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Using mutual information to measure time lags from nonlinear processes in astronomy
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Measuring time lags between time series or light curves at different wavelengths from a variable or transient
source in astronomy is an essential probe of physical mechanisms causing multiwavelength variability. Time
lags are typically quantified using discrete correlation functions (DCFs), which are appropriate for linear
relationships. However, in variable sources such as x-ray binaries, active galactic nuclei (AGNs), and other
accreting systems, the radiative processes and the resulting multiwavelength light curves often have nonlinear
relationships. For such systems it is more appropriate to use nonlinear information-theoretic measures of
causation such as mutual information, routinely used in other disciplines. We demonstrate with toy models
the limitations of using the standard DCF and show improvements when using a discrete mutual information
function (DMIF). For nonlinear correlations, the latter accurately and sharply identifies the lag components as
opposed to the DCF, which can be erroneous. Following that, we apply the DMIF to the multiwavelength light
curves of AGN NGC 4593. We find that x-ray fluxes are leading UVW2 fluxes by ∼0.2 days, closer to model
predictions from reprocessing by the accretion disk than the DCF estimate. The uncertainties with the current
light curves are too large, though, to rule out negative lags. Additionally, we find another delay component
at approximately −1 day, i.e., UVW2 leading x rays, consistent with inward propagating fluctuations in the
accretion disk scenario. This is not detected by the DCF. Keeping in mind the nonlinear relation between x ray
and UVW2, this is worthy of further theoretical investigation. From both the toy models and real observations,
it is clear that the mutual-information-based estimator is highly sensitive to complex nonlinear relations. With
sufficiently high temporal resolution and signal-to-noise ratio, we will precisely detect each of the lag features
corresponding to these relations.
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I. INTRODUCTION

Time-domain astronomy has seen an upsurge in efforts and
progress in terms of both methodology and results in provid-
ing insights into physical mechanisms as well as forecasting
of variable or transient sources. Correlations between multiple
wavelengths and other messengers form an essential tool in
determining the geometrical configuration of variable sources
and how mechanisms driving variability play out in them [1].
They are used to extract time lags between different wave-
lengths [2]. In accreting systems such as active galactic nuclei
(AGNs), x-ray binaries (XRBs), etc., these lags are attributed
to reprocessing of variable high-energy emissions [3]. Time
lags are an important indicator of cause and effect within mul-
tiwavelength astronomy. They are also critical to high-energy
phenomena for constraining quantum gravity models leading
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Lorentz invariance violation (LIV) [4,5]. With multiple mech-
anisms or models that are a priori equally plausible, correctly
identified and quantified time lags can help rule out some of
them.

Discrete correlation functions (DCFs) [6] have been the
favored tool to determine time lags from light curves. Backed
by strong theoretical models, this approach has seen success
in establishing lags (e.g., Refs. [7,8]) as a function of physical
parameters in the model. However, an assumption central to
this approach is that the relationship between the variables
being correlated is actually linear. When this assumption is
valid and we have a single, strong mechanism that is a priori
plausible as a causal link, the correlation studies ubiquitous
in time-domain astronomy will succeed in giving accurate
results.

There are several estimation challenges in this approach
due to limitations in data such as sampling rate, statis-
tics, as well as implementation challenges due to model
dependence [6,9], etc. However, there is a more fundamen-
tal problem with cross-correlation functions (CCFs). If the
relationship has a significant nonlinear component, these cor-
relation studies are not appropriate in general, and the lags that
they provide are likely to be erroneous [10]. This is because,
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FIG. 1. A simplified schematic of an AGN in the context of
time lags between emission from different components. It shows the
central supermassive black hole surrounded by the accretion disk and
the dusty torus along with the narrow and broad line regions. The jet
of the AGN is dropped for simplicity. The lags from reprocessing
from the torus and the inward propagating fluctuations are in the
opposite sense.

fundamentally, these correlation coefficients are related to the
linear regression coefficient and insensitive to nonlinear rela-
tionships. Accreting systems, which form a significant type
of variable sources in astrophysics, are nonlinear systems.
Therefore they are susceptible to the aforementioned estima-
tion problems.

In this paper we show with toy models how even for rather
simple cases either the lags computed are inaccurate or not all
lags are identified correctly. Furthermore, for AGNs there are
multiple scenarios at play that lead to time delays between
the x-ray emission and the longer-wavelength emission at
optical and ultraviolet (UV) parts of the spectrum. This is
demonstrated in the schematic in Fig. 1. The AGN has at its
core a supermassive black hole, represented by the solid black
circle in the schematic, that is surrounded by an accretion
disk composed of matter spiralling inwards. This is in turn
surrounded by a larger, dusty torus shown with gray faces.
This torus can absorb and reflect emission from the accretion
disk. There are other components such as narrow line (light
gray ovals) and broad line regions (dark gray ovals) and
finely collimated jets emanating above and below the disk,
the latter not shown in the picture. In the context of lags,
the components of importance are the density fluctuations
in the accretion disk and the torus. The most popular and
successful scenario is where the x rays produced closer to
the central, compact source are reprocessed in regions sur-
rounding the central x-ray source and emitted at optical or
UV wavelengths. A prominent source of this reprocessing is
by reflection from the dusty torus. The energy produced at
these longer wavelengths will display a lag with respect to
the x rays as is clearly seen in several observations [2,11].
However, there is also the scenario where fluctuations in the

