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Dissipative dynamics in open XXZ Richardson-Gaudin models
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In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian
Hamiltonian. We here consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin
integrable model and detail its exact Bethe ansatz solution. While no longer Hermitian, the Hamiltonian is
pseudo-Hermitian/P7T symmetric, and as the strength of the coupling to the environment is increased, the
spectrum in a fixed symmetry sector changes from a broken pseudo-Hermitian phase with complex conjugate
eigenvalues to a pseudo-Hermitian phase with real eigenvalues, passing through a series of exceptional points and
associated dissipative quantum phase transitions. The homogeneous limit supports a nontrivial steady state, and
away from this limit this state gives rise to a slow logarithmic growth of the decay rate (spectral gap) with system
size. Using the exact solution, it is furthermore shown how at large coupling strengths the ratio of the imaginary
to the real part of the eigenvalues becomes approximately quantized in the remaining symmetry sectors.
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I. INTRODUCTION

No quantum system is truly isolated, and in the past decade
there has been an increasing interest in the physics of open
quantum many-body systems. The coupling to an external
bath can give rise to gain and loss terms and decoherence,
which can no longer be described by Hermitian dynamics, and
open systems are generally described by a quantum master
equation in terms of a non-Hermitian Liouvillian [1]. How-
ever, dissipation is not necessarily detrimental—the interplay
between gain and loss can give rise to physics not accessible
in closed systems and Hermitian dynamics. As one example,
the system can exhibit P7 symmetry when the gain and
loss terms are exactly balanced [2-5], and this symmetry can
be spontaneously broken, leading to exceptional points and
dissipative quantum phase transitions [6—8].

While it is generally impossible to exactly solve the master
equation, exact solutions for specific integrable Liouvillians
have started to appear in the literature. These range from
noninteracting systems [9-16] to boundary-driven systems
[17-22] and systems that can be mapped to a non-Hermitian
Yang-Baxter integrable Hamiltonian [13,23-26]. A special
class of the latter is those with collective dissipation [27-30],
which will be the focus of this work. Specifically, we consider
a Liouvillian that can be mapped to a Richardson-Gaudin
integrable XXZ model. The integrability of this model was
established by Rubio-Garcia et al. [30], as a direct extension
of earlier results of Ref. [27], and subsequently used to study
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the spectral statistics as an indicator of quantum chaos in open
systems. The Hermitian Richardson-Gaudin XXZ model is
known to exhibit a rich phase diagram [31-36], motivating
a detailed study of the properties of the exact solution in the
non-Hermitian case. As an additional motivation, the validity
of approximate methods such as mean-field theory for open
systems is still being studied [37—41], and exact solutions
can serve as a useful benchmark for approximate numerical
techniques.

In this work we detail the mapping to a non-Hermitian
Hamiltonian and the subsequent exact solution of the model.
This Hamiltonian, as well as the conserved charges, are shown
to be pseudo-Hermitian, constraining the eigenvalues to be
either real or part of a complex conjugate pair [2,42]. We show
how eigenvalues change from complex conjugate pairs, when
weakly coupled to the environment, to purely real eigenval-
ues when strongly coupled, after passing through exceptional
points. At these exceptional points two eigenstates coalesce
and the Liouvillian is no longer diagonalizable. Physically,
these exceptional points correspond to dynamical dissipative
phase transitions with nonanalytic relaxation rates throughout
the spectrum, including for the leading decay mode [7].

All terms in the Lindblad equation and hence the Li-
ouvillian can be chosen to be either homogeneous or
inhomogeneous without losing the exact solvability and
pseudo-Hermiticity. The homogeneous model admits a non-
trivial steady state, and away from this limit we use the exact
Bethe ansatz solution to show that in the inhomogeneous
model the corresponding state decays with a small decay rate
that scales logarithmically with system size. Here the exact
Bethe ansatz solution is crucial in allowing us to obtain exact
eigenvalues at system sizes out of reach of exact methods and
establish this scaling. Somewhat surprisingly, in the purely
dissipative regime close to the exceptional point the decay can
be slower than in the weakly coupled regime. We additionally
uncover a remarkable structure in the eigenspectrum, where at
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large coupling strengths the eigenvalues organize themselves
on straight lines in the complex plane. The ratio of the imagi-
nary to the real part of the eigenvalues becomes approximately
quantized, indicating that the decay rate is proportional to
oscillation frequency with a quantized proportionality factor.

This paper is organized as follows. In Sec. II we introduce
the model and its exact Bethe ansatz solution through the
mapping to a non-Hermitian integrable model. Section III dis-
cusses the spectrum of the model and its implications on the
dynamics, with special attention paid to its symmetry prop-
erties and the homogeneous and strong-coupling limits, after
which the commuting quantities associated with integrability
are discussed in Sec. IV, as well as the numerical solution
method for the Bethe equations. Section V is then reserved
for conclusions.

