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Full-dimensional quantum mechanical study of 3He + 3He +X− → 3He + 3He X−(X= H or D)
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The atom-atom-anion three-body recombination (TBR) of 3He + 3He +X −(X=H or D) systems at ultracold
temperatures (T = 0.01 ∼ 100 mK) are studied by solving the Schrödinger equation in the adiabatic hyperspher-
ical representation. It is found that for each system, 3He + 3He +H− or 3He + 3He +D−, the J� = 1− symmetry
dominates the TBR process, and the rates of TBR into l = 1 3He X − molecular anions are roughly three times
as large as than that into l = 0 3He X − molecular anions for T ∈ [0.01, 10] mK, where l denotes the two-body
rotational quantum number. In addition, for a given product state, the TBR rates of the 3He +3He + H− system
are larger than that of the 3He + 3He +D− system by roughly two orders of magnitude which could be ascribed
to the major nonadiabatic couplings between the entrance and recombination channels.

DOI: 10.1103/PhysRevResearch.4.013030

I. INTRODUCTION

Three-body recombination (TBR), as a typical scattering
process, is one of the elemental types for chemical reactions.
Generally, in a TBR process, three particles collide with each
other, two particles form a molecule in a bound state, and the
third particle takes away the binding energy. Compared with
the two-body scattering process or bimolecular chemical reac-
tion, TBR is usually of importance for cold or ultracold atoms
and molecules of which the particles are considerably dense.
Since part of the released binding energy is transformed into
the kinetic energy of the third particle, TBR is a typical
exothermic reaction. Thus, it is a major loss mechanism of
Bose-Einstein condensation (BEC) [1–5]. This process may
cause huge losses of the ultracold atomic gas and limits the
density and lifetime of BEC [5,6]. Because the TBR process
plays an important role in many physical processes, including
trapping ultracold atoms [7,8], nuclear physics, the chemical
dynamics of combustion and gas-phase system [4,9,10], etc.,
this process has attracted wide attention of many researchers.

When the three-body collision process involving charged
particles, things become more different, and this has important
implications for radiation physics [11,12]. It is the funda-
mental mechanism of the gaseous radiation detector, excimer
lasers, and spectrometers [13,14]. Recently, the development
of hybrid trap technology which combines neutral atom traps
and ion traps, makes it possible to study the cold atom-ion
interaction and the chemical reactions in mK regime [9,15–
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21]. Most of the latest investigations of the atom-atom-ion
TBR were concentrated on the state of the final products and
the relationship between the collision energy and the TBR rate
[9,20,22–25]. Pérez-Ríos and Greene have derived a classical
energy scaling threshold law that the atom-atom-ion TBR rate
K3 and the total collision energy E should follow the relation-
ship of K3 ∝ E−3/4 [25]. In this classical threshold law, since
the charge-induced dipole interaction C4/r4 is more attractive
than the van der Waals interaction C6/r6, it is considered that
the TBR process for the atom-atom-ion systems are more
obvious than that for the neutral atomic ternary systems and
the molecular ion should dominate over the neutral molecule
as the most formed product. This deduction has been con-
firmed experimentally for the TBR of 87Ru + 87Ru + 138Ba+

and 87Ru + 87Ru + 87Ru+ systems in the mK regime [9,20].
Although the study of TBR process of neutral-neutral-ion
systems have some achievements in experiment, there are few
theoretical investigations and still several issues to be inves-
tigated, for instance, the validity of the threshold law in the
ultracold limit, i.e., E → 0 [25]. Moreover, it is still difficult
to perform quantum mechanical calculations of the TBR for
the heavy systems such as 87Ru + 87Ru + 138Ba+, because
the number of atom-dimer and ion-dimer channels is very
large. Therefore, the study for the TBR of neutral-neutral-ion
systems is an emerging, developing research topic with many
interesting aspects worth being studied [21,25,26].