accretion disk propagate from the outer region where there
is long-wavelength emission to the innermost regions, which
produces x rays. This nonlinear propagation model will pro-
duce UV or optical emission leading the x rays, demonstrated
in, e.g., Refs. [12–14]. Therefore positive, negative, and in-
deed zero lags are plausible, and often these scenarios are
not separated by a large time difference. Lags from models
are very sensitive to the model differences, and observed time
series prove vital in discriminating among these models.

Information theory provides several measures which can
be applied to find time lags in systems with nonlinear relation-
ships. Measures such as mutual information, transfer entropy,
directed information, etc., have been used as causality mea-
sures in several other fields (e.g., Refs. [10,15–17]) including
neuroscience, the geosciences, econometrics, etc. Most of
these measures are based on evaluating conditional depen-
dence. In other words, if the probability distribution functions
(PDFs) of the time series in question are conditionally de-
pendent in addition to the presence of a time delay between
them, then they are deemed to be linked causally. These
measures take into account the full PDF of the variables as
opposed to only the first two moments. Mutual information
between two random variables X and Y is the reduction in en-
tropy of one, H (X ), given the other, expressed as MI(X,Y ) =
H (X ) − H (X |Y ), and is a measure of dependence between
these two time series. If X and Y are independent of each
other, then H (X |Y ) = H (X ), and the mutual information
MI(X,Y ) = 0. Using Jensen’s inequality on the definition of
mutual information of two random variables, one can show
that it is non-negative [18].

In this paper we will study the behavior of the DCF in
different toy problems and compare its performance in de-
tecting time lags accurately with MI. We will show that MI
is superior even when time series are linearly related because
of its sharper discriminating power. Furthermore, we will ap-
ply both techniques on real light curves from NGC 4593 in
Ref. [8] obtained from the authors in private communication.
The MI will provide insights into the physical mechanisms at
play.

The paper is organized as follows. In Sec. II the discrete
correlation function and mutual information are introduced.
In Sec. III, we investigate lags in simple sinusoidal toy models
using both the DCF and the discrete mutual information func-
tion (DMIF). We explore two- and three-component models in
Secs. III A and III B, respectively. In Sec. IV we apply these
tools to multiwavelength light curves of NGC 4593. Finally,
in Sec. V, we discuss the conclusions and present our outlook
towards future applications.

II. CAUSAL MEASURE: MUTUAL INFORMATION

Typically, in time-domain astrophysics, relationships be-
tween two wave bands are established by linear correlation
measures. This is then interpreted as a causal relationship
in the presence of plausible physical mechanisms, which the
estimated correlation corroborates. Critical to establishing this
causal relationship is the accurate quantification of the tempo-
ral order of the observed variables. The discrete correlation
function is used to determine the temporal relationship quan-
tified in terms of time lags and was developed by Edelson and
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Krolik [6] for application to unevenly sampled time series
in astronomy. This correlation as a function of lag, ρ(τ ) or
DCF(τ ), is computed from two time series or light curves in
terms of the pairwise variables x(t ) and y(t + τ ) as

DCF(τ ) = 〈x(t )y(t + τ )〉 =
〈

(xi − x̄)(yi+jτ − ȳ)

σx σy

〉
, (1)

where σ is the statistical standard deviation, which gives a
measure of the variability in the individual flux values (time-
series variables: x and y), respectively. If the time series are
noisy as is the case in practice, we must replace σx σy by√
σ 2

y − �2
y

√
σ 2

x − �2
x, where � represents the error due to

the noise and terms under the √ sign represent the effective
variance. The angle brackets denote averaging over the pairs
(i, j) of data points and would simply constitute an arithmetic
mean of the pairwise correlations. jτ represents the discrete
index corresponding to the time lag of τ . We use the widely
used implementation PYDCF [19].

For nonlinear systems, we can define an analogous esti-
mator in terms of mutual information [17] between the two
variables, as

DMIF(τ ) = MI[x(t ), y(t + τ )]

=
∫

p(x, y) log2
p(x, y)

p(x)p(y)
dxdy, (2)

where p(x, y) is the joint probability density (pdf) of x and
y, and p(x) and p(y) are the marginal densities. The mutual
information measures how far the joint pdf is from the product
of the two marginals, so to what extent x and y are indepen-
dent. Another way to express the mutual information is in
terms of the Shannon entropy, H, of the variables or random
processes, as

MI[x(t ), y(t + τ )] = H[y(t + τ )] − H[y(t + τ )|x(t )]. (3)

Thus the mutual information of x and y can be viewed as
the reduction in Shannon entropy H of y when we include
information on x. Since entropy is a measure of disorder,
reduction of the entropy of y by x demonstrates that x has
information about y. If we consider the mutual information
between lagged variable x and y, then a large mutual in-
formation at a certain time lag implies that the dependency
constitutes a causal relationship. Thus we define the discrete
mutual information function (DMIF) between two variables x
and y as the reduction in entropy of y, given the entropy of x
at a given time lag τ . It is an estimator of causality in the pres-
ence of nonlinear relations. While something similar has been
introduced before [17], we provide a more detailed estimation
of lags using DMIF including uncertainty quantification.