II. MODEL

Assuming Markovian bath dynamics, the Lindblad equa-
tion [1] determines the time evolution of the density matrix p
as

.1 1
p = —i[H, LypL] — =LiL,p — =pLlL, |, (1
2 i[ p]+;[pa FLalap = 5Ly }()
where we set /i = 1 and choose the system Hamiltonian H and
the jump operators Ly, o € {4, —, z} as

H=>"[Q+w)s,

J
L=V&y s Le=v3Y Jash. @
J J

The Hamiltonian describes a system of noninteracting spins,
which we choose to have spin 1/2, each subject to a local mag-
netic field. The + terms describe collective gain and loss, and
the z term describes a collective dephasing. The amplitudes
w; in the Lindblad operators are related to the amplitudes in
the Hamiltonian in order to obtain a solvable model, which
can physically be achieved by introducing a detuning of the
magnetic fields proportional to the terms in the jump op-
erators. While the Hamiltonian itself is noninteracting, the
collective Lindblad operators lead to an interacting Liouvil-
lian. Furthermore, the gain and loss are balanced with equal
strength g, whereas the dephasing is tuned by an independent
prefactor gg.

As outlined in Ref. [27], the Lindblad operator can be
mapped to a non-Hermitian Hamiltonian acting on a doubled
Hilbert space. For example, a one-spin density matrix for spin
Jj can always be expanded as

—_1 —|—ch «“, 3)

with ¢ complex coefficients and s spin-1/2 operators, and
the operators can be mapped to spm singlet and triplet states
as

11, —10,0);, 55— [1,0);,

¢ st V201 £D);, @)
such that each spin operator maps to a spin-1 state. The Liou-
villian acts trivially on the singlet states, guaranteeing that the

identity is always a trivial steady state, and under this mapping

the action of Eq. (2) on the triplet states can be described by
an operator [43]

L L
L=i) [Q+w]Sj—g ) S5

j=1 Jik=1
L
—9 ) Joax(SiS;+88). (5)
Jik=1

where the S* are now spin-1 operators. Here we use L to
denote the total number of triplet states, and take w; ...wp
to denote the corresponding amplitudes in the Liouvillian.

This operator is clearly no longer Hermitian, but can be
interpreted as a Richardson-Gaudin model with factorizable
interaction and complex interaction constant, which, however,
does not preclude an exact solution. The (right) eigenstates
are a direct generalization of the eigenstates for the Hermitian
model (see Appendix A), and can be written as Bethe ansatz
states of the form

N L .
|v1...vN>=1"[<Z ﬂs;) 1), 6)

where [#) = |1, —1); ® --- ® |1, —1); is a vacuum state an-
nihilated by all S]T, and the wave function is parametrized by
a set of (possibly complex) parameters {v; . .. vy}, also known
as rapidities, satisfying the Bethe equations

N
g +i Up
+ = 0, a = 1 e N
7
The Liouvillian has corresponding eigenvalues y (vy, . . ., vy),

with

y(i,...,voN) = (g+l)<2va ij)

a=1

+iQN—L)—go(N—L*.  (8)

III. SPECTRUM

Before analyzing the eigenspectrum of the Liouvillian (5),
it is useful to discuss its symmetries. First, it is clear that £
conserves total spin-z projection, i.e.,

=) S ©)
i

Undoing the mapping from operators to states, acting with S¢
on a state corresponds to commuting the operator with ) j sj..
All eigenstates of the Liouvillian are common eigenstates of
S?, and it can easily be seen that

S lvy...vy) =

[£,S]=0,

(N—=L)v;...on). (10)

This implies that we can set gop = 2 = 0 without loss of
generality, since these simply correspond to a constant shift in
the real and imaginary parts of the eigenvalues, respectively
[see Eq. (8)]. This symmetry can also be observed from the
Bethe equations (7), which are independent of both g, and £2.
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Second, and crucially, the Liouvillian is pseudo-Hermitian.
Namely,

L
L'=PcP with P=]]S} a1

j=1

which follows from the observation that the non-Hermitian
part i ) @;S% maps to —i ) ; ®;S under Hermitian con-
jugation, which can be undone through the spin inversion
operator P, whereas the remaining parts of the Liouvillian are
both Hermitian and invariant under spin inversion.

This can also be interpreted as P7 symmetry, where a
non-Hermitian Hamiltonian is invariant under a combined
unitary (spin inversion) and antiunitary (complex conjugation)
transformation, both of which square to identity [44,45]. On
the level of the Liouvillian, spin inversion maps the Lindblad
operator L, to L_ and vice versa, exchanging the role of
gain and loss. While the definition of P7 symmetry for a
Liouvillian is more involved than that for a non-Hermitian
Hamiltonian, as discussed in, e.g., Refs. [4,45], the mapping
to a non-Hermitian model allows us to circumvent these sub-
tleties.

