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Propagating irreversibility fronts in cyclically sheared suspensions
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The interface separating a liquid from its vapor phase is diffuse; the composition varies continuously from
one phase to the other over a finite length. Recent experiments on dynamic jamming fronts in two dimensions
[Waitukaitis et al., Europhys. Lett. 102, 44001 (2013)] identified a diffuse interface between jammed and
unjammed disks. In both cases, the thickness of the interface diverges as a critical transition is approached.
We investigate the generality of this behavior using a third system: A model of cyclically sheared non-Brownian
suspensions. As we sediment the particles toward a boundary, we observe a diffuse traveling front that marks
the interface between irreversible and reversible phases. We argue that the front width is linked to a diverging
correlation length scale in the bulk, which we probe by studying avalanches near criticality. Our results show
how diffuse interfaces may arise generally when an incompressible phase is brought to a critical point.
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I. INTRODUCTION

Whereas Young and Laplace conceived of fluid interfaces
as having zero thickness, it is now understood that physical
properties vary smoothly through them [1]. This situation
becomes most apparent near a critical point where interfacial
thicknesses diverge [2,3]. Recently, cyclically sheared non-
Brownian suspensions have emerged as a testbed for studying
nonequilibrium phase transitions [4–7]. This system exhibits
a dynamically reversible phase where particle trajectories re-
trace themselves in each cycle and an irreversible phase where
particle collisions lead to diffusive behavior [4,5,8–11]. It is
natural to ask whether an interface between these phases may
be produced, and if so, what its properties are. Moreover,
because cyclic shear can be used to tune rheology [12–14],
this understanding could impact the industrial processing of
suspensions, particularly when particle concentration or shear
strain vary spatially as in pipe flow [15,16].

Here we study the random organization of particles that are
driven toward a hard boundary using a simplified model of
cyclically sheared suspensions [17,18]. This setup produces
a well-defined interface between two bulk phases: A dense
irreversible phase that builds up from the bottom wall and a
reversible sinking phase [Fig. 1(b)]. We find that the inter-
face has a finite thickness that diverges as the sinking phase
approaches the critical density. We then link the interface
thickness to a bulk correlation length, which we uncover by
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applying point perturbations in systems with no sedimenta-
tion. Our results show strong similarities to dynamic jamming
fronts [19,20], where an interface between two nonequilib-
rium phases was identified with analogous properties [21].

II. MODEL

Our simulations are based on a simplified model of cycli-
cally sheared suspensions proposed by Corté et al. [5], which
evolves the positions of N disks of diameter d = 1 in a box
of width W and height H using discrete cycles. We use an
isotropic version of the model [7], where particles that over-
lap in a cycle are given a small kick in a random direction
[Fig. 1(a)] to emulate local irreversibility due to collisions
[22]. The kick magnitude is chosen uniformly between 0 and
ε, which we vary from 0.05 to 10. For small area fractions
φ0 = Nπ/(4W H ), the system self-organizes into one of many
absorbing states where there are no overlaps and the dynamics
are reversible thereafter. Previous work identified a critical
transition to fluctuating steady states that are diffusive at long
times [5]; these irreversible states occur when the density φ0

exceeds a critical value, φc.
Significant attention has been devoted to this model under

isotropic initial conditions and driving [6,8–10,23–25]. Here
we probe the transient dynamics as the particles are driven
toward a hard boundary. Following the sedimentation pro-
tocol of Ref. [17], each cycle has an additional step where
all particles move down a distance vs. Particles stop settling
at the bottom of the simulation box, and any kicks into that
wall are specularly reflected. We use periodic boundary con-
ditions in the horizontal direction. We study the behavior at
low sedimentation speed, vs � 16φcDW/(πd2N ), where D
is the coefficient of diffusion for a nonsedimenting system
measured at φ = 2φc [17]. In this regime, particle transport
due to sedimentation is much slower than from diffusion when
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FIG. 1. Self-organized compaction front. (a) Simplified model of
a cyclically sheared, sedimenting suspension after Ref. [17]. In each
cycle, a uniform sedimentation velocity vs is applied to all particles,
and particles that overlap (red) are given random kicks. (b) Typical
simulation showing a traveling front between a dense fluctuating
region and a dilute reversible region. The front moves at constant
speed v f until it reaches the top of the sediment and a fluctuating
steady state begins. Here N = 1273, φ0 = 0.2, ε = 0.5, W = 50,
H = 100, vs = 2 × 10−5. (c) Scaled front velocity, v f /vs. The data
over a wide range of parameters are well described by Eq. (1), which
assumes the two phases have uniform densities equal to φ0 and
φc. Here 0.05 � ε � 10; 300 < N < 16300; 10−6 � vs � 4 × 10−4;
0.05 � φ0 � 0.40; 0.16 < φc < 0.46.

compared over the vertical length scale πd2N/(4φcW ) [18],
which is the height of a bed of particles of density φc.