The DMIF is calculated using the Kraskov et al.
method [20]. This is a nonparametric estimation of mutual
information that avoids calculating the probability density
functions but instead uses a k-nearest-neighbors algorithm to
find the local structure of the PDF around each data point and
evaluate the integrals directly. This nonparametric estimator is
discrete and uses pairs of data points such as the DCF. Hence it
has similar strengths in terms of mathematical properties, such
as handling of unevenly sampled or incomplete data and ex-
treme values, and also not needing very stringent assumptions
on the underlying probability distributions [21]. The choice of

the value of k is based on numerical experiments performed in
Ref. [22] and is consistent with those in the original Kraskov
et al. paper [20]. For each pair of light curves, we take a range
of lag values from negative to positive and compute the mutual
information between the lagged time series; the Kraskov et al.
method implicitly computes the average of nearest-neighbor
mutual information contributions to give the DMIF estimator.

III. TOY MODEL FOR MULTIPLICATIVE PROCESSES

We want our toy models to capture important features of
the underlying physics in observed behavior. Observed time
series or light curves from AGNs and XRBs often show a
linear relationship between the rms of the flux and its mean
value for segments of the light curves [23]. This is one of
the characteristics of a multiplicative process, which is by
its very nature nonlinear. Furthermore, numerous XRBs and
AGNs show non-Gaussian, in particular, lognormal probabil-
ity distribution functions for the observed fluxes (see, e.g.,
Refs. [23–25]), again suggesting a multiplicative process.
While there are other ways of generating lognormal and other
distribution functions compatible with the data, including lin-
ear processes [26], the multiplicative process is a natural way
of describing aspects of the accretion disk physics and thus
remains a compelling model.

We will use such a multiplicative toy model as explained
in Ref. [27] to illustrate the differences between predictions
from the usual DCF and the mutual information function. As
in Ref. [23], a single time series or light curve representing
a multiplicative process described above can be decomposed
into a product of sinusoidal components as

x(t ) =
ncomp∏
i=1

(
1 + sin

(
i πν

t + τi

N
+ φi

))
, (4)

where i (π ν)/N is the angular frequency of the ith harmonic
component and τi and φi are the time lag and phase, respec-
tively, of the ith component. i is not associated directly with a
parameter in the physical model. It can be odd or even leading
to the corresponding harmonics. We will explore these in the
toy model examples in Secs. III A and III B. The total number
of such components is ncomp, and the number of data points
is given by N. The time lags τi represent direct differences in
arrival times of photons, whereas φ’s represent different wave
phases potentially arising from different mechanisms such as
effects within the source itself [28]. The φ’s could also be
effects due to particle physics or indeed other fundamental
physics [5,29]. The details of the various competing mecha-
nisms producing the time delays are beyond the scope of this
paper. However, central to this work is that these mechanisms
produce equivalent lags. While the intrinsic source term φ

contains important physics, we choose it equal to zero in our
models and absorb its influence in the time lags τi.

As mentioned above, we need to define the number of near-
est neighbors in the DMIF calculations. We tried a number
of different values and found that the essential conclusion
remains the same for these models. Figures 2 and 3, for
the two- and three-component models, respectively, show the
results of calculations for k = 5. For a detailed study of
dependence on k we refer the reader to Ref. [30]. The two-
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FIG. 2. (a) The time series of a two-component toy model with an explicit time difference of 150 lead for x(t ) over y(t ) and (b) the
correlation plot for x(t ) and y(t + 150). (c) and (d) A comparison between the discrete correlation function (DCF) (c) and the discrete mutual
information function (DMIF) (d) for the light curves shown in (a). The lags are sharply identified by the DMIF at the expected net lag (hence
negative) of 150 of y(t ) and also for the lag corresponding to the τx + τy term at 350. The former peak is not as sharply identified by the DCF,
and the latter is shown with a negative peak.

and three-component models serve as a proof of principle for
the deviations from linear correlations and thus motivate the
use of this nonlinear mutual-information-based estimator. In
practice, for real light curves we would need a larger number
of components, which generally leads to a greater possibility
of larger deviations from a simple, linear correlation.

