) oscillations measured
for different tilt angles. The traces have a constant offset of 350 � for
a better presentation. The definition of the tilted angle θ is presented
in the inset. (b) The longitudinal resistance ρxx with even filling
factors ν = 4, 6, and 8 vs the tilted angle θ . (b) The longitudinal
resistance ρxx with odd filling factors ν = 5 and 7 vs the tilted
angle θ .
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FIG. 6. The temperature dependence of the longitudinal and
transversal resistivity ρxx and ρxy when θ = 66.22◦. Here, the co-
incidence r = 1 for ν = 2 is achieved. Inset of the upper panel: the
zoom-in of ρxx − B⊥ diagram around ν = 2 with the same axis. The
black dashed line is a polynomial background to show the resistivity
peak. Upper inset of the lower panel: the peak height �ρ as a func-
tion of T. The Curie temperature TC is determined to be TC ∼ 3.15 K,
where �ρ achieves its maximum. Here, the stars are data, and the
dashed line is guidance to eyes. Lower inset of the lower panel:
analysis of σxx vs T with the gap model when ν = 2. The squares
are the data, and the dashed line is a linear fitting.

6, and 8) and odd filling factors (ν = 5 and 7) and plot them
in Figs. 5(b) and 5(c) as functions of θ . For each even filling
factor, the coincidence of r = 1 is found by picking the θ at
which ρxx reaches its maximum. Similarly, the coincidence of
r = 2 of each odd filling factor is found where ρxx has a max-
imum. The error bar of each coincidence angle is determined
by the step of θ between the coincidence and the nearest data
points around it.

Moreover, the gap at ν = 2 stays open at low tempera-
ture with the coincidence condition r = 1. This is different
from the situations of ν = 4, 6, and 8. For ν = 2, ρxx stays
zero for all tilt angles. Nevertheless, the minimum of ρxx at
ν = 2 starts to increase above zero when T > 1 K. Through
reproducing the SdH measurements at 1.5 and 4.2 K with a
fine-tuning of θ , we determine that the gap at ν = 2 reaches
its minimum when θ = 66.22◦, where the uncertainty of θ

is <0.5◦. This also means that the coincidence condition
of r = 1 is most precisely achieved at this angle. Figure 6
depicts the T dependence of the longitudinal resistivity ρxx

and transversal resistivity ρxy with the coincidence condition
r = 1 for filling factor ν = 2. At filling factor ν = 2, ρxx

increases with increasing T from 0.35 to 8 K. Meanwhile,

the Hall plateau at ν = 2 becomes narrower and approaches
the classical Hall effect at 8 K, though plateaus for higher
filling factors, such as ν = 3 and 5, are still pronounced.
This is different from the previous paper by Chokomakoua
et al. [37], where an InSb QW in van der Pauw geometry
was studied. There, the Hall plateau of ν = 2 was not well
defined at low temperatures. However, our results are like
the work by Koch et al. [38], where the Landau-level anti-
crossing due to a magnetic instability is found in GaInAs/InP
heterostructures.

In addition to a nonvanishing gap at filling factor ν = 2
with r = 1, a resistivity peak appears at intermediate temper-
ature but vanishes at high temperature in ρxx − B⊥ traces. This
agrees with the phenomenon of quantum Hall Ising ferromag-
netism [39,40]. The inset in the upper panel of Fig. 6 depicts
this process. The appearance and vanishing of the resistivity
spikes can be quantitatively depicted using Curie temperature
TC. Here, we adopt the methods introduced by De Poortere
et al. [40] to estimate TC. The heights �ρ of the resistivity
peaks at different temperatures are obtained by subtracting
a polynomial magnetoresistance background around ν = 2
[black dashed line in the inset of the upper panel of Fig. 6(a)]
from the measured ρxx. Plots of �ρ vs T are shown in the up-
per inset of the lower panel of Fig. 6. When T = TM = 3.15 K,
�ρ reaches its maximum. Meanwhile, the width of the resis-
tivity spike starts to increase when T � TM = 3.15 K as well.
Therefore, we estimate the Curie temperature TC to be around
a value TC

∼= TM ∼ 3 K. Similar phenomena are observed in
the Hall bar along the [1 1 0] direction when n = 1.7 × 1011

and 2.2 × 1011 cm–2, respectively. Though the phenomenon
of Ising ferromagnetism is less pronounced at lower density,
we still managed to estimate TC to be ∼3 K when n = 1.7 ×
1011 cm–2. In addition, the T dependence of ρxx at ν = 2 meets
the thermal activation [41] model numerically within the ac-
curacy of our measurement. Like Fig. 4(c), we analyze the
σxx-T diagram with σxx ∝ exp(−EA/2kBT ) and obtain EA =
0.44 meV (lower inset of the lower panel in Fig. 6). We repro-
duced this measurement when n = 1.7 × 1011 cm–2, finding
that EA = 0.18 meV.