The above identity (11) implies that left and right
eigenstates are related through spin inversion. Furthermore,
pseudo-Hermiticity implies that all eigenvalues either appear
as part of a complex conjugate pair [2,42], in which case
the two eigenstates are related through the corresponding P7
transformation, or as purely real, in which case the eigenstate
is invariant under P7. The latter then correspond to states
with unbroken P7 symmetry, while the former exhibit a
broken P7 symmetry. Since PTS*P = —S7, only eigenstates
with 8¢ = 0 (or N = L) can be invariant under P. In terms of
operators, such states where S° = 0 correspond to the parts
of the density matrix that preserve total spin ; sj. projection.
This also implies that any eigenstate with nonzero S* will have
a complex eigenvalue, and its complex conjugate corresponds
to an eigenstate with —S*.

In Fig. 1, we plot the eigenspectrum for a small system
of L = 3 spins as g is increased from zero to some nonzero
final value, focusing on the symmetry sector S* = 0. For
concreteness, we consider a “picket-fence” model of evenly
spaced levels w; =i, i = 1...L [46], although all results in
the following are independent of the specific model unless
explicitly mentioned. For g = 0 the Lindblad operators vanish
and the spectrum is purely imaginary, as expected, and all
eigenvalues are either zero or part of a complex conjugate
pair £(E,, — E,)i, with E,, , eigenvalues of the noninteracting
Hamiltonian H from Eq. (2). The finite value of Re(y)/g as
g — 0 in Fig. 1 indicates that the real part of the eigenvalues
vanishes linearly with g for sufficiently small values of g. As
the coupling to the environment g is turned on, the eigenvalues
acquire a real part. Further increasing g, the imaginary parts of
the complex conjugate eigenvalues coalesce and vanish—the
dynamics becoming purely dissipative once all eigenvalues
have collapsed on the real line. At large g, these purely real
eigenvalues are then proportional to g. Exceptional points
occur both in the leading eigenvalue and throughout the spec-
trum, albeit at different values of g, leading to nonanalyticities
and hence transitions in the full Liouvillian spectrum as the
coupling to the environment is varied.
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FIG. 1. Eigenspectrum for L=N =3 with w; =i, i=1...L
as g is varied. Note that the real part is rescaled by g, such that a finite
value of Re(y)/g as g — 0 indicates purely imaginary eigenvalues
in this limit. The eigenstates are labeled by the spin occupation num-
bers [n; n, n3] in the noninteracting limit g = 0, with N = Z./‘ n;.

This behavior readily extends to larger system sizes. In
Fig. 2 we plot the full spectrum for a system of L = 8 spins
at two different values of the coupling strength g. The spec-
trum is symmetric with respect to the real axis because of
the pseudo-Hermiticity, and symmetric states have opposite
values of S¢. Different limiting behaviors can be observed:
at small g almost all states correspond to complex conjugate
pairs, whereas for larger g the vast majority of states with
S¢ = 0 have collapsed onto the real axis. If we would further
increase @ all states in this symmetry sector eventually be-
come real. In both limits there is a nonvanishing spectral gap
and a “continuum” of nearby states. However, for small g this
gap is determined by a pair of complex conjugate eigenstates,
whereas at large g the spectral gap is determined by a single
real and nondegenerate eigenvalue. While the real part of most
states is proportional to g, the spectral gap in fact decreases
after passing through an exceptional point (as can also be
observed in Fig. 1).

In terms of the dynamics, a smaller spectral gap corre-
sponds to a slower decay rate. For small g the leading decay
mode will exhibit oscillations with a frequency set by the
imaginary part of the leading eigenvalues, whereas for larger g
the leading mode is purely dissipative but (possibly) decaying
at a slower rate. Exactly at the exceptional point where the
complex conjugate eigenvalues coalesce, the Liouvillian is
no longer diagonalizable and a two-dimensional Jordan block
will appear in its Jordan block decomposition, leading to crit-
ical dynamics re~1" with y the leading eigenvalue [7]. The
exceptional point is accompanied by a nonanalytic behavior
of this leading eigenvalue, leading to a dissipative quantum
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FIG. 2. Eigenspectrum for w; =i, i =1...L for fixed g and

L = 8. The eigenstates are color coded according to S¢. For g = 0.1
the dotted vertical line indicates the spectral gap =~ —1.328 corre-
sponding to a pair of complex conjugate states, for g = 1 the spectral
gap ~ —(.674, and the cross indicates the origin as reference.

phase transition. This transition can also be interpreted as the
spontaneous breaking of P7 -symmetry/pseudo-Hermiticity,
since for large g the leading mode is nondegenerate and hence
necessarily invariant under P77 symmetry, whereas at small
g the two leading modes are no longer invariant under P7T
symmetry, but rather get mapped to each other under the
combination of spin inversion and complex conjugation.