A. Two-component models

We start with the very simple case of two even (sinusoidal)
harmonic components, or ncomp = 2, for each of the two sig-
nals or light curves, x(t ) and y(t ), simulating ten cycles of
N = 1000 data points. This represents the simplest possible
model to demonstrate our estimator; we could have chosen
two odd harmonics without any loss of generality. We choose

ν = 1/T = 1 with components i = 0, 2, leading to

x(t ) = [1 + sin (2π (t + τx)/N )] + η,
(5)

y(t ) = [1 + sin (2π (t + τy)/N )] + η,

in which η = 0.01 ∗ N (0, 1) is a small normally distributed
noise component with zero mean and standard deviation 0.01.
We now choose the explicit time lags as τx = 100 for x(t ) and
τy = 250 for y(t ).

The time series and scatterplots of the two time series
are shown in Figs. 2(a) and 2(b), and the DCF and dis-
crete mutual information function (DMIF) are shown in
Figs. 2(c) and 2(d). The correlation between x(t ) and y(t ) will
have the term sin (2π (t + τx)/N ) × sin (2π (t + τy)/N ) =
1/2[cos (2π (τx − τy)/N ) − cos (2π (τx + τy)/N )]. This gives
the lags we see in Fig. 2(d) with the DMIF of −150 and +350,

013036-4



USING MUTUAL INFORMATION TO MEASURE TIME LAGS … PHYSICAL REVIEW RESEARCH 4, 013036 (2022)

FIG. 3. (a) A three-component toy model with an explicit time difference of 100 lead for x(t ) over y(t ) and a phase difference of 0.0 as
in the two-component case. (b) y(t + 160) vs x(t ) in blue. (c) The DCF as in Fig. 2(c). (d) Multiple strong delay components are sharply
identified by the DMIF with the highest peaks at −100 and 150 as expected from calculating the different terms. The DCF does identify the
dominant component accurately and misses out on the other ones.

respectively. Thus the DMIF sharply identifies the correct lags
with distinct peaks in the estimator. Comparing this with the
DCF, we find that a much broader peak appears at −150
and an equivalent trough appears for +350. The sinusoidal
oscillatory functional dependence is not as sharp as it is for
the DMIF. The profile of the peaks for clear identification is
critical when there are several features as is evident in the
case of the three-component model in Sec. III B. In fact, as
we will see in the case of the different x-ray light curves in
Sec. IV A, this is true even for linear relationships between
the correlating variables.

The DMIF remains high between the two sharp peaks,
suggesting a strong relation between x and y at all time lags.
This is indeed the case, as can be seen in the scatterplot in

Fig. 2(b) for a time lag of 150. In contrast, the DCF has a
very small negative correlation at this lag as it tries to fit a
line through these data points. This clearly demonstrates the
advantage of the DMIF over a linear measure such as the DCF.

B. Three-component models

Now, we take a further step with a three-component model.
Once again, Eq. (4) is used with ncomp = 3. The frequencies
are now at 0, π/N , and 2π/N . For our test case we chose the
identical time lags for each component as τx = 100 and τy =
200, respectively. There are several interacting components in
this case as there are multiple pairs in the three-component
model. We see this by expanding the product in x(t )
and y(t ) as

x(t ) = [1 + sin (π (t + τx)/N ) + η][1 + sin (2π (t + τx)/N ) + η]

= 1 + sin (π (t + τx)/N ) + sin (2π (t + τx)/N ) + 1/2 cos (π (t + τx)/N ) − 1/2 cos[π (3(t + τx))/N] + O(η) + O(η2),
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y(t ) = [1 + sin (π (t + τy)/N ) + η][1 + sin (2π (t + τy)/N ) + η]

= 1 + sin (π (t + τy)/N ) + sin (2π (t + τy)/N ) + 1/2 cos (π (t + τy)/N ) − 1/2 cos[π (3(t + τy))/N] + O(η) + O(η2).
(6)

Once again, we add to each signal component a Gaussian
noise component with zero mean and standard deviation 0.01,
which is at a percent level compared with the signal. Results
are shown in Fig. 3.

The DCF in Fig. 3(c) shows a broad peak at the dominant
lag at −100, but the peak is much sharper for the DMIF.
Equation (6) shows that we should also expect peaks at other
time lags between approximately +150 and approximately
+175. The DMIF identifies these as peaks and also finds peaks
at −350 and ≈ 400. As in Sec. III A, the scatterplot between
x and y for lag features is quite revealing. We pick τ = 160
and plot y(t + 160) vs x(t ) in Fig. 3(b). This clearly shows
that a strong relationship exists between y(t + 160) and x(t ),
albeit a rather complex and highly nonlinear one. This type of
relation is not identified by the DCF, which effectively tries
to fit a straight line through these data points. This figure
again shows that the DMIF provides much more detailed and
accurate information about the underlying time series than the
DCF.

