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Resonant pair-exchange scattering and BCS-BEC crossover in a system composed of dispersive
and heavy incipient bands: A Feshbach analogy
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We theoretically show that a two-band system with very different masses harbors a resonant pair scattering
that leads to novel pairing properties, as highlighted by the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein
condensation (BEC) crossover. Most importantly, the interband pair-exchange coupling induces an effective
intraband attraction in each band, enhancing the superfluidity/superconductivity. The effect, a kind of Suhl-
Kondo mechanism, is specifically enhanced when the second band has a heavy mass and is incipient (lying
close to, but just above, the chemical potential μ), which we call a resonant pair scattering. By elucidating the
dependence of the effective interactions and gap functions on μ, we can draw an analogy between the resonant
pair scattering and the Feshbach resonance.
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I. INTRODUCTION

One of the central issues in superconductivity/

superfluidity is the crossover between the Bardeen-Cooper-
Schrieffer (BCS) and Bose-Einstein condensation (BEC)
regimes, or a crossover between weak- and strong-coupling
regimes [1–4]. Another crucial interest in recent years
is the multiband superconductors and superfluids, which
harbor many specific interests. Indeed there has been an
upsurge of interests in multiband and multiorbital effects on
superconductivity in a wide variety of strongly correlated
solid-state systems as exemplified by the iron pnictides,
copper oxides, and heavy-fermion compounds [5–10].
Multispecies cold-atom systems have also been intensively
studied for exploring a variety of phenomena. Now, an
intriguing question we want to elaborate on in the present
work is as follows: What if we combine these two subjects to
consider a BCS-BEC crossover in multiband superconductors
and superfluids? Indeed, in solid-state systems, the iron-based
superconductor is inherently multiband, and some compounds
in the material family are considered to be in a BCS-BEC
crossover regime. In cold-atom systems, there exists, in
addition to the magnetic Feshbach resonance, what is
called the “orbital Feshbach resonance” when the atomic
spieces (such as Yb) have inert electron spins but multiple
orbital states. This can be utilized to provide with open
and closed channels to realize the unitarity-limit region

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

in the crossover. Multiband systems also give us greater
opportunities in that there are several degrees of freedom to
be engineered, such as the mass ratio and band offset between
the bands, relative positions between the chemical potential,
and the respective band edges, where we can play around
with interband versus intraband interactions in considering
superconductivity/superfluidity.

A specific point of interest in multiband superconductors
is what is called the “incipient band” situations. Namely, in
some of the iron-based superconductors, the hole band has its
edge located close to, but slightly away from, the chemical
potential, which is called “incipient” [11–18]. While the ter-
minology “incipient” is often used in the community of the
iron-based FeSe superconductor for the incipient s± pairing
involving the hole band below EF, the concept of the incipient
situation itself was originally introduced in a 2005 paper [19].
Namely, the physics is that the pair scattering mediated by
spin fluctuations occurs between the main band and incipient
band [20–23], and this can drastically enhance superconduc-
tivity, especially when the incipient band is flat, as was found
in Ref. [19]. In such situations, the interband pair scattering,
on top of the intraband ones, crucially determines the gap
symmetry [24,25] (see Ref. [26] for a review).

A further feature in the iron-based superconductors is that
a compound Fe1+ySexTe1−x realizes crossover from the weak-
coupling BCS regime to the BEC condensation of tightly
bound pairs when the iron content y is varied [27–30]. With
decreasing y, the hole pocket becomes shallower, which
makes the ratio �/EF between the superconducting gap and
Fermi energy monotonically increase up to 0.5 [31], which has
been regarded as an indication for the BCS-BEC crossover.
Another solid-state system that accommodates the BCS-BEC
crossover is a hafnium compound LixHfNCl tuned with an
electric-double-layer structure [32]. At a low carrier density
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(x = 0.04), a pseudogap reminiscent of strong-pairing fluc-
tuations in the BCS-BEC crossover was observed, with �/EF

reaching 0.12 at x = 0.02. From theoretical viewpoints, it was
proposed that similar resonant phenomena can occur in nanos-
tructures with complicated geometries [33] or in tight-binding
band structures [34].