This behavior is even more pronounced for nonzero gy. In
this case all eigenvalues acquire an additional shift of the real
value —go(S%)> = —g(N — L)?, such that the decay rate of all
sectors with nonzero S¢ is increased. Only the relevant S* = 0
sector, in which the transition occurs, is left invariant by both
a nonzero gy and nonzero 2. The latter induces an additional
shift in the complex value of all sectors with nonzero S?,
leading to global shift in all oscillation frequencies. As such,
while the transition only occurs in the symmetry sector S¢ =
0, this sector generally contains the leading eigenvalue and
for sufficiently large go all dynamics are determined purely
by this sector, with all other sectors rapidly decaying. The
other symmetry sectors still exhibit nontrivial behavior as g is
increased, since it can be seen that these eigenvalues organize
themselves on (approximately) straight lines in the spectrum
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FIG. 3. Eigenspectrum for the homogeneous model with w; =
w =1,Vj for fixed g and L = 8. The eigenstates are color coded
according to M, as in Fig. 2.

where Im(w) o« Re(w). These lines will be discussed in more
detail in Sec. III B. In the following, we will consider differ-
ent limits of this model where the exact solution allows for
additional insight.

A. Homogeneous limit

One limit where the exact solution is particularly simple
is the limit where all w; are equal, i.e., w; = w, V. In this
case the model can be recast in terms of total spin operators

o o
St = 2_; S as

L= i(Q + w)Sfot - g()(sfot)2 - gw(sfotsfot + S{Otsfot)
— (2 + 0)Siy — 90(S%)° — gol(Bi)® — ($91. (12)

The eigenstates immediately follow as degenerate multiplets
expressed in |Syy, S§,) = |S, M), with total spin S and total
spin projection M. The corresponding eigenvalues ys ) are
given by

Ysu = ioM — go[S(S + 1) — M?], (13)

again setting go = 2 = 0 for convenience. In fact, the same
model is obtained as for the homogeneous limit of the XXX
Richardson-Gaudin model studied in Ref. [27], only now with
an interaction constant gw instead of g. The degeneracy of
these eigenvalues follows from the total number of ways in
which L spin-one particles can be coupled to total spin S, as
given by the Riordan numbers [27,47,48].

The spectrum is shown in Fig. 3 for a system with L = 8
spins. The homogeneous model now has a nontrivial steady
state within the triplet sector given by the state S;, = 0, i.e.,
the fully isotropic state (see also Ref. [27]). The real part is
maximized when M = %S, and the leading eigenvalues are
a pair of complex conjugate eigenvalues with S = |M| =1,
resulting in a spectral gap gw. Furthermore, all states with
S¢ = M = 0 are purely real at all values of g, such that no
transition occurs as g is varied. In the S* = 0 sector of the
homogeneous model, pseudo-Hermiticity is unbroken at all
coupling strengths. The nontrivial steady state and this lack of
a transition is particular to the homogeneous model.
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More generally, note that the ratio of the real and imaginary
parts satisfies

Im(ysm) _ M
Re(ys.m) S+ 1) —M?’

(14)

independent of w. The real part is proportional to g, whereas
the imaginary part is independent of g, reminiscent of Fig. 2.
Plugging in M = FS returns a ratio £1, plugging in M =
F(S — 1) returns a ratio £(S — 1)/(3S — 1) &~ £1/3 in the
limit of large S, etc. This is already indicative of the lines
observed in the bottom panel of Fig. 2, which will be shown
to be smoothly connected to the solutions with fixed S — M.

B. Strong-coupling limit

Part of the structure of the homogeneous model is recov-
ered in the strong-coupling limit where g is sufficiently large.
The clearest connection is that all eigenvalues for S° =0
collapse to the real line, resulting in an unbroken pseudo-
Hermitian phase within this symmetry sector. In this limit
we can also treat the non-Hermitian contribution to £ as a
perturbation on top of the Hermitian interaction part. While
there is no longer a nontrivial steady state, away from the
homogeneous limit we can consider the behavior of the lead-
ing eigenvalue. For g sufficiently small we observed that the
leading eigenvalue belongs to a pair of complex conjugate
states, whereas for g sufficiently large the leading eigenvalue
is purely real and nondegenerate. As one particular applica-
tion, in the latter limit the leading mode can be considered
a perturbative correction of the ground state of the related
Hermitian Hamiltonian

L L
H=Y 0S+9) Joo(SiSi+8;S)). (15
j=1

Jk=1

In the homogeneous limit, the ground state of this model is
clearly given by the nontrivial steady state with Si,; = 0, and
we can now check what happens to this state in the inhomo-
geneous picket-fence model.

In order for the Bethe approach to be advantageous, we
need to be able to explicitly target states of interest, e.g., the
leading decay mode. However, the leading mode at (very)
small coupling is not adiabatically connected to the leading
mode at strong coupling, as also clear from Fig. 1. This is
consistent with the Hermitian model, which undergoes a phase
transition at g = 1. However, we observe that the ground
state at large coupling in the Hermitian model is adiabatically
connected to the leading mode of the non-Hermitian model at
strong coupling. Empirically, we find that this ground state is
connected to the state (S7)*(S1)*(S¥)? ... |4) as g — 0 and
to a nontrivial steady state with S, = 0 in the homogeneous
limit, allowing us to explicitly find the spectral gap without
having to iterate over all Bethe states.