IV. MULTIWAVELENGTH LAGS IN NGC 4593

Motivated by the studies on the toy models, we apply the
DMIF to actual observations. NGC 4593 is an active galactic
nucleus, or AGN. It is a Seyfert 1 galaxy with a bolometric
luminosity of Lbol ∼ 8 × 1043 erg/s. As a Seyfert galaxy, it
has a quasar-type nucleus but a visible host galaxy. Therefore
there are emissions both from the host galaxy that are typically
in UV-optical wavelengths and also from the accretion disk in
the x-ray band. There is variability observed in each of these
bands from several sources. One plausible source of variabil-
ity is deemed to be fluctuations in the thermal emission from
the accretion disk. An alternative scenario is the possibility
of x-ray emission from the central corona or high-energy UV
photons from the inner edge of the accretion disk traveling to
the outer disk region and then reradiating the emission that is
observed. Therefore time lags between different wavelengths
measure distances between emission regions and are critical
to our understanding of the emission mechanisms as well as
the geometry of the temperature profile of the AGN. Typically,
the lags between x rays and UV-optical emissions are used to
map this in a procedure called “reverberation mapping” [31].

Now the estimated lags between x rays and optical and
UV emissions are on timescales of days [2,11], but, in some
cases, a few months [32]. Numerous observations support the
lagging of optical emission and UV emission relative to x
rays [33,34]; however, in many cases, uncertainties [8,35,36]
are such that these lags could be consistent with zero. These
scenarios are compatible with the reprocessing of x rays to
generate longer-wavelength optical and UV emission. How-
ever, there are a number observations [12–14] showing x
rays lagging the longer wavelengths. Such cases could oc-
cur from inward propagation of fluctuations from the outer
(long-wavelength emission) regions to the innermost (short-

wavelength emission) region. In general, a combination of
these two components can produce negative as well as pos-
itive lags in x-ray–UV-optical light curves for such variable
sources.

In Ref. [8], the mechanisms of AGN NGC 4593 are probed
via time lags. We use observations in that paper obtained
from the lead author to estimate the time lags with the DMIF
and compare with the DCF. For this, x-ray, UV, and optical
observations from a monitoring campaign by the Swift ob-
servatory are used. The monitoring was quite intensive, with
observations in every orbit or 96 min for 6.4 days from July
13th to 18th, 2016, and subsequently every other orbit for 16.2
days. The Swift X-ray Telescope (XRT) observations are in
the energy bands (0.5–2) and (2–10) kilo-electron-volt (keV),
respectively, and a combined set in the 0.5–10 keV range. The
Ultraviolet and Optical Telescope provided observations in six
bands (UVW2, UVM2, UVW1, U, B, and V), of which the
UVW2 is the most interesting one from the point of view
of time lags in this source. For further details on the data
reduction and processing of light curves, we refer the reader
to the original paper [8].

A. DCF versus DMIF: Estimate of lags in NGC 4593

In the case of NGC 4593, Ref. [8] performs a detailed anal-
ysis of these lags using the discrete correlation function aided
by testing with simulated x-ray light curves. They estimate
correlation of the x-ray light curves with other bands including
the ultraviolet (UV) bands. We apply the DMIF to these light
curves for comparison with the DCF. For this we take the
original x-ray (counts/s) and UV (millijansky) light curves,
subtract the mean, and scale with the variance as x → ( x−μ

σ
).

This allows us to compare fluxes at different wavelengths
which can have very different absolute scales. We use k = 5
nearest neighbors in the Kraskov et al. method [20] as we did
for the toy models, and the results are shown in Fig. 4. The
noise level for these real observations is larger than in the
toy models. Hence we use smoothing to extract the key lag
features. In order to do this, for DMIF we use a rolling average
with a window over four consecutive data points. We find that
the detection of key features is robust to choice of window
(as shown in Appendix A). For the DCF, we simply use the
slot weighting scheme that is built into the implementation of
the Edelson and Krolik method, PYDCF [19]. This makes for a
fair comparison between the two correlation estimators from
less noisy signals. An identical range of lags are probed as
shown in Figs. 4(c) and 4(d) and Figs. 5(c) and 5(d) for time
increments equal to the median values of the bin (difference
between the times of consecutive data points) of the unevenly
sampled light curves.

A key finding in Ref. [8] is that the soft x rays from 0.5 to
2 keV and the hard x rays from 2 to 10 keV do not have
any measurable lag, for NGC 4593. For this case of soft
vs hard x-ray correlations, we use the same interval of lags
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FIG. 4. (a) and (b) Soft (0.5–2 keV) and hard (2–10 keV) x rays (scaled fluxes) from observations of NGC 4593 (a) and the flux-flux
correlation plot (b). In (c) and (d), once again, the comparison between DCF and DMIF is shown. There is agreement between the two on zero
lag between the two x-ray bands. We see a much sharper identification with the DMIF, noting the “shoulders” in the DCF and the scales of
(c) and (d).

≈ [−2.2, 2.2] with uniform time increments of 0.115 days,
which is the median interval for the x-ray light curves. We
confirm the zero lag found in Ref. [8] with our DMIF, consis-
tent with the strong linear correlation between the two bands
with zero lag as shown in Fig. 4(b). This linear correlation
between the two x-ray bands is also shown in Fig. 4 in Ref. [8].
At this juncture, we note that typically the linear correlation
coefficient often denoted by ρ refers to the relation between
any two variables, say, x and y at zero lag. However, here we
are interested in the correlation coefficients between x and y
at different lags, and therefore ρ is essentially the DCF as a
function of these lags.