III. COMPACTION FRONTS

Figure 1(b) shows a typical system evolution. As the par-
ticles settle at velocity vs, a dense sediment builds up from
the bottom wall, with its top surface propagating upward at
a velocity that we denote by v f . Such a macroscopic phase
separation does not occur in the absence of gravity or an
external drive. If we assume that the upper region has constant
density φ0 and the sediment has constant density φc, then
conservation of area dictates [26]:

vsφ0 = v f (φc − φ0). (1)

To test this prediction, we first determine the value of φc

corresponding to the particular ε, W , and H that were used
in each simulation. We do this in independent simulations
without sedimentation where we gradually increment φ0 until
we observe an irreversible steady state [5]. Figure 1(c) com-
pares the observed front velocity scaled by the sedimentation
velocity, v f /vs, versus the ratio φ0/(φc − φ0). The data are in
good agreement with Eq. (1), supporting this straightforward
picture for the front velocity.

These considerations do not constrain the front profile.
Figure 2(a) shows the horizontally averaged particle density
versus height at equal intervals in time from a typical simu-
lation. Shifting the curves onto one another, we find that the
front shape is invariant in time [Fig. 2(b)]. We measure the
front width by fitting to a sigmoid:

φ(y) = φ2 − φ2 − φ1

1 + e(y−y f )/� f
. (2)

Although the observed plateaus at φ1 and φ2 are in general
close to φ0 and φc, we treat them as fitting parameters when
measuring � f . Figure 2(c) shows that the measured front
width depends strongly on φc − φ0, where the φc are mea-
sured using independent simulations without sedimentation.
We can also think of the top interface of the system in the
steady state as a stationary front with φ0 = 0. We measure
its width using Eq. 2 (with φ1 = 0) and we find the same
trend as the transient measurements without any rescaling of
parameters [Fig. 2(c)]. Altogether, the data are consistent with
a power law:

� f ≈ C(φc − φ0)−β, (3)

with β = 1.15 ± 0.18 and C = 0.24 ± 0.06.
One may expect the kick size ε to affect the front width,

since larger ε leads to a larger effective diffusion constant in
the sediment. Surprisingly, we find the front width to be in-
dependent of ε in our simulations [Fig. 2(d)]. Note that when
the kick size is smaller, the system can find absorbing states
at slightly higher densities. To account for this dependence of
φc on ε, we first measured φc independently in simulations
without sedimentation, where we find that it varies from 0.20
to 0.44 as ε is decreased from 5 down to 0.05. We then set
φ0 = φc(ε) − 0.1 for each of the simulations in Fig. 2(d). This
careful protocol reveals that � f is independent of ε when
φc − φ0 is fixed.

To look for any dependence on the system width W ,
we take the � f measurements from Fig. 2(c), divide them
by the power-law fit, Eq. (3), and plot this ratio in Fig. 2(e).
The data do not systematically increase with W , indicating
that the interface is not rough [27].

IV. CORRELATION LENGTH SCALE

It is natural to ask whether the finite interface thickness is a
manifestation of a growing correlation length scale in the bulk.
For random organization, Tjhung and Berthier [24] reported
static and dynamic length scales with exponents of 0.73 ±
0.04 and 0.77 ± 0.06, respectively, and a hyperuniform length
scale with exponents 0.76 and 1.23 when approaching φc

from below and above, respectively [7]. Hexner and Levine
reported a hyperuniform length scale with an exponent of 0.8
for noiseless systems [30] and 1.1 ± 0.1 when noise is present
[25]. However, it is not a priori clear which of these exponents
might be related to the diverging front width that we observe.