Using this correspondence, we compare the scaling with
system size of the real part of the leading eigenvalue for the
picket-fence model at two values of g in Fig. 4. We have
chosen g = 0.25 to be small enough that the leading eigen-
value is still part of a complex conjugate pair at all considered
system sizes, but large enough that we are away from the
weak-coupling limit in which the eigenvalues can be treated

T T T T x_x_*
X g=025 x_x,x_x-x”“
vV g=2 x,x—X'x‘
15F VS 2ol 7
_ x
= x
c X’x E L g
é-;‘/ X v '—v-v-"“'"**
— * _y-v-¥ V"
LOF ' e 1
v-
4 ) 3d
% »
‘/
1 1 1 1 1
10 20 30 40 50
L

FIG. 4. Absolute value of the real part of the leading eigenvalue
for w; =i, i =1...L with fixed g and varying L. Markers indicate
exact results; dashed line is a logarithmic fit Re(y) o log L + Cst.
For g = 0.25 the leading eigenvalue is part of a complex conjugate
pair, whereas for g = 2 the leading eigenvalue is purely real and
nondegenerate.

perturbatively. Similarly, we have chosen g = 2 to be large
enough that the leading eigenvalue is real and proportional to
g, but small enough that it is clear that the spectral gap de-
creases after the exceptional point: for all considered system
sizes, the spectral gap at g = 2 is smaller than the spectral
gap at g = 0.25. The behavior of the (exact) spectral gap as
system size L is varied suggests a logarithmic scaling

Re(y) o«clog L 4 Cst, (16)

and hence only a slow growth as the system size is increased.
Comparing the exact results with a logarithmic fit in Fig. 4,
the correspondence is excellent for L > 10 until the maximal
calculated value L = 50. The Bethe ansatz allowed us to ob-
tain exact results for a system of L = 50 spins, where the full
Hilbert space has dimension 3°° &~ 7.2 x 10%.

Moving to the other symmetry sectors, we observe that
the eigenvalues are approximately situated on straight lines
where gIm(y)/Re(y) = £1/(2n+ 1), n € Z. These can be
seen as a remnant from the homogeneous limit, where we
already noted that such a quantization occurs. Using both the
Bethe states and Bethe equations, we can now generalize this
behavior to general inhomogeneous models.

The rapidities solving the Bethe equations (7) can always
be subdivided into two classes: the rapidities that are on the
same order of magnitude as the w;, and the rapidities that are
large compared to all w;. Assuming there are p such large
rapidities, we can denote the former as v,, a =1...¢, and
the latter as w,, a = 1...p, with N = p + q. The states with
p large rapidities roughly correspond to the states with M =
—S + p in the homogeneous limit, since plugging in the large
rapidities in the Bethe state (6) results in generalized raising
operators of the form

L

NN
D Aatad DNCI B
j:1 a a

which reduces to a total spin raising operator in the homoge-
neous limit where w; = w, V.
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The Bethe equations (7) for these large rapidities can sim-
ilarly be approximated as

g+i 1 L 1 P wy,
g Tm\ LT m T o
4 \k=1 c=1 b+#a a
(18)

Multiplying this equation with w, and summing over a =
1...p, the antisymmetric term drops out and we find (see also
Appendix D) that

L
9+’Zwa~p(2vc Zwk). (19)
a=1 k=1

Plugging this in the expression for the eigenvalue of L
[Eqg. (8)], we find that the total eigenvalue y can be written
as

q
y ~—[2p+ g+ i](Z ve —

c=1

L
Z wk>. (20)
k=1

In the Bethe equations for the remaning “finite” rapidities the
dependence on wy, ..., w, simply drops out. In the strong-
coupling limit these equations are approximately the Bethe
equations for the Hermitian model, and finite rapidities can be
treated as perturbative solutions to the Bethe equations for the
Hermitian model (which is not possible for large rapidities).
Furthermore, in the Hermitian model the rapidities only ap-
pear as real or as part of a complex conjugate pair, such that
their sum is always real—the Hermitian model necessarily
has real eigenvalues. In this way we recover the previously
observed quantization: for eigenstates of the Liouvillian (5)
that can be approximately written as

L P
(Z,/T»_,-Sj) vy ... vg), 1)
j=1

the eigenvalues satisfy gIm(y)/Re(y)=~ 1/(2p+ 1). For

these modes, the decay rate is approximately proportional to
the oscillation frequency.

IV. CONSERVED CHARGES

In practice, Bethe equations of the form (7) are rarely
solved directly since they are plagued by singularities [49].
Rather, it is always possible to find a set of operator identities
for the conserved charges of the integrable model, and these
identities can be directly solved to obtain the eigenvalues of
the conserved quantities and the integrable model.