If we turn to cold-atom systems, on the other hand, the
unitarity limit in the BCS-BEC crossover was intensively in-
vestigated for the usual single-orbital, single-species ultracold
Fermi gases [35,36], where �/EF � 0.4–0.5 was reported
[37–39]. In the usual cold-atom systems, typically 6Li and 40K
Fermi atomic gases, are characterized by the s-wave scattering
length a for the interatomic interaction, which absorbs the
ultraviolet divergence arising from the singular contact-type
interaction. The quantity a can be controlled by an external
magnetic field with the magnetic Feshbach resonance associ-
ated with the electron-spin degree of freedom with S = 1/2
[40]. The BCS-BEC crossover is marked by a change of
sign of a, which is physically quite natural since it associates
the crossover with the formation of a bound state for a pair.
Now a realization of the two-band BCS-BEC crossover was
recently anticipated in Yb Fermi gases [41–45]. In the case
of the 173Yb atom with S = 0, the system accommodates
the orbital Feshbach resonance, which involves intrachan-
nel and interchannel interactions in a two-channel system
having different electron-orbital states, 1S0 and 3P0, and
nuclear-spin states [4,41,46,47]. The corresponding Hamil-
tonian is similar to the two-band superconductivity model
called the Suhl-Kondo [24,25]. Moreover, a bound-state for-
mation due to the two-band nature was demonstrated in recent
experiments [48].

The orbital Feshbach resonance can also be invoked for
inducing the Kondo effect by manipulating the spin exchange
interaction in a two-band system [49,50]. Since the different
orbital states of 173Yb feel different optical-lattice potentials,
this can be used to realize a two-band system having different
effective masses. As we shall show, a kind of BCS-BEC
crossover occurs in such a system, but that is driven by in-
terband coupling and hence totally different from the usual
single-band BCS-BEC crossover, where the scattering length
alone is the controllable parameter.

With the above background, the purpose of the present
work is to explore specific features in the BCS-BEC crossover
that arise when we have a fermion system (single-species,
spin-1/2) that consists of a lighter-mass band (called Band
1 hereafter) and a heavier-mass band (Band 2). We focus on
what will happen when we engineer the system by varying
a band offset E0 along with the position of the chemical
potential μ on top of the mass ratio of the two bands. For
the reason mentioned above and elaborated below, we are
specifically interested in the situation when Band 2 is “incip-
ient,” i.e., close to, but detached from, the chemical potential,
as schematically depicted in Fig. 1. The questions we ask
ourselves are as follows: Can the unusual superconducting
or superfluid states arise when the mass ratio is large in the
presence of intraband and interband pairing interactions? The
interband interaction gives rise to interband pair scattering
(i.e., virtual pair-exchange processes across the two bands). In
two-band systems the gap function has two components, and
we solve the two-component gap equation where we focus

FIG. 1. Band dispersions [against (kx, ky ) with a kz = 0 pro-
jection in this plot] of the two-band system considered here with
different effective masses with a band offset E0. The upper band
(Band 2) is assumed to have a heavier mass than the lower band
(Band 1). Since we are interested in the situation where Band 2 is
incipient (see text), the chemical potential μ is tuned around the
bottom of Band 2.

on the intraband pairing in the case in which the chemical
potential is set around the bottom of the incipient band.

We shall particularly clarify how the superfluid/

superconducting gaps and number densities behave in
the presence of the resonant pair scattering by varying the
mass ratio between the two bands. There, a point of interest is
the effective scattering length [51–53] that characterizes the
effective intraband interaction induced by the interband pair
scattering. We shall show that the superfluid/superconducting
gaps in the two bands are strongly enhanced in a manner
drastically dependent on the band. This originates from
the interband pair scattering when the incipient band is
heavy, where the effective scattering lengths cross from the
weak-coupling regime over to the strong-coupling one in a
manner drastically dependent on the band.

This paper is organized as follows. In Sec. II, we present
the two-band model Hamiltonian and formulate the gap equa-
tion to be solved numerically. We employ the mean-field
BCS-Leggett theory [1,4,54], which is known to successfully
describe qualitative features of the BCS-BEC crossover at
zero temperature in dilute systems as exemplified by cold
atoms. While the BCS theory basically assumes that the exci-
tation is restricted around the Fermi energy with the density of
states taken as a constant, the BCS-Leggett theory employed
in this paper includes excitations at shorter wavelengths. Such
a difference is crucial for describing the BCS-BEC crossover
in the that high-momentum excitations also occur in the
strong-coupling regime where the Fermi surface is absent [4].
This is not directly applicable to the above-mentioned strongly
correlated solid-state systems, but is expected to give a hint for
the BCS-BEC crossover in multiband superconductivity.

Within the mean-field theory, the number density and the
effective scattering length in each band are calculated. In
Sec. III, we show numerical results for the chemical potential
dependence of the superfluid/superconducting gaps, number
density ratio, and effective scattering lengths. Section IV sum-
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FIG. 2. (a) Interband pair-scattering processes are schematically
shown on the band dispersion, here for μ < E0 in the presence of
the pair-exchange interaction U12,U21. (b) Corresponding diagrams
for the interaction vertex �i for Band i [Eq. (9)], which is related
with the effective scattering lengths aeff

i as defined in Eq. (9). (c) The
effective intraband interactions U eff

ii , Eq. (11), are composed of the
bare intraband interaction (Uii; wavy lines) and the pair-exchange
interaction between Band 1 and Band 2, which involves multiple
scattering � j in Band j( �= i).

marizes the paper. Throughout the text, we use units in which
h̄ = kB = 1, while the system volume is taken to be unity.