In our previous works, the TBR processes of cold
4He +4He + H−/D− and 4He +4He + 6Li− / 7Li− systems
were calculated by full-dimensional quantum mechanical
treatment [22,27]. It was found that in the ultracold limit, the
rate of TBR into l = 0 molecular-anion products is larger
than that into l = 1 molecular-anion products for all these
three-body systems. Moreover, for 4He + 4He + 6Li− and
4He + 4He + 7Li− systems, the rate of TBR into molecular-
anion products is larger than that into the neutral molecular
products, which is consistent with the classical prediction.
However, for 4He + 4He +H− and 4He + 4He +D− systems,
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the rate of molecular-anion products after TBR process
is roughly two orders of magnitude larger than that of
neutral-molecule products, conversely, the rate of TBR into
molecular-anion products is less than that into neutral-
molecule products for the 4He + 4He +D− system.

In this paper, we extend the investigation to another two
systems, 3He + 3He +X −(X= H or D). Unlike the previous
work containing two identical bosons, the present system
contains two indistinguishable fermions, which is the simplest
system containing two fermions where the TBR process can
occur. This provides a theoretical basis for future research on
more complex systems. Through the full-dimensional quan-
tum mechanical calculations, we have studied the distribution
of final products after the TBR process in the ultracold limit
and the dependence of the TBR rate on the collision energy
for different partial waves. We expect to understand the mech-
anism for the different behavior by substituting fermions for
bosons in this work.

The paper is organized as follows. In Sec II, we explain the
treatments of the atom-atom-ion three-body recombination
and give all necessary formulas for theoretical calculation. In
Sec III, the results are shown and discussed in detail. A con-
clusion is given in Sec IV. Atomic units are used throughout
except when explicitly stated otherwise.

II. THEORETICAL APPROACH

The TBR rate of the three-body systems can be obtained by
solving the Schrödinger equation using the adiabatic hyper-
spherical representation [28,29] and R-matrix method [30,31].
After the separation of the center-of-mass motion, any three-
particle systems can be described by six coordinates. We
solve the Schrödinger equation for three interacting parti-
cles in an improved Smith-Whiten hyperspherical coordinates
{R,�} ≡ {R, θ, φ, α, β, γ }. R is the hyperradius, the only
length parameter, defining the overall size of this system, and
θ and φ are hyperangles, which are utilized to describe the
internal motion of the three-body system. The remaining three
are taken to be Euler angles, which are used to describe the
orientation of the body-fixed frame relative to the space-fixed
frame. A schematic figure of the definitions of the Euler angles
(α, β, γ ) and the axes of the body-fixed frame used in the
calculations is shown in Fig. 1.

In these hyperspherical coordinates, we rewrite the
Schrödinger equation with a rescaled wave function which
is related to 	(R,�) in the usual Schrödinger equa-
tion by ψ (R,�) = R5/2	(R,�). The Schrödinger equation
for a three-body system interacting through the potential
V (R, θ, φ) reads [32,33]

[
− 1

2μ

∂2

∂R2
+ �2 + 15

4

2μR2
+ V (R, θ, φ)

]
ψ (R,�)

= Eψ (R,�), (1)

where �2 is the squared “grand angular momentum operator”
[32,34]. μ is the three-body reduced mass and is given as

μ =
√

m1m2m3

m1 + m2 + m3
, (2)
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FIG. 1. Euler angles (α, β, γ ) relating the space-fixed frame
XYZ and the body-fixed frame xyz. The green solid lines represent
the axes of the space-fixed frame and the red solid lines represent
the axes body-fixed frame. The three particles lie in the body-fixed
frame, and the center of mass of the three particles is crossed by the
z axis.

where mi(i = 1, 2, 3) is the mass of particle i, with i = 1
assigned as the hydrogen anion, i.e., H− or D−, and i = 2 and
3 as the two indistinguishable fermionic helium atoms.