While the interpretation of the conserved charges is partly
lost in the non-Hermitian case, this formalism can be directly
extended to the current case. The Liouvillian still belongs to
an extensive set of mutually commuting operators [£, Q;] =
0,Vj and [Q;, Qx] = 0, Vj, k, defined as

Q, = iS% +g(S3)

—292 v Ok (S} +8)8)). (22)

These are again a direct extension of the conserved quantities
in the Hermitian model, as outlined in Appendix A, and are
clearly non-Hermitian. Rather, these commuting quantities
exhibit the same pseudo-Hermiticity/P7T symmetry of the Li-
ouvillian. The Bethe ansatz states are common eigenstates of
all Q;, and the corresponding eigenvalues q; can be expressed
in terms of the rapidities as

(g—z)—2gZ

where we have made the dependence on the rap1d1t1es implicit.
Note that £ is not linearly independent of these operators,
since

L
2@
j=1

, (23)

Q =iy S +9Y S’
J J
-3 Z Z WOk (SJJCS;(C + S;SZ)

Jok#j
02 2 N2
=L+9) o[(8) +(8) +(89) ] @4
J
The final expression has an additional contribution from the
Casimir operators of the spin-1 operators, which can be
treated as a constant. The same relation holds for the eigen-

values of £ and Q ;, since all operators mutually commute,
and we find that the eigenvalues y of L can be expanded as

L
y =) w;(q;—29). (25)

j=1
We can similarly recover the conservation of total S* =

>_; S5 from

L
> Q; =iS +9(S%). (26)
j=1

Any set of rapidities solving the Bethe equations (7) de-
termines a single Bethe state (6), and this state will be a
common eigenstate of all conserved charges with eigenvalues
{91, 92 ...q.}. Rather than first solving the Bethe equations
for the rapidities, it is now possible to find a set of equations
directly returning this set of eigenvalues, avoiding the explicit
use of rapidities. This approach has the advantage that the
equations that need to be solved do not display the singular
behavior of the regular Bethe equations (7). These equations
can be derived using the approach from Ref. [50] and are
explicitly derived in Appendix C. Deﬁning shifted eigenvalues

Vi =4q; o s 27

k#/
these satisfy the set of equations

Vi
VJ .3 _496‘)12 J_wk
- Yi—Vk
= g(yj2 + '32) - 49260? (a)-j_ w)?’ (&8
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with B = 1+ 2ig(L — N). Taking the complex conjugate of
these equations maps 8 — B*, and B is purely real if S =0
and hence N = L, reflecting the pseudo-Hermiticity in this
sector. For S¢ # 0 the imaginary part gets mapped to L —
N > N—-L=L— (2L —N), connecting the sectors with
N and 2L — N spin excitations and hence opposite values
of S¢.

Since these hold for all eigenvalues and all considered
operators can be simultaneously diagonalized away from the
exceptional points, the operators themselves satisfy the same
set of coupled cubic equations away from the exceptional
points. Furthermore, since the operators themselves vary con-
tinuously at the exceptional points, such operator identities
then hold at all values of g even if the operators are not
diagonalizable. These equations in fact form the backbone
of our numerical approach. For g = 0 the equations decou-
ple and we find yj()/j2 + 1) =0, Vj, which can be solved as
yj = 0 or y; = =i, returning the expected eigenvalues of iS;.
Solutions at nonzero g can be obtained by slowly increas-
ing g to its final value and iteratively solving the equations
at intermediate values of g using the solutions at smaller
g as a starting point. In this way the solutions of Eq. (28)
can be directly connected to the occupation numbers in the
noninteracting limit, providing a way of targeting specific
states (see, e.g., Ref. [50] for details). Such an approach
is common in Richardson-Gaudin models [36,50-58]. Once
these eigenvalues are known, the rapidities can either be
extracted from Eq. (23) or the states themselves can be di-
rectly expressed in terms of these eigenvalues [54,57]. This
equivalence can also be seen as a version of the generalized
eigenstate thermalization hypothesis [59,60], since all Bethe
states are fully determined by the associated conservation
laws.

In terms of the non-Hermitian model considered so far,
this has two important consequences. First, we note that the
pseudo-Hermiticity-breaking transition can be observed not
just in the eigenspectrum of £, but also in the spectrum of
all Q;. This is illustrated in Fig. 5 for a pair of representative
eigenstates. At the transition, the corresponding eigenvalues
of all commuting operators change from complex conjugate
to purely real. Second, since the states are completely deter-
mined by this set of eigenvalues and these eigenvalues are
identical at the transition, the states themselves are identical
and coalesce: the transition is accompanied by an exceptional
point and not an accidental degeneracy.

V. CONCLUSION

We discussed the exact solution of a Liouvillian with col-
lective dissipation through a mapping to a non-Hermitian
Richardson-Gaudin model. The resulting Hamiltonian is
pseudo-Hermitian/P7T symmetric, and as the coupling to
the environment is increased the eigenvalues change from
complex conjugate pairs to purely real. Such a transition is
accompanied by a dissipative phase transition and an excep-
tional point in the spectrum of the Liouvillian, reminiscent of
the quantum phase transition in the corresponding Hermitian
model. In this way we find an exactly solvable model for
an open and interacting quantum system exhibiting nontrivial
dynamics.