One intuitive method to probe a diverging length scale is
to perturb the system at a point and measure the characteristic
radius of the affected region. We start by initializing random
systems of density φ0 < φc in a square box with W = H =
400 and running the random organization model (with vs = 0)
until they reach a reversible state. Then we give one particle a
random kick. If it collides with another particle, we call this an
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FIG. 2. Interface shape and thickness. (a) Density profile snapshots for ε = 0.5, N = 16297, vs = 1.7 × 10−5, W = 100 sampled at a
regular period. Each curve is averaged over 200 systems. The data plateau to the dashed lines at φ0 = 0.2, φc = 0.376. (b) Translating these
six profiles atop one another shows that the front moves with fixed shape and width. The profile is consistent with a sigmoid [dashed line:
Eq. (2)]. (c) Measured front width, � f , versus proximity to criticality of the sedimenting phase, φc − φ0. Closed symbols: Transient fronts.
Open symbols: Interface at the top of the system in the steady state (where φ0 = 0 above the sediment). The data are consistent with a power
law with exponent −1.15 ± 0.18 (dashed line) over a wide range of parameters (0.05 � ε � 10; 300 < N < 16300; 10−7 � vs � 4 × 10−4;
0.05 � φ0 � 0.40; 0.16 < φc < 0.46). (d) The front width does not depend on ε. Here we adjust φ0 so that φc − φ0 = 0.1 is constant; all other
parameters are fixed (N = 1730, vs = 10−6, W = 50). Dashed line: Value of the fit in panel (c). (e) Scaling the front width by the power law
fit from panel (c), which shows that � f does not depend strongly on the system width, W .

“avalanche,” and we evolve the system until it reaches another
reversible state [31]. Figure 3(a) shows an example where the
red particles were active at some time during the avalanche.
For each avalanche, we measure (i) the distance � from the

initial perturbation to the farthest final position of all affected
particles; (ii) the size of the avalanche n, given by summing
over all cycles the number of particles that are active in each
cycle; and (iii) the duration t of the avalanche in cycles.

FIG. 3. Response to point perturbation. (a) Starting from a quiescent state, a perturbation may set off a chain reaction where many particles
are activated before the system becomes quiescent again. Colored particles were active at some time during the avalanche, and the darker
particles received more total kicks. (b) Histograms collected over many systems for the distance to the farthest activated particle, �; the number
of activated particles, n; and the avalanche duration in cycles, t . Solid lines: Fits to Eq. (4), where the measured exponent α is indicated in
each panel. (c) The curves are approximately collapsed when scaled by the location of the exponential cutoff. (d) Value of the cutoff versus
φc − φ0. Each curve diverges as a power law, with an exponent that is distinct from α (see Table I). All systems have ε = 0.5, W = H = 400,
and φc = 0.375.
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TABLE I. Comparison of critical exponents. Values are shown for directed percolation (DP, obtained from Ref. [28]), conserved directed
percolation (CDP/Manna, obtained from Ref. [29]), and the present work using point perturbations in the isotropic random organization model.
Greek notation matches that of Ref. [28].

Expression DP CDP/Manna Present work

Decay Maximum radius 2τ − 1 1.536 1.560 1.63 ± 0.10
Size τ 1.268 1.280 1.39 ± 0.07

Duration τt 1.450 1.510 1.47 ± 0.09

Cutoff Maximum radius, �∗ 1/(2σ ) 1.089 1.115 1.03 ± 0.08
Size, n∗ 1/σ 2.179 2.229 1.82 ± 0.19

Duration, t∗ 1/σt 1.297 1.225 1.45 ± 0.14

To build up statistics, we generate up to 100 reversible
states for each value of φ0; each is used in 103 tests where we
select one particle at random as the site of the perturbation.
Histograms of �, n, and t are shown in Fig. 3(b) for various
φc − φ0. We find good fits to the function:

P(x) = Ax−α exp(−x/x∗), (4)

where α is determined by fitting a power law to the curve that
is closest to the critical state, and A, x∗ are then fit for each
curve. The data can be collapsed onto master curves by scaling
the histograms by x∗ and P∗ = P(x∗) [Fig. 3(c)]. We find good
collapses for � and n but only an approximate collapse for t .

To probe the variation of �∗, n∗, and t∗ with density, we
generate additional histograms at over 200 densities, and we
measure the location of the exponential cutoff by fitting to
Eq. (4). The results are shown in Fig. 3(d). The data diverge
as φc is approached from below with a different exponent for
each quantity. Table I summarizes the six measured exponents
from Figs. 3(b) and 3(d).