The potential energy V (R, θ, φ) is approximately to be a
sum of the three pairwise two-body potentials [30]

V (R, θ, φ) = VHeH− (r12) + VHeHe(r23) + VHeH− (r31), (3)

where ri j is the internuclear distance between given two parti-
cles, and in terms of the hyperspherical coordinates, it can be
expressed as [22,29]

r12 = 2−1/2d12R[1 + sin θ cos(φ + φ12)]1/2, (4)

r23 = 2−1/2d23R(1 + sin θ cos φ)1/2, (5)

r31 = 2−1/2d31R[1 + sin θ cos(φ − φ31)]1/2, (6)

with φ12 = 2 tan−1(m2/μ), φ31 = 2 tan−1(m3/μ). The ranges
of the hyperangles are taken as θ ∈ [0, π/2] and φ ∈ [0, π ].
di j are defined as

di j =
√

mk (mi + mj )

μ(mi + mj + mk )
, (7)

where the indices (i, j, k) are a cyclic permutation of (1, 2, 3).
For the He-He dimer potential VHeHe(r), we adopt the rep-

resentation designed by Jeziorska et al. [35]. For the He-H−
potential VHeH− (r), the potential of Casalegno et al. is adopted
[36]. These potentials have been successfully applied to the
calculations of several three-body collisions [27,29,37,38],
and both VHeHe(r) and VHeH− (r) are fitted with analytical mod-
els to the precise ab initio computed points at small distance,
while the asymptotic part of the He-He interaction potential
is established by taking the precise Van der Waals constants
from C6 to C16, and that of He-H− interaction is determined by
the C4 which is the accurate coefficient of the anion-induced
dipole interaction. For 3He-H− and 3He-D− interaction, there
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TABLE I. Two-body rovibr ational energies Eνl , with ν the vi-
brational quantum number and l the rotational quantum number, and
s-wave scattering lengths calculated using the dimer potentials from
Refs. [36,38].

System (ν, l ) Eν,l (a.u.) Eν,l (mK × kB) a(a.u.) a(Å)

3HeH− (0,0) −1.63 × 10−6 −514.79 5.52 2.92
(0,1) −4.77 × 10−8 −15.08

3HeD− (0,0) −3.12 × 10−6 −985.11 −65.01 −34.4
(0,1) −1.66 × 10−6 −524.01

are two bound states, i.e., (ν = 0, l = 0) and (ν = 0, l = 1),
where ν and l denote the vibrational and rotational quan-
tum numbers. Whereas, for 3He-3He interaction, there is no
bound state. Here, for convenience, the collective vibrational
quantum number ν used for these molecular anions will be
removed in the following discussion. The bound state energies
and corresponding s-wave scattering lengths calculated by
these two interaction potentials are shown in Table I. Note that
an absolutely accurate potential energy surface should include
the retardation and nonadditive three-body terms, whereas
no nonadditive three-body potential is available in the liter-
ature for the He + He + H− system. Thus, we solely use
the sum of the relevant pairwise potentials. In addition, the
hyperfine interactions among these three particles are also
neglected in this work. Taking the hyperfine interactions into

account would include more channels and require computa-
tional powers beyond the state-of-the-art. Here, due to the
close structures of the helium atoms and the hydrogen anion
in the electronically ground states, the hyperfine interactions
only include interactions associated with nuclear spins, which
generally tend to be very weak compared with the electronic
potentials. How much such interactions influence the TBR
process is an intriguing scientific issue and requires much
further study in the future.

In our calculations, in order to solve Eq. (1), the first step is
to solve the fixed-R adiabatic eigenvalue equation for a given
symmetry J�, where the J and � are the total nuclear orbital
momentum and parity, and obtain the adiabatic eigenfunctions
�J�

v (R; �) and the eigenvalues Uv (R)[
�2

2μR2
+ 15

8μR2
+ V

]
�J�

v (R; �) = Uv (R)�J�
v (R; �). (8)

Then, the wave function ψ (R,�) can be expanded on the
complete orthonormal set of adiabatic eigenfunctions, i.e.,
angular wave functions or channels, �J�

v (R; �),

ψ (R,�) =
N∑

v=1

Fv (R)�J�
v (R; �), (9)

where the quantum number v distinguishes different channels
and N is the number of total channels we adopted.