II. FORMULATION

As depicted in Fig. 1, we consider a two-band continuum
model in three spatial dimensions, where the bands, with

different masses and a band offset, have the dispersions

ξi(k) = k2

2mi
− μ + E0δi,2. (1)

We assume a parabolic dispersion ξi(k) against momentum
k for each band labeled by the index i = 1, 2 having a mass
(i.e., an effective mass for a lattice) mi, E0 is the band offset,
and μ is the chemical potential. For a given value of E0,
we regard the chemical potential as a control parameter. The
Hamiltonian reads [55]

H =
∑
i,k,σ

ξi(k)c†
k,σ,ick,σ,i +

∑
i, j

∑
k,k′

Vi j (k, k′)B†
k,iBk′, j, (2)

Bk, j = c−k,↓, jck,↑, j, (3)

where c†
k,σ,i creates a fermion with momentum k and spin

σ (=↑ or ↓) in band i, and B†
k,i is the pair-creation operator

in band i. The second term in H describes intraband (i = j)
and interband (i �= j) interactions. For the interaction Vi j , we
assume in this paper, with cold-atom systems in mind, the
contact-type attractive interaction

Vi j (k, k′) = −Ui jθ (	 − k)θ (	 − k′),

where Ui j � 0 and 	 is a (spherical) momentum cutoff,
which is required to avoid an ultraviolet divergence due to the
contact-type interaction [4].

To renormalize the intraband interaction Uii against 	, we
can define, as a measure of Uii, an s-wave intraband scattering
length ai in Band i as [4]

4πai

mi
= −Uii

1 − Uii
∑k�	

k
1

k2/mi+2E0δi2

. (4)

We apply the mean-field approximation to both the intra
and interband pair-scattering processes in the Hamiltonian
Eq. (2) for describing the superfluid/superconducting proper-
ties. The gap equation in a two-band system can be expressed
in such a way that the two superfluid/superconducting gaps
�1,�2 are coupled as [56,57]

�i =
∑
j=1,2

Ui j� j

k�	∑
k

tanh
(Ej (k)

2T

)
2Ej (k)

, (5)

where Ej (k) = [ξ 2
j (k) + �2

j ]
1/2 is the quasiparticle disper-

sion in the superfluid/superconducting state. For applying
the mean-field approximation, the effect of inter-band pair-
scattering processes is nonperturbatively included in our
two-band gap equation (5). This equation reproduces the two-
body bound-state equation in the large interband-coupling
limit (see Appendix A). In the limit where the interband
interactions U12 and U21 are larger than the intraband inter-
actions U11,U22, Eq. (5) corresponds to the gap equation in
Eq. (25) of Ref. [58] where the interband pair scattering is
dominant.

We note that Eq. (5) can also be obtained from the
condition for the gapless collective mode in the T-matrix
approximation [4]. Although its form is different from more
sophisticated approaches such as the self-consistent T-matrix
approximation, we employ the present formalism since the
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T-matrix approach based on Eq. (5) is successfully applied
to the BCS-BEC crossover [59–61].

Since we are interested in the incipient situation, we tune
μ around μ = E0 where μ touches the bottom of Band 2, in
which the occupied number density ni in Band i changes with
μ as

ni = 2
∑

k

{
v2

i (k) f [−Ei(k)] + u2
i (k) f [Ei(k)]

}
, (6)

where f [±Ei(k)] = 1/(e±Ei (k)/T + 1) is the Fermi-Dirac
distribution function, while the BCS coefficients are
given as

v2
i (k) = 1

2

[
1 − ξi(k)

Ei(k)

]
, (7)

u2
i (k) = 1 − v2

i (k). (8)

In the presence of the interband interaction U12, we
have the resonant pair-scattering, as shown in Fig. 2(a)
and captured diagramatically in Fig. 2(b). We can then
calculate the effective scattering length aeff

i , which re-
flects the pair-exchange-induced intraband attraction in
Fig. 2(b) as

4πaeff
i

mi
≡ �i = −U eff

ii

1 − U eff
ii

∑k�	
k

1
k2/mi+2E0δi2

. (9)

Here �i is the interaction vertex, and U eff
ii is the effective

interaction in Band i that can be obtained by rewriting Eq. (5)
as

�i = U eff
ii

k�	∑
k

�i

2Ei(k)
tanh

(
Ei(k)