The exponents from these avalanche measurements should
be shared with other models in the same universality class,
which previous work has argued is either directed percolation
(DP) or conserved directed percolation (CDP) [5–7,24]. Our
results are consistent with DP or CDP and cannot distinguish
between the two. Going beyond these studies, here we propose
that the largest radial extent of a “typical” avalanche, �∗,
is governed by the exponent 1/(2σ ) from DP or CDP. The
numerical value is also close to the exponent for the length
scale ξ2 in Ref. [25], which shares the intuitive property of
being the “farthest” distance of influence of reorganization
events. The exponent for ξ2 was measured to be 1.1 ± 0.1 in
the Manna model [25]. Finally, we note that the ratio of the
exponents for n∗ and �∗ is strictly 2 : 1 for DP and CDP; here
we measure a ratio of 1.77 ± 0.23. Given the error bar, our
measurement does not violate the presumptive 2 : 1 ratio.

V. CONNECTING THE CORRELATION LENGTH SCALE
�∗ TO THE INTERFACE THICKNESS

Returning to the original problem of propagating irre-
versibility fronts, we suggest that �∗ should be central to
setting the interface thickness � f (Fig. 2). In the low-
sedimentation speed regime probed here, the interface is
continually perturbed from below by particles in the active
phase; these perturbations create avalanches that have the
net effect of transporting particles upward into the quiescent
phase. The longest length scale of these disturbances should

be set by �∗, which itself is set by the proximity of φ0 to
the critical fraction, φc. We test this picture by comparing the
exponents in the two cases. Our measurement of the exponent
for �∗ is 1.03 ± 0.08 [Fig. 3(d)], which falls within the error
bars of the exponent for the interface thickness, 1.15 ± 0.18
[Fig. 2(c)].

VI. DISCUSSION

Here we have observed an interface between reversible
and irreversible phases in a model of a cyclically sheared
suspension, and we demonstrated the divergence of its thick-
ness in the vicinity of a nonequilibrium critical point. Two
properties of the interface place it in contrast with other
nonequilibrium systems. First, it propagates with constant
thickness [Fig. 2(b)], unlike many interfacial growth phe-
nomena that are captured by Poisson-like growth or the
Kardar-Parisi-Zhang universality class [27,32]. Second, it
is not observed to roughen [Fig. 2(e)], unlike what is ob-
served in the two-dimensional Ising model [33]. Interestingly,
the nonequilibrium phenomenology we observe has some
similarities with an equilibrium fluid near a critical point:
Both systems exhibit a diverging interface thickness that
can be attributed to a diverging length scale in the bulk [2,3].
The observed density profile [Fig. 2(b)] is also consistent with
the mean-field prediction in a van der Waals fluid [34]. Never-
theless, the driving forces are clearly different—diffusion only
occurs for particles that overlap in our system so that geometry
plays a central role.

Our results also share general features with dynamic
jamming fronts, which arise in settings ranging from iceberg-
choked fjords [35] to water and cornstarch suspensions [36].
Such dynamic fronts develop when a collection of grains is
impacted, creating a jammed region that grows as it amasses
more grains on its boundary [19,20]. Recent experiments
measured a finite interfacial thickness between a dynami-
cally jammed mass and its quiescent surroundings [21], and
they showed that this thickness diverges as the dilute phase
approaches the jamming density. They rationalized these find-
ings by appealing to a diverging correlation length at the
jamming point [37–39]. Here we observe a similar phe-
nomenology in random organization under a slow external
drive. This connection is perhaps surprising; in our system,
particles in the front are continually activated into a diffus-
ing state. One might expect this diffusion rate to influence
the front width. Instead, we find the interfacial thickness is
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tied to geometric parameters through φc − φ0, independent of
dynamic parameters such as ε [Figs. 2(c) and 2(d)].

This connection with dynamic jamming may prompt one
to ask whether front formation could serve as an organizing
principle among a broader set of nonequilibrium systems.
The essential features underlying front formation appear to be
(i) a critical transition between a dilute phase and a
dense, incompressible phase and (ii) a process that com-
pacts the system locally or at a boundary. These features
might be found in active particle systems [40], which can
form interfaces through motility-induced phase separation
in which dense, fluidlike regions are surrounded by di-
lute, gaslike regions [41–43]. Future work should investigate

whether such interfaces share the phenomenology studied
here.
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