Insertion of Eq. (9) into Eq. (1) leads to a set of one-
dimensional coupled differential equations

[
− 1

2μ

d2

dR2
+ Wv (R)

]
Fv (R) − 1

2μ

∑
v′ �=v

[
2Pvv′ (R)

d

dR
+ Qvv′ (R)

]
Fv′ (R) = EFv (R), (10)

where Wv (R) is effective potential, Pvv′ (R) and Qvv′ (R) are
nonadiabatic couplings, respectively. The explicit forms of
these three terms are defined as follows:

Wv (R) = Uv (R) − Qvv (R)

2μ
, (11)

Pvv′ (R) =
〈
�J�

v (R; �)

∣∣∣∣ ∂

∂R

∣∣∣∣�J�
v′ (R; �)

〉
�

, (12)

Qvv′ (R) =
〈
�J�

v (R; �)

∣∣∣∣ ∂2

∂R2

∣∣∣∣�J�
v′ (R; �)

〉
�

. (13)

The subscript � of the bracket signifies that integrals are
carried out only over the angular coordinates �.

From the definition of Pvv′ (R) and Eq. (10), it can be seen
that Pvv′ (R) is an important term and is generally adopted to
define the nonadiabatic coupling strength fvv′ (R), which is
used to characterized the magnitude of nonadiabatic coupling
between two channels [39]

fvv′ (R) = |Pvv′ (R)|2
2μ|Uv′ (R) − Uv (R)| . (14)

In order to solve Eq. (8), we expand the channel function
on Wigner D functions

�J�
v (R; �) =

∑
K

ϕJ�
Kv (R; θ, φ)DJ

KM (α, β, γ ), (15)

where the quantum numbers K and M represent the
projection of J onto the body-fixed and space-fixed z
axes, respectively. K = J, J − 2, . . . ,−(J − 2),−J for the
“parity-favored” case, i.e., � = (−1)J , and K = J − 1, J −
3, . . . ,−(J − 3),−(J − 1) for the “parity-unfavored” case,
� = (−1)J+1, where K should be even for even parity and
odd for odd parity. The resulting complex coupled equations
in θ and φ are solved by expanding ϕJ�

Kv (R; θ, φ) onto a direct
product of fifth-order basis splines [40]. The identical particle
symmetry of two 3He particles can be built into the adiabatic
equations via the boundary conditions [38]. At φ = 0,

(−1)J+KϕJ�
−Kv (R; θ, 0 − ϕJ�

Kv (R; θ, 0),

(−1)J+K+1 ∂ϕJ�
−Kv

∂φ
|φ=0 = −∂ϕJ�

Kv

∂φ
|φ=0,

(16)

and at φ = π ,

(−1)JϕJ�
−Kv (R; θ, π ) = −ϕJ�

Kv (R; θ, π ),

(−1)J+1 ∂ϕJ�
−Kv

∂φ
|φ=π = −∂ϕJ�

Kv

∂φ
|φ=π ,

(17)

therefore we only need to consider the range φ ∈ [0, π ].
In order to calculate accurately the adiabatic potential

Uv (R) and channel function �J�
v (R; �) in Eq. (8), the mesh

points in θ and φ should be designed carefully as described

013030-3



ZHAO, WANG, AND HAN PHYSICAL REVIEW RESEARCH 4, 013030 (2022)

(a) (b)

(c) (d)
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3
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FIG. 2. The adiabatic potential curves Uv (R) of the 3He + 3He + H− and 3He + 3He + D− systems contains all recombination channels and
the lowest entrance channel. (a) and (c) are the parity-favored cases for the two systems, i.e., J�(λmin)=0+(2), 1−(1), 2+(2), 3−(3) symmetries.
(b) and (d) are the parity-unfavored cases for the two system, i.e., J�(λmin)=1+(2), 2−(3) symmetries. The λmin represents the minimum λ in
the view of the symmetry for the two 3He atoms.