20

T
I

. R(aj)/e

20 - -

— Q1 d6 |
— Q2 qr7
— 43 qs
qa — 99
— 95 q10
0.0 0.1 0.2 0.3 0.4 0.5

g

FIG. 5. Real and imaginary parts of the eigenvalues q; of the
commuting operators Q; with w; = j, j=1...L for L =10 and
varying g. Full lines indicate the state that is adiabatically connected
to the leading mode in the strong-coupling limit, dashed lines indi-
cate the state that is related to this state by P7T transformation. The
transition is marked by a vertical dotted line, and before the transition
the eigenvalues are related by complex conjugation, while after the
transition the eigenvalues are purely real and no longer related. Note
that the real part is rescaled by g.

As discussed in Ref. [27], the balancing of gain and loss is
necessary for the mapping to return a solvable Hamiltonian,
and it is also a requirement for P77 symmetry. We have no
reason to believe that the model remains integrable once this
symmetry is broken, such that integrability here seems to
be accompanied by P7T symmetry. While this work focused
on a system of spin-1/2 degrees of freedom, resulting in a
Liouvillian acting trivially on singlet states and nontrivially
on triplet states, the construction readily extends to arbitrary
spin-s degrees of freedom, leading to a Liouvillian with spin
0,1,...,2s operators [27].

In the limit where the model is fully homogeneous the
eigenspectrum can be expressed in terms of total spin quantum
numbers and supports a nontrivial steady state. Away from
this limit the decay rates can be analyzed using the exact
Bethe ansatz solution, where we find that the nontrivial steady
state now decays with a decay rate that increases slowly
(logarithmically) with system size. The Bethe ansatz approach
is crucial in establishing the logarithmic scaling, since exact
eigenvalues can be obtained for system sizes where the Hilbert
space is too large for traditional exact methods. For higher
excited states in different symmetry sectors we observe that
the decay rate is proportional to the oscillation frequency with
a quantized prefactor, which is reflected in the eigenvalues
organizing themselves in approximately straight lines in the
complex plane.
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APPENDIX A: HERMITIAN MODEL

In this Appendix we provide an overview of the exact so-
lution of the Hermitian XXZ Richardson-Gaudin model (see,
e.g., [31-36,55,61-63]). For a set of L spin-1 particles, the
conserved quantities Q;, j = 1...L are given by

Q=5 —i—gZ[ V (S*S + 5755+ MSZSZ]
k#j
(A1)

satisfying [Q;, Ox] = 0, Vj, k. The Bethe states are defined as

r.ooy) =] (Z w‘/__v S+> 19) , (A2)

a=1

with [4) =|1,-1); ® ---® |1, -1
tions are given by

), and the Bethe equa-

N
—Z”b+”“ =0, a=1...N, (A3)
Up — Vg

with corresponding eigenvalues

Nw—i—v La)—i-a)
j i k
qj = — 1+g§ ﬁ—gi !

a=1 "/

w; — W,
R Bt

(A4)

A Hamiltonian with all-to-all interactions can be con-
structed by writing

Za)j(Qj +ng) = Zwﬁ?(l +gZS,§)
J J k

+8) Joiax(SiS;+558)).  (A3)
J.k

where C; = (§)> + (S} )+ (S; )? = 2 is the Casimir operator
for each algebra. Note that part of the interaction has been
absorbed in the first term, but since total spin-z projection is
a conserved quantity it can be replaced by its eigenvalue. We
can define a new interaction strength
-1 _ -1 _
Gl=g'+) S=g'+WN-L). (A6)
J

and we obtain the Hermitian Hamiltonian from the main text
as

ij(Qj +gcj)/<1 + gZSk>
i k

=Y 0SS+ Gy Jaion(S;S+58). (A
i Jik

The Bethe equations can be rewritten in terms of this new
coupling constant as

1-G

[OF] Vp
2G +;w-—jv _X;vb—vazo’

as well as the conserved charges

Q.i/(l + 8251‘7;)
k

(A8)

L
= 55— G(5) +26 3 | LI (515t + 88))
J J | w; — wx
k#j
+ SZSZ] (A9)
wj — W

where the corresponding eigenvalues of this rescaled operator
can be written as

N L
~(1+6)+26y. —2— 26y (A10)
—wj— v, o @i~

The Liouvillian from the main text now corresponds to a non-
Hermitian XXZ model with G = ig.

For completeness, we note that the Hermitian model un-
dergoes a phase transition at |G| = 1. This can easily be
understood since we can write

G .
H=) o+ -(Q'0+00"
J

1 G
= E[QT, 01+ E(QTQ + 00", (A11)
with Q7 = Z NCIRY ST. We can hence rewrite H as
1 . —1
H=G: Q'Q+G2 00'. (A12)

For |G| <1 the ground state is adiabatically connected
to the noninteracting ground state at G =0, i.e,
(SHSH?. .. (S§/2)2 |9) for w;<w; if i<j and N
even, filling the vacuum state with N spin excitations. At
|G| =1 there is a quantum phase transition for either N < L
(at G=1) or N>L (at G=—1). At the transition the
Hamiltonian is positive semidefinite, and the ground state
has zero energy and is highly degenerate. For example, for
G = 1 the Hamiltonian can be written as QfQ, for which the
ground states are the states annihilated by Q, also known as
dark states [64], and there is a combinatorial number of such
states for N < L. For G > 1 we find that the ground state
is adiabatically connected to (S7)*(S7)*(S7)?...|4). This
transition can be interpreted as a transition to a collective
phase, where the ground state reduces to a fully isotropic
singlet state Sy = O in the homogeneous limit.