2T

)
(10)

with

U eff
ii = Uii + Ui j� jUji, (11)

� j =
∑k�	

k

tanh
(

E j (k′ )

2T

)
2Ej (k)

1 − Uj j
∑k�	

k

tanh
(

E j (k′ )

2T

)
2Ej (k)

(12)

for (i, j) = (1, 2) or (2,1).
The BCS-BEC crossover is characterized in terms of the

dimensionless coupling parameter, 1/(k0ai ), as [4]

1/(k0ai ) → −∞ : weak-coupling BCS limit, (13)

1/(k0ai ) → +∞ : strong-coupling BEC limit, (14)

where k0 ≡ √
2m1E0 is the Fermi momentum as defined for

a zero-temperature ideal Fermi gas having a mass m1 and
Fermi energy E0 of Band 1 when Band 2 starts to be occupied.
Since we want to focus on the effects of the pair-exchange
coupling, the intraband couplings are taken to be weak as
1/(k0a1) = 1/(k0a2) = −2 throughout the present paper. The
crossover of interest here is driven by interband coupling,
hence it is distinct from the usual single-band crossover. We
now examine how the 1/(k0aeff

i ) changes across the BCS to
BEC regimes as μ is increased for various values of Ũ12 and
m1/m2. The momentum cutoff is here taken to be 	 = 100k0.

We numerically checked that the result does not change sig-
nificantly for larger cutoffs.

III. RESULTS AND DISCUSSIONS

A. Superfluid/superconducting gaps and particle densities

The result for the gap functions against the chemical poten-
tial μ/E0, calculated from the mean-field Eq. (5), is displayed
in Fig. 3 for �1 and Fig. 4 for �2 for the mass ratio m1/m2 =
1, 0.25, 0.1. It is convenient to introduce a dimensionless in-
terband pair-exchange coupling [58,61]

Ũ12 ≡
(

	

k0

)2 n

E0
U12, (15)

where n = k3
0/(3π2) is the total particle density as defined

for a zero-temperature ideal Fermi gas having a mass m1 and
a Fermi energy E0. For each value of m1/m2 we vary the
interband interaction Ũ12 from 0.0 to 2.0. The result for the
inverse effective scattering length 1/aeff

i , which serves as a
measure of the interaction strength, is also shown in the lower
panels of each figure.

We can see that both �1 and �2 increase with μ, but in a
way vastly dependent on m1/m2 and Ũ12, both in their mag-
nitude and the functional form against μ. The enhancement
of �1,�2 by the presence of the interband pair-exchange
coupling U12 can be regarded as a Suhl-Kondo mechanism
[24,25], but, crucially, this occurs more intensively with or-
ders of magnitude difference between �1,�2 for larger mass
difference (i.e., smaller mass ratio m1/m2), as is typically
seen in the result for m1/m2 = 0.1 where the incipient band
dispersion becomes almost flat.

If we look at the band dependence more closely, �1 is
always nonzero, while �2 vanishes for μ < E0 when U12 = 0,
which is because Band 2 is unoccupied as depicted in the
result for the band occupancies in Fig. 5 which shows that
the number density ratio n2/n1 is virtually zero for μ < E0

in the absence of U12 regardless of the value of m1/m2.
To be precise, even at U12 = 0, the onset of nonzero den-
sity in Band 2 is slightly shifted toward the lower chemical
potential with decreasing m1/m2, a feature due to the intra-
band attraction.

In the presence of U12, on the other hand, �2 also becomes
finite even for μ < E0. There, �1 and �2 become simulta-
neously finite through the coupling in Eq. (5) due to virtual
pair-exchange processes. Band 2 occupancy n2 also becomes
significantly finite for μ < E0 due to U12, implying the acqui-
sition of pair condensation in the incipient band located above
μ.

Another characteristic feature is that both �1 and �2

remain finite even at μ = 0 when the mass ratio is small
and the pair-exchange coupling is sufficiently large. Although
this may seem strange, a bound state prevails in such a
case as suggested in the context of a two-body problem. In
this regime, the pair formation originates from the two-body
bound state formation (as seen from the pole of the T-matrix
discussed in Appendix A) rather than the Cooper instability.
Indeed, we obtain finite two-body binding energies Ebind at
Ũ12 = 1.5 and 2.0 therein. The finite binding energy in the
two-body problem is related to positive values of 1/(k0aeff