in Ref. [38]. In practice, we generate the basis splines for θ

from 100 mesh points, while we use 180 mesh points for φ.
Thereafter, we could solve �J�

v (R; �) and obtain Uv (R) which
is converged to at least six digits for all the channels calculated
from R = 2 a.u. to 2000 a.u. In order to track the abrupt
changes in the nonadiabatic couplings, a hyperradial grid with
approximately 2000 mesh points is used in this range, and
for R > 2000 a.u., the adiabatic potentials and nonadiabatic
couplings are extrapolated [31,41]. The �J�

v (R; �) is a priori
complex quantities which may have arbitrary phases upon
numerical diagonalization. Making Pvv′ (R) and Qvv′ (R) con-
tinuous in R is important for solving Eq. (10), thus a consistent
phase convention is required [42].

We solve the coupled one-dimensional equation Eq. (10)
using the adiabatic finite element method [31,39]. In this
work, about 1.2 × 104 finite element sectors are adopted and
distributed as Ri ∝ i3 from R = 2 to 2000 a.u., and 14 adi-
abatic channels are used. For R > 2000 a.u., for each de
Broglie wavelength, the density of finite element sectors is
fixed to eight element sectors. Then we extract the S matrix

by matching the numerical solutions. Finally, the total recom-
bination rate K3 is expressed as [43]

K3 =
∑
J,�

KJ�
3 = 2!

∑
J,�

∑
i

32(2J + 1)π2

μk4

∣∣SJ,�
f ←i

∣∣2
, (18)

where KJ�
3 is the partial recombination rate corresponding to

J� symmetry, i and f label the incident and recombination
channels respectively, and k = √

2μE is the hyperradial wave
number in the incident channels. SJ,�

f ←i is the scattering matrix
element from the channel i to the channel f .

III. RESULTS AND DISCUSSIONS

Since the 3He −X −(X=H or D) dimer has two bound states
(l = 0 and l = 1), the TBR processes of 3He + 3He +X −
systems include both the parity-favored and parity-unfavored
cases. The corresponding adiabatic potential curves Uv (R) as
function of the hyperradius R for the groups of the parity-
favored and parity-unfavored cases are shown in Figs. 2(a)
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(a) (b)

(c) (d)

FIG. 3. Total and partial atom-atom-anion three-body recombination rates as function of collision energy, for the 3He + 3He + H− [(a) and
(b)] and 3He + 3He + D− systems [(c) and (d)].

and 2(b) for the 3He + 3He + H− system, and for comparison,
those for the 3He + 3He + D− system are shown in Figs. 2(c)
and 2(d). Taking the 3He + 3He + H− system for example,
for each parity case, the curves represent the lowest entrance
channel (three free particles) and all recombination channels
(a dimer and a free particle). The total angular momentum J
of the system is set to be less than 4. For each J� symmetry,
Uv (R) changes dramatically and displays sharp nonadiabatic
avoided crossings in the short R range. For the parity-favored
case, as shown in Fig. 2(a), the lowest two curves of Uv (R) for
3− symmetry illustrate a sharp nonadiabatic avoided crossing
at R ≈ 20 a.u., and for the parity-unfavored case, the adia-
batic potentials of 2− symmetry in Fig. 2(b) show a sharp
nonadiabatic avoided crossing at R ≈ 30 a.u.. Actually, as
we will discuss later, it is more convenient to understand
the characteristics of the nonadiabatic couplings by using the
definition of fvv′ (R) in Eq. (14). By comparing Figs. 2(c) and
2(d) with Figs. 2(a) and 2(b), a strong differences between
the two systems can be revealed in the adiabatic potentials.
Instead of comparing the difference between the two systems
in the adiabatic potentials for each J� symmetry, we would
like to compare the TBR rates of the two systems and find

the most important J� symmetry for TBR process. Then, we
present a detailed comparison between the two systems for the
given J� symmetry which dominates the TBR process.