While there is an agreement on the zero lag of the peak
between the DCF and the DMIF, the profile is a lot sharper
for the DMIF. The DCF displays smaller secondary peaks or
“shoulders” and then a further decrease in correlation for both
positive and negative lags. In sharp contrast, the DMIF has a
steeper decline on either side of the peak with no shoulders or

“wings.” This is to be expected as the mutual information for
linear relations is proportional to log2(1 − ρ2). Therefore we
see that even for real data sets with a linear relation between
two light curves, the DMIF provides a sharper discrimination
than the DCF.

We next explore the relation between the x-ray (0.5–
10 keV) band and UVW2. In Ref. [8], the authors find a peak
at ≈0.66 days with the DCF. We can reproduce this result
with the DCF. Our DCF estimate in Fig. 5(c) looks for lag
features in the range ≈[−2.05, 2.05] with a time increment
of 0.107 days, which is the median interval for the reference
0.5–10-keV light curve. As shown in Fig. 5(d), we find one
peak at ≈0.2 days. We also find peaks at approximately −1.1
days. The positive lag is closer to the model prediction of
∼0.1 days in Ref. [8]. The negative lag supports the idea
that also in this system, lower-energy information travels from
the outer regions towards the inner accretion disk, where
it is transformed into higher-energy emissions. The DCF is
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FIG. 5. (a) and (b) X-ray (0.5–10 keV) light curves in blue and UVW2 in orange (a) and the flux-flux relation plot (b). (c) and
(d) Comparison between DCF and DMIF. The DCF shows a peak at a lag of �1/2 day roughly consistent with reported values. It does
not show any other prominent peak. The DMIF also shows its highest peak at ≈0.2, but shows another competitive peak approximately equal
to −1.1. The uncertainties on mutual information values are computed by propagating the uncertainty on the corresponding ρ from DCF
analytically.

unable to pick this up clearly and hence loses out on pos-
sible physical mechanisms at play. The DMIF results seem
plausible enough to be investigated further with astrophysical
models.

B. Uncertainty in lags in NGC 4593

Because of measurement noise and observational cadence,
the dependency estimators appear noisy. Uncertainty in the
DCF is computed directly from the time series or light curves
as the standard error in the unbinned discrete correlation com-
puted between pairs of points as in Ref. [6]. From this we
compute the uncertainty in the correlation, dρ. We do not have
an equivalent method for mutual information in general. One
way to quantify their uncertainty is to generate extra artificial
samples and perform significance tests. However, this can
only be done reliably when the underlying statistical process

or model is known. In the case of light curves of limited
length as is the case here, estimates of such a model can be
quite uncertain. A better way would be to divide the time
series up into several segments and calculate an uncertainty
estimate from mutual information calculations on each seg-
ment. Unfortunately, the time series are too short for a robust
estimate. Instead, we will estimate uncertainty in the mutual
information in the following way.

We base the uncertainty estimate on the assumption of
Gaussian errors. The mutual information of two Gaussian
random variables is given in terms of the correlation between
the two variables, ρ, as MIg = −1/2 ln(1 − ρ2). We estimate
the uncertainty in the following way.

(i) Define ρ from the estimated mutual information as
MI = −1/2 ln(1 − ρ2), and treat ρ as a correlation coefficient
computed from the DCF estimator. This is exact for Gaussian
distributed variables, and an approximation otherwise.
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(ii) Calculate σρ from the DCF estimator.
(iii) Calculate σMI = dMI

dρ
σρ = ( ρ

1−ρ2 )dρ.
This approach makes the uncertainty estimate consistent

with the central value of the mutual information, and the
only approximation is that the uncertainty calculation assumes
Gaussian errors. In doing so, we acknowledge nonuniformity
in error propagation across different lags. This comes partly
due to the higher sensitivity of the MI to correlations and
features in the lag function. However, these deviations are not
very large for the strongest features. Rather, the main limita-
tion comes from the limited sample size of observations. We
will reserve a dedicated and more detailed study to investigate
the uncertainties with longer observations of sources.

In this manner, we estimate the uncertainty in the features
in both the DCF and the DMIF. For the soft vs hard x-ray
correlation, the peak at zero lag in Fig. 4(c) has a discrete
correlation of 0.95 ± 0.08. This value falls to half its value at
lag values approximately equal to ±0.6 days (i.e., full width
at half maximum ≈1.2 days). A more precise estimate of the
uncertainty in position (or lag value) of the central peak ob-
tained by fitting the DCF in the figure with a Gaussian yields
an error of 0.53 days. Upon fitting with a Lorentzian instead,
which resembles the profile better, we find a very similar error
estimate of 
/2 = 1.05/2 ≈ 0.53 days. The corresponding
peak in the DMIF at zero lag has a mutual information value
of MI = 2.40 ± 0.25. The uncertainty at the central peak is
much larger than that for the other values, which are barely
visible on the scale in Fig. 4(d) owing to this large value of
correlation ρ. The mutual information falls to half its value
well within approximately ±0.2 days. Upon fitting the DMIF
in the figure with a Gaussian function, we get τ = 0.02 ± 0.23
days from the DMIF. A Lorentzian fit to the profile yields an
uncertainty of 0.50 days. Thus the DMIF has a sharper peak
as explained before.