With the coincidence condition of r = 1 at ν = 2 included,
we investigate the spin-polarization dependence of the spin
susceptibility χ . From the data presented in Fig. 5, the co-
incidence angles with different r and ν are extracted. Using
r cos(θ ) = g∗m∗/2me, g∗m∗ is obtained. Because χ = g∗m∗

2π h̄2 in
our 2D system, we use g∗m∗ to describe the spin susceptibility
in this paper. Figure 7(a) shows the traces of g∗m∗ as a func-
tion of spin polarization P when n is 2.4 × 1011 cm–2 (blue)
and 1.4 × 1011 cm–2 (red). Here, data points are obtained
from two same Hall bars along the [1 −1 0] direction. As
introduced by Zhu et al. [42], P can be calculated easily
through P = r/ν. In both traces presented, g∗m∗ grows with
P. For a better illustration, we present g∗ along the right axis,
assuming that m∗, measured to be 0.015 me from SdH oscilla-
tions, is also independent of P. For low magnetic fields, g∗ is
∼40 in both cases, which agrees with the calculation within a
k · p model. Nevertheless, when P = 0.5, g∗ increases signif-
icantly up to ∼53 and ∼46 with n = 2.4 × 1011 and 1.4 ×
1011 cm–2, respectively. This g∗ − n relation agrees with the
publications by Yang et al. [36] and Nedniyom et al. [43].
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FIG. 7. (a) g∗m∗ obtained from coincidence measurement vs the
spin polarization P when n = 2.4 × 1011 cm−2 (blue) and 1.4 ×
1011 cm−2 (red), respectively. Plugging in m∗ = 0.015 me, g∗ is ob-
tained and shown in the axis of the right-hand side. (b) g∗m∗ and g∗

vs n. Here, we present the coincidence where r = 1 and ν = 2. m∗ is
still assumed to be 0.015 me.

Furthermore, the spin susceptibility also grows with n.
We summarize all the g∗m∗ measured with r = 1 and ν = 2
from three samples with the same quality and plot them as
a function of n in Fig. 7(b). Assuming that m∗ is constant at
0.015 me, g∗ is calculated and plotted too. With the increase
of n from 1.4 × 1011 to 2.4 × 1011 cm–2, g∗m∗ increases by
∼15%. This tendency is opposite to the results from dilute
2DEGs in GaAs, where g∗m∗ decreases with the increase of
n [42]. In GaAs 2DEGs, the interaction parameter rs, defined
as the ratio between Coulomb energy and Fermi energy, is
smaller when n is higher. Nevertheless, due to the light ef-
fective mass and the high density in InSb 2DEGs, rs is only
between 0.17 and 0.23 in our experiment. This value is not
only much smaller than those of low-density 2DEG in GaAs
and AlAs, but the variation is also limited in our experiment.
Therefore, the contribution of electron-electron interaction to
the n dependence of the spin susceptibility is not dominant.
Instead of electron-electron interactions, this g∗m∗-n diagram
is more likely to be influenced by the SOI. As we verified
through WAL measurement before, the SOI is stronger with
increasing n. Effectively, this extra contribution is probed as
an enlarged Zeeman energy through the coincidence mea-
surement, leading to a larger g factor. Similar phenomena
have been observed in previous work in an InAs 2DEG [44],
another narrow bandgap material with light effective mass and
strong SOI, where the anticrossing of Landau levels in titled
fields was also found.

FIG. 8. ρxx and ρxy measurement of the InSb quantum well (QW)
in a large magnetic field range at the temperatures of 0.7 K with
n = 2.4 × 1011 cm−2. The dashed line is an extrapolation of the Hall
trace in the small magnetic field.

VI. MAGNETOTRANSPORT WHEN ν < 1

Finally, motivated by the high mobility of our 2DEGs, we
probe the behavior of the 2DEGs in even higher perpendicular
magnetic fields. Figure 8 depicts one of the magnetoresistance
measurements of our Hall bar along the [1 −1 0] direction
at 0.7 K with n = 2.4 × 1011 cm–2. In B fields where ν < 1,
the ohmic contacts are still working properly, indicating the
metallic behavior of the sample [45]. However, despite the
high quality of the sample, there are still no signatures related
to FQHEs. The Hall resistance ρxy increases with increas-
ing B when ν < 1. However, it is only approaching but not
reaching the classical limit (dashed black line). Meanwhile,
there is no convincing local minimum in ρxx or plateau in ρxy

when B > 15 T . The absence of any FQHE-related features
shows that there is still room to improve the sample quality.
We notice that the weak electron-electron interaction in InSb
may not be advantageous to form fractional states. Further-
more, the quantum lifetime of InSb QWs is still not as long
compared with systems where the FQHE has been observed,
such as the pioneering works in GaAs, Si/Ge, and graphene
[46–48]. The wide integer quantum Hall plateaus also indicate
disorder hampering the formation of FQHEs in our devices.
More optimized growth techniques are required to increase
the chance in InSb to explore fractional states.

VII. CONCLUSIONS

In conclusion, we have presented transport experiments
on gate-tunable high-quality 2DEGs in undoped InSb QWs.
With the elimination of Si modulation doping, the mobility
is significantly increased. Tunable SOIs were probed through
WAL measurements in a 2D diffusive transport regime. Fur-
thermore, using coincidence methods, we find that the g factor
grows with both the spin polarization and carrier density. For
filling factor ν = 2, a signature of Ising quantum Hall ferro-
magnetic phase was observed in a tilted magnetic field, and
the Curie temperature was estimated. Finally, despite the high
mobility, the undoped InSb QWs still did not exhibit fractional
quantum Hall states up to magnetic fields of 25 T.
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