The TBR rates K3 for both parity-favored and parity-
unfavored cases (J < 4) associated with both the 3He +
3He + H− and 3He + 3He + D− systems are calculated and
are shown in Fig. 3. We have checked that the partial TBR
rates for the J � 4 cases have negligible contribution to the
total TBR rate for both the two systems in the considered
collision energy range. It is also worth noticing that the partial
TBR rate for J� = 3+ symmetry which contributes to the
formation of l = 1 3HeX− molecular anions is vanishingly
small, due to its relatively large λmin which is the minimum
value of λ allowed by the permutation symmetry for the two
3He atoms. Here, λ(λ + 4) is the eigenvalues of �2 [27]. Thus,
we do not show the partial TBR rate of J� = 3+. As can be
seen from Fig. 3, K3 is mainly contributed by only few partial
waves, especially for E < 10 mK. At even lower collision
energies (E < 1 mK), the red dashed curve denoting the total
K3 is almost on top of the black solid one which denotes the
contribution of the partial wave J� = 1−. This indicates that
the J� = 1− partial wave dominates the TBR process for the
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FIG. 4. Comparison of the total three-body recombination rates
leading to different molecular-anion products for 3He + 3He + H−

and 3He + 3He + D− systems.

two systems in this energy range. The partial TBR rates for the
two systems behave roughly as KJ�

3 ∝ Eλmin , i.e., roughly fol-
low the prediction of the generalized Winger’s threshold law
[7]. Thus, K3 is suppressed by decreasing the collision energy
E . This is entirely different from our previous calculations
on the TBRs of the 4He +4 He + X − (X = H, D, 6Li, 7Li)
systems, in which K3 always approaches to a certain constant
for E → 0 [22,27]. This can be ascribed to the substitution of
the two identical fermions 3He for the bosons 4He.

The contributions from the higher partial waves can be
distinguishable with the increase of the collision energy. The
rates of recombination to the l = 0 3He X − molecular an-
ions for the two systems are shown in Figs. 3(a) and 3(c),
respectively. Although the partial TBR rates for J� = 0+,
2+, and 3− symmetries for the two systems increase with E ,
their contributions to total TBR rate of 3He + 3He +X − are
still negligible. On the contrary, the contributions from the
partial TBR rates for J� = 0+ and 2+ to l = 1 3HeD− are
distinguishable for E > 10 mK, as shown in Fig. 3(d). For
E > 40 mK, the partial TBR rate for J� = 2+ is even greater
than that for J� = 1−. The TBR rates relevant to the forma-
tion of l = 1 3He X − molecular anions are shown in Figs. 3(b)
and 3(d). The J� = 0+, 1+ and 2+ symmetries have the same
λmin = 2, and according to the generalized Winger’s threshold
law mentioned above, their partial TBR rates have similar
behaviors with the variation of E2 [7]. The same statements
can be applied to the J� = 3− and 2− symmetries for which
λmin = 3. For E > 30 mK, the partial TBR rate for J� = 1−
does not dominate the total TBR any more.

For a more visual representation, we show the total TBR
rate K3 as function of the collision energies E for the two
systems in Fig. 4. It can be seen that the TBR rates of the
3He + 3He +H− system are always larger than that of the
3He + 3He +D− system. The rates of TBR into 3HeH− (l = 0
and l = 1) molecular anions are roughly two orders of mag-
nitude larger than that of TBR into 3HeD− (l = 0 and l =
1) molecular anions, within the considered collision energy
range. Additionally, for given collision system, the TBR rate

for the l = 1 molecular anions is always greater than that for
the l = 0 ones. It is worth noting that for E > 10 mK, the
rates of TBR into 3HeD− molecular anion increase drastically,
while that into l = 0 HeH− molecular anions does not present
such a strong increase rate, furthermore the rate of TBR into
l = 1 HeH− molecular anions even decreases. This is consis-
tent with the variations of the TBR rates of the partial waves
that we have discussed above in Fig. 3. Although in this low
collision energy range, the total TBR rates for 3HeD− (l = 0
and l = 1) molecular anions are lower than that for 3HeH−

(l = 0 and l = 1) molecular anions, it can be expected that the
former can be comparable with the latter for higher collision
energy.