APPENDIX B: EIGENSPECTRUM FOR S* # 0

For completeness, we show the eigenspectrum of the
non-Hermitian Hamiltonian with S* # 0 in Fig. 6. All eigen-
values remain complex as @ is increased, and at large
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FIG. 6. Eigenspectrum for L =4 and N =2 with w; =i, i =
1...L as g is varied. Note that the real part is rescaled by g. The
eigenstates are labeled by the spin occupation numbers [n; 1, 13 14]
in the noninteracting limit g = 0, with N = Zj n;.

coupling strengths the imaginary part is approximately con-
stant whereas the real part is proportional to g.

APPENDIX C: EIGENVALUES
OF THE COMMUTING OPERATORS

In order to obtain the equations determining the eigen-
values of the commuting operators, we define a continuous
function

N

1
zzu—va

a=1

A(u)

(ChH

following Refs. [50,53]. We again start from the Hermitian
model, for which the Bethe equations can be rewritten as

@ e 1 A
— =0, C2
2va+Za)j—va va—va €2)
j=1 b#a

where we have introduced o = 1 + G~' 4 2(L — N) for con-
venience. We then find

[AG)]?

ZZ(M_U)Z Xa:z(u—va)(u—vb)
Z;(u_va)z 222>

a b#a

(bl - va) (va - vb)

1 1 o 1
ZZ(M—Ua)z_ZZ(M_Ua)|:2Ua+ij_va:|
a a J
1 o 1 1
:Z(u_va)z_;;[ +_i|

U—Vq Vg

2y Y -

J#La

_22 1

~ (1 — V) (@; — Va)

(€3)

where we have performed a partial fraction decomposition in
the second and fourth lines, assuming u # w;, j#i for a
fixed i, and used the Bethe equations to evaluate the summa-
tion b # a. These can be further evaluated since

= —Z =—> AWw). (€4
wj — Vg ,
J
again making use of the Bethe equations, to find
Au) — Aw))
A = ——A Alw 2 _—
[A@w)] = () + = Z @) +2) p—
J#i
SIS S
~ (u — v,)? —~ (1 — Vo) (@i — Vo)
(€5
We can plug in u = w; and multiply the equation with w; to
find
2 _ , R
oA @)’ = —aA(w)+2)  Aw;) Z P——

J

A(w; A
+20 Z (U)) (w/) (C6)
— w;
JF#L
This is almost a closed set of equations for {A(wy) ... A(wp)},

except for the dependence on ), 1/(w; — V)2 = —A ().
This dependence can be removed by taking the derivative of
the above equations with respect to u and again evaluating at
u = w;, leading to

2A ()N (wi)
= 2 N+ Ay - ZA(w,
@i @i J#
+2Z A(“” 221\(‘”—1\22“”) (€7
P J#i @i T @j

This equation can be used to express A’(w;) in terms of
{A(®y) ... A(wr)}, which can then be plugged into the pre-
viously obtained equations to obtain a closed set of equations.
Defining

vi = 20;GA(w;) +2G(L — N) + 1 (C8)

then returns Eq. (28) after some straightforward manipula-
tions.
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APPENDIX D: HEINE-STIELTJES CONNECTION

In this Appendix, we find an explicit expression for the
large rapidities w;...w, in terms of the finite rapidities
vy ..., given Eq. (18). Defining A = Z?zl wj— >0 v,
we can write the Bethe equations for the large rapidities as

N p
e e N}
29 Wy b#wb—wa

a=1...p. (DI1)

We can relate the solutions of these equations to the roots
of associated Laguerre functions. The associated Laguerre
polynomials LY (z) satisfy the differential equation

ZP"(2) + (1 + o — 2)P'(2) + nP(z) = 0,

for P(z) = L;(z), and from the Heine-Stieltjes connection
[65,66] the roots z,, a = 1...n are coupled through

1 S
Za b;éuza_Zh

D2)

1 —

=0, a=1---n (D3)

The Bethe equations for the large roots can be recast in terms
ofx, =1/w, as

. p
EELINNE S

29 x4 beta Xa — Xp

These are exactly the equations for the roots of the associated
Laguerre polynomials L (z) with z, = —2Ax, = —2A/w,,
n = p, and @ = i/g. We can also recover the sum rule from
the main text since

(D4)

"1 P'(0
A L (DS)
= Za P(0) 1+«
which here reduces to
d p
Z w, = —2A —. (D6)
pa 1+i/g
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