1 )
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FIG. 3. Superfluid/superconoducting gap �1 (upper panels) and the inverse effective scattering length 1/aeff
1 (lower) in Band 1 calculated

as functions of the chemical potential μ at different mass ratios m1/m2 = 1 (left panels), m1/m2 = 0.25 (middle), and m1/m2 = 0.1 (right).
In each panel the result is obtained for various values of the pair exchange coupling Ũ12 = 0.0, 0.1, 0.5, 1.0, 1.5, and 2.0 as color coded. We
take 1/(k0a1) = 1/(k0a2) = −2. At Ũ12 = 0.0, 1/(k0aeff

1 ) coincides with 1/(k0a1) = −2. The horizontal solid lines at 1/(k0aeff
1 ) = 0 represent

the unitarity limit, while the vertical dashed lines mark μ = E0. For μ → 0 where �2 is negligibly smaller than E0, we display the asymptotic
solutions obtained from the two-body calculation at μ = 0 (see Appendix A) as dotted curves.

at μ = 0 in Fig. 3(b3). However, we should note that this
argument does not hold for Band 2 because 1/(k0aeff

2 ) for
μ → 0 deviates from the result of Lippmann-Schwinger equa-
tion due to the many-body effect as discussed in Eq. (17)
below, i.e., �1 exerts a significant effect in Eq. (12) for

(i, j) = (2, 1). While n2 increases with m2 largely due to the
increased density of states, the interband pair-exchange acts
to reduce n2/n1 above μ = E0 as a result of the enhanced ef-
fective intraband attraction in Band 1, which we shall discuss
below.

FIG. 4. Same as Fig. 3 for Band 2. The behavior for μ → 0 with 1/(k0aeff
2 ) → 0 is displayed as dotted lines following Eq. (17).
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FIG. 5. Particle density ratio n2/n1 calculated for the mass ratio m1/m2 = 1 (left panel), m1/m2 = 0.25 (middle), and m1/m2 = 0.1 (right)
for various values of the pair exchange coupling Ũ12. The vertical dashed lines mark μ = E0. The intraband scattering lengths are set to
1/(k0a1) = 1/(k0a2) = −2 as in Figs. 3 and 4.

B. Effective scattering length in each band

We revealed in Figs. 3 and 4(b1) to 4(b3) that the inverse
effective scattering lengths, 1/(k0aeff

1 ) and 1/(k0aeff
2 ) defined

in Eq. (9), have dramatically different dependence on the
chemical potential when we vary the mass ratio m1/m2. Based
on the result, we can now argue how the BCS-BEC crossover
evolves with μ in the present two-band model for various
values of the interactions Ui j . The situation is indeed in a sharp
contrast with an ultracold Fermi gas around the magnetic
Feshbach resonance where the BCS-BEC crossover can be
realized by tuning the attractive interaction alone.

The effective intraband attraction in Band 1 as measured
by 1/(k0aeff

1 ) significantly and monotonically increases with
μ, where the value changes from negative to positive (i.e., aeff

1
itself diverges) typically in Figs. 3(b2) and 3(b3) for smaller
mass ratios. The sign change happens around μ = E0 where
μ touches the bottom of the incipient band. We can capture
its mechanism as schematically depicted in Fig. 6. There, we
compare the pair scattering processes in the present two-band
model with the conventional magnetic Feshbach resonance
in an ultracold single-atomic-species Fermi gas. In the Fermi
gas, the effective scattering length aFeshbach

eff between atoms in
the two-channel model is given by [4]

4πaFeshbach
eff

mA
= Ubg − g2

ν

1

1 − (2μA/ν)
, (16)

where mA is the atomic mass, μA the chemical potential, and
Ubg the background interaction. The attraction is induced by
the Feshbach coupling g between open-channel atoms and
closed-channel molecules that have an energy level at ν. One
can see in the above equation that aFeshbach

eff diverges at μA =
ν/2 due to the resonance tuned by μA. In the present two-band
system, aeff

1 diverges and changes sign (with aeff
2 also rapidly

changing; see Fig. 4) around μ = E0 for small Ũ12. So we can
regard this, where the resonant pair scattering arises, as an
analog of the Feshbach resonance accompanying a divergent
aFeshbach

eff . To be more precise, the change of 1/aeff
1 is related

to the fact that �2 starts to increase around μ = E0 when
U12 is small (see Appendix B). Thus there exists an analogy
between the two-band system and the conventional Feshbach
resonance, although there are some differences between the
two models (such as the Feshbach resonance being described
by the coupling between the continuum and a bound state,
whereas the resonant mechanism in the present two-band sys-
tem originating from the coupling between two continua). In
this analogy, U12 in the two-band model plays the role of g in
the magnetic Feshbach resonance. So we can summarize the
analogy as in Table I.