The above differences between the TBR rates K3 of the
two systems, can be understood by considering the behav-
ior of the adiabatic potentials Uv (R) and the corresponding
nonadiabatic couplings fvv′ (R). Since the partial TBR rate for
J� = 1− dominates the total TBR in most of the considered
collision energy range, we focus on the recombination of this
symmetry. In this symmetry, we consider interactions among
the lowest entrance channel and all the three recombination
channels. The three recombination channels, are labeled as
v = 1 for 3He X − (l = 0)+3He and v = 2, 3 for 3He X − (l =
1)+3He. The lowest entrance channel is label as v = 4 for the
three-particle continuum state.

We first consider the 3He + 3He +H− system. Figure 5(a)
shows the lowest four adiabatic potentials corresponding
to the above four channels and the nonadiabatic coupling
strengths fvv′ (R) between each two channels. As shown in
Fig. 5(a), f23(R) is the most strong nonadiabatic coupling out
of the six couplings. This is because the two channels (v = 2
and 3) are close in energy. The energy asymptotes of the two
channels coincide, i.e., the bound energy of l = 1 3HeH−
molecular anions. Thus, f23(R) does not directly affect the
TBR rate for l = 1 3HeH− molecular anions though it is great
in amplitude. Obviously, the interactions between the entrance
channel v = 4 and the recombination channels v = 1, 2, 3 can
directly affect the TBR rate. Although f4,v (R) is very large
in the relatively short hyperradial range of R < 100 a.u., the
major pathways [44] associated with direct transitions from
the lowest incident channel to the recombination channels
tend to be difficult to occur in this short R range. It is because
in this short R range, the adiabatic potential energy corre-
sponding to the lowest incident channel is several orders of
magnitude larger than the collision energy considered in the
present work, cf. Fig. 5(a). Thus, the nonadiabatic couplings
between the lowest incident channel and the recombination
channels for R < 100 a.u. have little effect on the total TBR
rates, and the transitions from the lowest incident channel to
the recombination channels mainly occur in the large R range.
Nevertheless, it is still worth noticing that once any recombi-
nation channel has been populated, the population will then be
redistributed among all these relevant recombination channels
due to their nonadiabatic couplings. Here, the couplings be-
tween recombination channels in the short R range will affect
the population redistribution process, because the recombina-
tion channels are energetically accessible in this region.

For clarity, the TBR process can be described as “jumps”
of flow [27]. The TBR process can be consider to be a flow
of the population from the entrance channel to the recombina-
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(a) (b)

FIG. 5. For the J�=1− symmetry of 3He + 3He + H− system: (a) the lowest four adiabatic potential curves Uv (black dashed curves),
corresponding to three recombination channels and one entrance channel and their nonadaibatic coupling strength fvv′ (R) (color curves);
(b) the major nonadiabatic coupling strengths responsible for the three-body recombination process.