For the x-ray–UV correlation, Ref. [8] finds a nonzero
correlation at 99% confidence at 0.66 ± 0.15 days. It eval-
uates significance levels by simulating the reference x-ray
light curves. As we explain earlier in the section, we take a
different approach. While we can reproduce their results, we
use a time increment of 0.107 days or the median value with
slot (uniform) weighting to produce Fig. 5(c). This gives us
a central value of 0.38 days. The peak value of the discrete
correlation is 0.64 ± 0.05. The uncertainty estimate is more
challenging here with a rather broad and asymmetric profile.
A conservative estimate from the negative lag value at which
the DCF falls to half its peak value yields an uncertainty of
≈0.87 days.

The DMIF reveals that there are multiple features that need
to be disentangled. Using the sensitivity of the DMIF, we are
able to isolate the lag centered around τ ≈ 0.16 days with
a four-point window in Fig. 5(d) with mutual information
MI = 0.74 ± 0.12. The mutual information diminishes as we
move away, though not down to half its peak value as we start
to see a rise especially as we draw closer to the second feature
at approximately −1.1 days. For the uncertainty on the lag at
0.16 days, we fit the segment of the DMIF between the two
local minima on either side of this peak with a Gaussian. This
gives us an uncertainty estimate of ≈0.73 days. Fitting this
feature for different windows (no window, two-point window,

and four-point window in Appendix A) gives us an error
estimate ranging approximately from 0.6 to 0.8. Alternately
fitting with an exponentially modified Gaussian distribution
[ f (x) = Ae

λ
2 (2μ+λσ 2−2x)] which has a skew, we get an error of

≈0.56 days, which is comparable to the Gaussian fit.

V. DISCUSSION AND CONCLUSIONS

Mutual information is a nonlinear measure to quantify
the statistical dependency between two or more variables.
Therefore it is more appropriate than the cross correlation to
quantify a dependency between variables that deviate from a
linear relation. This is clearly demonstrated by the toy models,
which show that when the relation between lagged variables
x(t ) and y(t + τ ) is nonlinear, the mutual-information-based
function finds the corresponding lags while the standard dis-
crete correlation does not.

Accreting astrophysical sources such as AGNs and XRBs
tend to show characteristics that can be naturally explained by
multiplicative processes driving the variability of their emitted
radiation [23,27]. This leads to different wave bands being
nonlinearly related. We demonstrate, with the help of an ana-
lytical toy model mimicking this multiplicative behavior, the
difference between lags computed with the standard discrete
correlation function and with the discrete mutual information
function, or DMIF. The latter correctly detects the lag fea-
tures that are present in the toy models, some of which were
missed by the DCF. The DMIF also identifies the lags more
sharply than the DCF, a feature also found when using real
observations.

Having shown this proof of principle with toy models,
we apply DMIF to real observations of NGC 4593. First we
apply it to test the relation between soft (0.5–2 keV) and
hard (2–10 keV) x rays. We confirm that the principal lag
feature is centered symmetrically around zero consistent with
the finding in Ref. [8] with a lag of τ = 0.02 ± 0.50 days.
The uncertainty quantification shows a sharper identification
of this strong feature. Then we move to the relation between x
rays and UV emitted by NGC 4593, which is the most interest-
ing case physically. The standard reflection scenario predicts
x rays being reprocessed into and therefore leading the longer
wavelengths such as the UV. For NGC 4593, the DCF shows
a maximum at a positive time lag at approximately half a day.
However, the relation between x rays and the UVW2 band
is found to be nonlinear. Hence we use the more appropriate
nonlinear measure, the mutual information. We find that the
DMIF peaks at a lag τ ≈ 0.16 ± 0.73 days. This central value
of this peak is in close agreement with the predicted lag of
∼0.1 day from the reprocessing model between UV and x
rays. However, the uncertainty is large enough that the lag
could be consistent with zero or even have a negative value.
Observations of a number of AGNs also show that UV can
lead the x rays in case of inward propagating fluctuations
within the accretion disk. This scenario is not ruled out by
our estimates.

Indeed, we detect an additional lead of 1.1 days in the
DMIF, which could arise from inward propagating fluctua-
tions. The DCF does not pick up this lead, which could be
related to the strong nonlinearity of this propagation pro-
cess. Indeed, the x-ray flux vs UVW2 flux plot in Fig. 5(b)
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shows a strongly nonlinear relation between the two. This
explains why the DMIF would show a better agreement with
the positive lag of UV with respect to x rays predicted by
the reprocessing model, and the negative lag at 1.1 days.
However, the uncertainty estimates of current studies are
large enough that absence of such leads cannot be ruled
out (see, e.g., Ref. [8]), and further theoretical investigation
is warranted.