As exhibited conceptually in Fig. 6(a) and numerically in
Fig. 3(b3) for Ũ12 = 2, 1/(k0aeff

1 ) becomes large in a wide
region of μ in contrast to the weak pair-exchange case when
U12 is large and m1/m2 is small. Such a situation corresponds,
in the present analogy, to the so-called “broad Feshbach res-

FIG. 6. Conceptual correspondence between (a,b) the present two-band system and (c) the two-channel model conventionally used for the
Feshbach resonance. In (a) for Band 1, a virtual pair scattering from around the Fermi energy in Band 1 to Band 2 is depicted in the momentum
space. Panel (b) depicts the pair scattering from Band 2 to Band 1. In panel (c) the process of bound-state formation is depicted for the closed
and open channels against the relative coordinate (r) of two atoms, where g is the Feshbach coupling, and ν is the energy level of the closed
channel. Then Band 2 can be analogous to a closed channel, although Band 2 does not always form a bound state.
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Table I. Relationship between the present two-band model for reso-
nant pair-exchange scattering and the atomic two-channel model for
the Feshbach resonance.

Present two-band Feshbach resonance

Resonance energy μ � E0 μA = ν/2
Coupling U12 g

onance” as illustrated in Fig. 6 in that 1/(k0aeff
1 ) is strongly

enhanced as the interband interaction increases over a broad
range of μ around E0. In this way, the Band 1 crosses from the
weak-coupling BCS regime over to the strong-coupling BEC
regime with μ increasing across E0 when m1/m2 is sufficiently
small and Ũ12 sufficiently large. In particular, the effective
interaction in Band 1 for large U12 enters the strong-coupling
regime even before μ reaches the bottom of Band 2. Note that
one of the important differences between the present two-band
model and two-channel atomic systems is the fact that Band 1
in the two-band model cannot be reduced to a single-channel
model due to the large density of states in Band 2, which
results in the enhancement of n2/n1 in Fig. 5 for μ < E0. For
μ >∼E0, on the other hand, the strong effective interaction in
Band 1 in that regime acts to enhance n1, and hence reduces
n2/n1 in Fig. 5.

The enhanced pairing effect associated with analogy be-
tween the two-band model and two-channel atomic system
occurs in both cases of the system coupled with bosonic and
fermionic bands. We also note that in Ref. [34] a similar
mechanism of the Feshbach resonance was proposed for a
two-body problem in a two-channel tight-binding model with
equal effective masses. There, a Feshbach resonance in the
long-wavelength limit was discussed in terms of the scattering
length and phase shift for varied one- and two-body potentials
to reveal that the resonance can occur even when the closed
channel has no bound states. The present study, by contrast,
shows that the Feshbach analog arises driven by the chemical
potential without changing any model parameters such as Ui j

and E0. Also, we study here a many-body system, where a
nontrivial realization of the unitarity limit in Band 2, in par-
ticular, is induced by the coupled two superconducting order
parameters, which would be outside a two-body scattering.

If we turn to the incipient, heavy-mass Band 2, on the other
hand, the effective intraband interaction within the incipient
band reaches the unitarity limit, that is, 1/(k0aeff

2 ) → 0 for
μ → 0 in Fig. 4. We can also notice for the case of weak
pair-exchange coupling that the μ dependence of 1/(k0aeff

2 )
falls upon a universal behavior in the small μ limit for various
values of Ũ12. This unitarity-limit behavior occurs as long as
Ũ12 is nonzero (note that aeff

2 = a2 for Ũ12 = 0.0). In fact, we
can show in Appendix A that, whereas 1/(k0aeff

1 ) coincides
with the two-body calculation at μ → 0 regardless of the
value of Ũ12, 1/(k0aeff

2 ) deviates significantly from the two-
body calculation in the same limit in the presence of a nonzero
Ũ12. This deviation stems from the coherent coupling between
the binary condensates in the two-band system through the
gap Eq. (5), from which we can rewrite U eff

22 as

U eff
22 = 1∑k�	

k
1

2E2(k)

. (17)

Note that the right-hand side of the above equation does
not depend explicitly on Ũ12, a feature related to the afore-
mentioned universal behavior of 1/(k0aeff

2 ) for small μ and
Ũ12. At μ → 0 and �2/E0 � 0, Eq. (17) reduces to U eff

22 �
[
∑k�	

k
1

k2/m2+2E0
]−1, leading to 1/aeff

2 → 0 in Eq. (9). This
nontrivial realization of a unitarity limit in the incipient band
can also be interpreted as a narrow resonance mechanism as
opposed to the broad resonance, where the “narrow” means
that the change of the effective scattering length occurs in
a narrow range of the tuning parameter (μ in the present
model, a counterpart to ν in atomic systems); see more details
in Appendix B. In other words, in the narrow resonance the
interband interaction (g) is weak, where the resonance occurs
abruptly in the vicinity of the resonce condition. Thus we can
give a picture of the broad resonance for Band 1 with strong
interband interaction, and the narrow resonance for Band 2
with weak interband interaction. Incidentally, this situation
does not apply when the bound states are formed for small
m1/m2 and large Ũ12 as shown in Fig. 4(b3) (Ũ12 = 2.0, red
line), where the pairing is insensitive to the change of the
chemical potential as compared with the case of the Cooper
instability where the Fermi surface effect is crucial.