tion channel. On one hand, from the point view of potential
energy, there are two recombination channels (v = 2, 3) to
the formation of l = 1 3HeH− molecular anions, while the
number of recombination channels to l = 0 3HeH− molecular
anions is only one (v = 1). Additionally, the potential energies
for channels v = 2, 3 are both higher than that for channel
v = 1, and the former two are closer to the entrance channel
v = 4 than the latter one. As a result, we can expect that
the TBR rate K3 for l = 1 3HeH− molecular anions should
be larger than that for l = 0 3HeH− molecular anions. On
the other hand, from the point of view of the interactions
between the entrance channel and the recombination chan-
nels, we can also deduce the same expectation as above. As
shown in Fig. 5(b), f42(R) and f43(R) present relatively strong
couplings in a widespread R region from roughly 100 to 500
a.u., and these two couplings can be considered to be two
major wide passages connecting with the entrance channel
(v = 4) and the recombination channels (v = 2, 3), resulting
in the formation of the l = 1 HeH− molecular anions. How-
ever, for formation of the l = 0 HeH− molecular anions, the
incident flow has to “jump” into channel v = 1 from channel
v = 4 via the nonadiabatic coupling f41(R) which locates in a
relatively smaller R region (from roughly 100 to 300 a.u.).
Thus, in the large R region where the transition from the
lowest incident channel to the recombination channels mainly
occurs, the TBR rate for l = 1 HeH− molecular anions is
expected to be greater than that for l = 0 HeH− molecular
anions. In addition, although f41(R) is greater than f42(R) and
f43(R) in the short R region from roughly 100 to 170 a.u.,
f21(R) shows considerable coupling strength which constructs
a pathway for 3HeH− transferring from l = 0 back to l = 1.
This loss mechanism further suppresses the TBR rate leading
to formation of l = 0 HeH− molecular anions. In brief, by
taking the 3He + 3He +H− system for example, based on the
properties of Uv (R) and fvv′ (R), we can deduce that the TBR
rate for l = 1 is greater than that for l = 0, which is consistent
with the calculation results in Fig. 4. One can perform the
similar deduction procedure in the other system, and draw the
same conclusion.

Hereafter, we focus on the difference between the two
systems in the two aspects of Uv (R) and fvv′ (R). Figure 6(a)
shows the adiabatic potentials corresponding to the low-
est entrance channel and all recombination channels for the
3He + 3He +D− (dashed curves) and 3He + 3He +H− (solid
curves) systems. Due to the heavier mass of the D atom,
the adiabatic potentials for the 3He + 3He +D− system show
stronger attraction in short R range, while the energy dif-
ference between the asymptotes of the entrance and each
recombination channels is relatively larger, compared to those
for the other system. In the hyperspherical coordinates, a large
energy difference between the adiabatic potentials generally
corresponds to a smaller nonadiabatic coupling strength, cf.
Eq. (14). Thus, the TBR process tends to be difficult to occur
when the energy difference between the adiabatic potentials
corresponding to the lowest incident and highest recombi-
nation channels is relatively large. So, it may be relatively
harder for the TBR to occur in the 3He + 3He +D− system
than the other system. Particularly, due to the larger energy
difference between the asymptotes of the entrance and each
recombination channels for the 3He + 3He +D− system, its
nonadiabatic coupling in the long R range is weaker than
that for the other system. Figure 6(b) shows the contrast
of the major nonadiabatic coupling strengths for the two
systems. It can be seen that the strong nonadiabatic cou-
plings of the 3He + 3He +D− system mainly take place in
the short R range (R < 100 a.u.), where the TBR process
can be difficult to occur. The nonadiabatic couplings for
the 3He + 3He +D− system are weaker than those for the
3He + 3He +H− system in the large R range (R � 100 a.u.),
which is consistent with the above discussions based on
potentials. Thus, the rate for the formation of the 3HeD−

molecular anions is much less than that of 3HeH− molecular
anions.

IV. CONCLUSION

In this work, the three-body recombination process of
the 3He + 3He +X − systems has been investigated using the

013030-7



ZHAO, WANG, AND HAN PHYSICAL REVIEW RESEARCH 4, 013030 (2022)

(a) (b)

FIG. 6. (a) The lowest entrance channel and all recombination channels for the 3He + 3He + H− system (solid curves) and 3He + 3He +
D− system (dashed curves) for J�=1− symmetry; (b) A comparison of the corresponding major nonadiabatic coupling strengths.

adiabatic hyperspherical recombination. It is found that the
TBR process is dominated by only few partial waves, espe-
cially to the formation of l = 1 3HeH− molecular anions. The
TBR process is dominated by the J� = 1− symmetry. The
rates of TBR into l = 1 3He X − molecular anions are larger
than that into l = 0 3He X − molecular anions and the total
rate of the 3He + 3He +H− system is always larger than the
3He + 3He +D− system in our considered energy region. This
is ascribed to the major nonadiabatic couplings among the
entrance and recombination channels.
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