This study shows the importance of nonlinear measures
of statistical dependency in establishing causal mechanisms
from light curves. This is of utmost importance in astro-
physics, where typically linear correlation measures are used
to corroborate the models capturing the underlying causal
mechanisms. From this study, it is evident that for even rela-
tively simple nonlinear relationships, linear cross correlations
can give inaccurate time lags and magnitude of relations in
general. In fact, as seen even in relatively simple toy models,
the DCF can miss certain lags entirely. Furthermore, even
when the central value of lags is accurately estimated by the
peaks in the linear DCF, the profile of these is quite broad.
The DMIF has stronger peaks with much sharper profiles, thus
providing a clearer, more precise identification of lag features.
This is evidenced in the soft and hard x-ray correlation of
NGC 4593. This is vital when there are multiple lags with val-
ues close to one another, thus making it harder to distinguish
them.

Therefore we propose to use nonlinear lag-detection mea-
sures for observations where it is clear that there are strong
nonlinearities between the multiwavelength fluxes. Further-
more, even when there is a linear relationship between the
correlating variables, the inherent properties of mutual infor-
mation enable a sharper identification of time lags between
the variables. In general, when there are multiple lag features,
the profile of the peaks is crucial in distinguishing them. This
would be critical for accreting systems, where multiple pro-
cesses can be at play producing different time delays [2,11–
14,32]. If these features operate at similar timescales, a
sharper resolution will allow one to separate them.

Application of nonlinear measures is not limited to models
of accreting systems but can be used in AGNs and gamma-
ray bursts to constrain violation of Lorentz invariance [4,29].
Of particular interest would be cases of significant flares
at gamma-ray energies that have enough photons [37–39].
This gives us the opportunity to devise a sensitive detection
of lags at timescales down to a few minutes, which would

put strong constraints on the underlying quantum gravity
models.

We have shown and argued that the mutual information
function is a good choice for the systems discussed above, al-
though there may be others that will be explored in future. The
DMIF is easy to compute and applicable to a wide range of
conditions including continuous and discrete variables given
the work done by Kraskov et al. [20] and modifications such
as those given by van Leeuwen et al. [22]. Mutual information
estimates do demand more and better quality data to provide
the sharpest identification of the complex features it is sensi-
tive to. The stochasticity inherent to the dynamical processes
underlying the light curves does affect features such as lags
quantifying variability in general [39–49]. In order to have a
reliable estimate of these effects and uncertainty, we would
need to have strong constraints on the power spectral density
(PSD). This would require a dedicated deep dive into which
objects have the best constrained PSD. This will be the subject
of a future paper. With longer light curves and improving
quality of data in terms of cadence and signal-to-noise ratio,
we expect better results for time lags leading to stronger and
more accurate constraints on the physics of these systems.
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APPENDIX A: EFFECT OF SMOOTHING ON THE
LAGS FROM MUTUAL INFORMATION

On account of the noisiness of the observed light curves,
we use smoothed light curves. For the DMIF, we do this by
using a rolling window. This allows us to retain most of the
data points in the light curve, even though this procedure
does violate the assumption of independent and identically
distributed (iid) samples within each window. However, it is
clear from Fig. 6 that for each of these smoothed light curves,
the estimated DMIF shows a peak near the model prediction
for the time lag of 0.1 days in Ref. [8]. There is additional
feature between −0.5 and −1.5 days where the x rays are seen
to lag the UV. In this case the window does alter the central
value of this peak. This deserves further investigation.

FIG. 6. The effect of the rolling window on the DMIF estimate. The DMIF with no window (left) and ones averaging over two consecutive
points (center) and four consecutive points (right) all show peaks close to the predicted lag feature at 0.1 days.
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FIG. 7. The effect of the rolling window length on the DCF estimate. The DCF with no window (left) and ones averaging over two
consecutive points (center) and four consecutive points (right) all show peaks close to the predicted lag feature at 0.1 days.

APPENDIX B: EFFECT OF SMOOTHING ON THE LAGS
FROM DISCRETE CORRELATION

Just like the DMIF, the DCF too is quite noisy on ac-
count of the stochasticity and the limitations of the observed
light curves. As stated earlier, we use the DCF estimator of
Ref. [6] implemented in PYDCF [19]. This has an inbuilt option
for different types of weighting and smoothing. We chose
the uniform or slot weighting option over a window of two

(center panel) and four (right panel) points, respectively, and
compare it with the unsmoothed DCF (left panel) in Fig. 7.
The comparison shows a decrease in the noisiness as the
window size increases, with the largest window revealing the
smoothest version of the principal lag detected in Ref. [8] and
confirmed by us. The peak position or the central value of the
lag also shifts to greater values moving from no window to
the four-point window. However, this shift is not larger than
the uncertainty on the lag itself.
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