On the other hand, when Ũ12 is small, the 1/(k0aeff
2 ) de-

pends sensitively on the position of μ relative to E0. The
qualitative behavior of 1/(k0aeff

2 ) around μ = E0 can again be
understood by analogy with the Feshbach resonance. Namely,
the light-mass band and the heavy-mass (incipient) band cor-
respond, respectively, to the closed and open channels, as
depicted in Fig. 6(b). In the context of the atomic two-channel
model, assuming ν → −|ν|, [which corresponds to treating
Band 2 as the open channel in the two-channel model de-
scribed by Eq. (16)], we obtain

4πaFeshbach
eff

mA
= Ubg + g2

|ν| + 2μA
, (18)

which indicates 4πaFeshbach
eff /mA → Ubg for μA → ∞. Corre-

spondingly, by regarding the scattering continuum in Band 1
as the low-energy closed channel located at −E0 below the
Band 2 bottom, and by identifying Ubg with the bare intraband
interaction in our two-band model, we can again establish a
correspondence with the atomic model. This way, one can
obtain the analogy in terms of the effective scattering lengths
between the two-channel model and the Feshbach resonance
in atomic systems. Indeed, despite various differences be-
tween the two models, 1/(k0aeff

2 ) still approaches 1/(k0a2)
(taken to be −2 here) for μ >∼E0, as shown in Figs. 4(b1)
to 4(b3). In this regard, the incipient band crosses from the
unitarity limit over to the weakly-coupling regime with in-
creasing μ, which is just opposite to Band 1 where 1/(k0aeff

1 )
increases with μ. When Ũ12 is large, Band 2 remains around
the crossover even in the high-density regime (μ >∼E0).

IV. CONCLUSION

In this paper, we investigated the effects of the reso-
nant pair-exchange coupling and the resultant BCS-BEC and
unitarity-BCS crossover in a two-band model consisting of
dispersive and incipient nearly flat bands. Within the mean-
field theory, we elucidate the chemical potential dependence
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FIG. 7. The binding energy Ebind calculated against m1/m2 for
the Ũ12 = 1.5 and 2.0.

of the superfluid/superconducting gaps and effective intra-
band interactions induced by the interband pair-exchange
processes at various strengths of the pair-exchange cou-
pling and effective mass ratio between the two bands. We
found that superfluid/superconducting gaps in both bands are
strongly enhanced when the incipient band becomes flatter.
The effective scattering lengths which characterize the pair-
exchange-induced effective attraction in the dispersive band
are tuned from the weak-coupling to strong-coupling regimes
only by increasing the chemical potential, leading to the BCS-
BEC crossover without invoking any change in the coupling
parameters. We discussed the analogy between the magnetic
Feshbach resonance and the present two-band model in the
presence of the incipient band. Moreover, the nontrivial real-
ization of the unitarity limit in the incipient band was pointed
out in the case of the small chemical potential, leading to the
unitarity-BCS crossover with increasing μ.

From an experimental point of view, while the effective
scattering lengths cannot directly be measured in electronic
systems, the BCS-BEC crossover can be observed by measur-
ing energy spectra in tunneling spectroscopies (STM/STS),
which should exhibit quite different behaviors between the
BCS and BEC regimes. Moreover, angular-resolved photoe-

mission spectra (ARPES) should give detailed information
on quasiparticle spectra, as has actually been done for
the iron-based superconductors for detecting a BCS-BEC
crossover [31].

Although our model is rather simplified in describ-
ing real materials, such as iron-based superconductors and
bilayer graphenes, our results would be useful for un-
derstanding the strong-coupling properties of multiband
superfluid/superconductors. Moreover, our approach could be
applied to the topological flat band system as well as lattice
models. Thermal pairing fluctuations also play a crucial role
throughout the BCS-BEC crossover. These remain as impor-
tant future work.
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APPENDIX A: COMPARISON BETWEEN TWO-BODY
AND MANY-BODY SCATTERING PROPERTIES

Here, we summarize two-body properties in the present
two-band system. For convenience, we define a 2 × 2 matrix
V̂ for the coupling constants in the band basis

V̂
.=

(−U11 −U12

−U21 −U22

)
. (A1)

The in-vacuum two-body propagator is given by

Ĵ (ω+)
.=

(
J1(ω+) 0

0 J2(ω+)

)
, (A2)

where ω+ is the two-particle energy with an infinitesimal
imaginary part +iδ and

Ji(ω+) =
k�	∑

k

1

ω+ − (k2/mi + 2E0δi2)
. (A3)

FIG. 8. The ratio �2/�1 of the gap functions as shown in Figs. 3(a1) to 3(a3), Figs. 4(a1) to 4(a3), is displayed for the mass ratio m1/m2 = 1
(left panel), m1/m2 = 0.25 (middle), and m1/m2 = 0.1 (right) for various values of the pair exchange coupling Ũ12. The vertical dashed lines
mark μ = E0.
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We consider the diagonal component of the two-body 2 ×
2 T -matrix element Ti(ω+) in Band i, which is given by

Ti(ω+) = Ū eff
ii

1 − Ū eff
ii Ji(ω+)

, (A4)

where

Ū eff
ii = Uii + Ui j

Jj (ω+)

1 − Uj jJj (ω+)
Uji (A5)

is the two-body effective intraband interaction in Band i. In the
strong-coupling regime, we can obtain the two-body binding
enegy −Ebind < 0 in Band 1 (which gives −Ebind + 2E0 for
the two-body binding energy in Band 2) from the pole of
Eq. (A4) as

1 = Ū eff
ii Ji(−Ebind ), (A6)

as shown in Fig. 7. The presence of a nonzero Ebind indicates
that �1,�2 can be finite even at μ = 0 (as shown in Figs. 3
and 4).

The low-energy limit ω+ → 0 of Ū eff
11 coincides with

Eq. (11) in the main text for i = 1 at μ � 0 since �2/E0 � 0
even in the many-body counterpart. On the other hand, U eff

22
does not coincide with Ū eff

22 . More details about the deviation
between U eff

22 and Ū eff
22 are given in Appendix B, below.

We can further consider a situation in which the two-band
system is in the BEC limit (μ < 0, �1,�2 � |μ|) even when
only the interband interaction exists with no intraband ones
(large interband-coupling limit). Equation (10) rewritten from
Eq. (5) is then approximated to

1 � Ui j

k�	∑
k

1

k2/mj + 2|μ| + 2E0δ2 j
Uji

×
k�	∑

k

1

k2/mi + 2|μ| + 2E0δi2
(A7)

in the BEC limit for i �= j. The chemical potential in the BEC
limit satisfies the same equation (A6) as that for the two-
body binding energy in the absence of intraband interactions.

Therefore, we obtain

μ = −Ebind

2
. (A8)

This equation is similar to the single-band case, where the
chemical potential asymptotically approaches the result for
half the two-body binding energy in the BEC limit at zero
temperature.

APPENDIX B: LOW-DENSITY LIMIT OF 1/(k0aeff
i )

Let us here clarify the mechanism by which 1/(k0aeff
2 )

approach the unitarity limit despite the small pair-exchange
interactions as long as U12 is nonzero, while 1/(k0aeff

1 ) is in
the BCS regime for μ < E0.

First, note that U eff
ii can be cast into a form

U eff
ii = Uii + Ui j

� j

�i

∑k�	
k

1
2Ej (k)∑k�	

k
1

2Ei (k)

(B1)

for i �= j. In the low-density region (μ < E0, �1/E0 �
0, �2/E0 � 0), Eq. (B1) becomes

U eff
ii � Uii + Ui j

� j

�i

∑
k

1
k2/2mj−μ+E0δ j2∑

k
1

k2/2mi−μ+E0δi2 )

(B2)

= Uii + Ui j
� j

�i

m j

mi

	̃ +
√

m j
m1

(μ̃−δ j2 )

2 ln

∣∣∣∣ 	̃−
√

m j
m1

(μ̃−δ j2 )

	̃+
√

m j
m1

(μ̃−δ j2 )

∣∣∣∣
	̃ +

√
mi
m1

(μ̃−δi2 )

2 ln

∣∣∣∣ 	̃−
√

mi
m1

(μ̃−δi2 )

	̃+
√

mi
m1

(μ̃−δi2 )

∣∣∣∣
, (B3)

where we defined μ̃ ≡ μ/E0 and 	̃ ≡ 	/k0. Since we take
a large cutoff such that

√
μ̃ � 	̃,

√
μ̃ − 1 � 	̃, we end up

with

U eff
ii � Uii + Ui j

� j

�i

m j

mi
. (B4)

Hence U eff
22 depends strongly on the ratio �1/�2, while U eff

11
depends conversely on �2/�1. As shown in Fig. 8, �2/�1 for
μ < E0 region becomes smaller as Ũ12 is decreased at a given
mass ratio.
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