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Combining gravity with quantum mechanics remains one of the biggest challenges of physics. In the
past years, experiments with optomechanical systems have been proposed that may give indirect clues about
the quantum nature of gravity. In a recent variation of such tests [Carney et al., PRX Quantum 2, 030330
(2021)], the authors propose to gravitationally entangle an atom interferometer with a mesoscopic oscillator.
The interaction results in periodic drops and revivals of the interferometeric visibility, which under specific
assumptions indicate the gravitational generation of entanglement. Here, we study semiclassical models of the
atom interferometer that can reproduce the same effect. We show that the core signature—periodic collapses
and revivals of the visibility—can appear if the atom is subject to a random unitary channel, including the case
where the oscillator is fully classical and situations even without explicit modeling of the oscillator. We also show
that the nonclassicality of the oscillator vanishes unless the system is very close to its ground state, and even when
the system is in the ground state, the nonclassicality is limited by the coupling strength. Our results thus indicate
that deducing entanglement from the proposed experiment is very challenging, since fulfilling and verifying the
nonclassicality assumptions constitute a significant challenge in their own right.
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I. INTRODUCTION

The search for a full theory of quantum gravity is a ma-
jor open problem in modern physics. The difficulty to find
such a theory has even raised conceptual questions as to
the need for the quantization of gravity [1–8]. One major
challenge is the lack of experimental evidence. However, in
recent years, experimental proposals to test the quantization of
gravity have become an active research field. On the one hand,
quantum gravity phenomenology offers alternative models
that can be probed from astrophysical observations [9,10] and
tabletop experiments [11–14]. On the other hand, the entan-
glement between two gravitating systems can provide indirect
signatures of quantized gravity [15,16]. In similar spirit to
the latter, a recent paper by Carney, Müller, and Taylor [17]
showed that interactions between atoms and massive sys-
tems can hint at the quantum nature of gravity. They showed
that the coupling results in periodic collapses and revivals
of the interferometer visibility of the atomic interferome-
ter. The authors show that under specific conditions such as
Markovianity and time-independent Hamiltonians, this behav-
ior implies entanglement between the atom and the harmonic
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oscillator through gravity, hence leading to the conclusion that
gravity is of quantum nature.

Here, we study classical models for the loss and revival
of visibility. Our analysis shows that this signature can be
reproduced if the atom evolves according to a random unitary
channel, without being coupled to another quantum system
[18]. As the central part of the atomic interferometer is the
accumulated phase during the time evolution, the idea is
motivated by a previous work [19] where the optical phase
originating from an optomechanical interaction is found to
have a classical origin, such that classical models can ex-
plain supposed quantum behavior in other proposals, such
as in Ref. [11]. For the case where both the atoms and the
oscillator are described fully quantum mechanically, we study
the nonclassicality for a thermal harmonic oscillator, show-
ing that it vanishes for low coupling even if the system is
in the ground state. Therefore such experiments with very
low coupling strengths and at finite temperature always allow
for a classical description, unless it is explicitly invalidated
experimentally.

II. THE ORIGINAL QUANTUM MODEL

The setup described in Ref. [17] consists of an atom lo-
calized into one of two positions interacting with a quantum
harmonic oscillator. The position degree of freedom of the
atom can therefore be represented as a qubit. The atom will
interact gravitationally with the harmonic oscillator according
to the Hamiltonian

Ĥ = ωâ†â + g(â + â†)σ̂z. (1)

2643-1564/2022/4(1)/013024(7) 013024-1 Published by the American Physical Society

https://orcid.org/0000-0002-3589-2606
https://orcid.org/0000-0002-8760-6907
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.013024&domain=pdf&date_stamp=2022-01-10
https://doi.org/10.1103/PRXQuantum.2.030330
https://doi.org/10.1103/PhysRevResearch.4.013024
https://creativecommons.org/licenses/by/4.0/


MA, GUFF, MORLEY, PIKOVSKI, AND KIM PHYSICAL REVIEW RESEARCH 4, 013024 (2022)

Here, â and â† are annihilation and creation operators for
the mechanical oscillator. They are related to the position
and momentum operators of the mechanical oscillator via
â = √

mω/2X̂ + i/
√

2mωP̂, where m and ω are the mass and
frequency of the oscillator, respectively. The operator σ̂z acts
on the atom, defined as

σ̂z = |1〉〈1| − |0〉〈0|, (2)

where |0〉 and |1〉 are two states of the position degree of
freedom of the atom. The coupling strength g depends on the
gravitational force between the two systems (i.e., the masses
of the two systems and the distance between them). Note that
throughout this paper we have set h̄ = 1.

The mechanical oscillator is initially in a thermal state at
temperature T , described by

ρth = 1

π ñ

∫
d2α e− |α|2

ñ |α〉〈α|, (3)

where ñ = ( exp(ω/kBT ) − 1)−1 is the thermal phonon num-
ber and |α〉 is a coherent state. The atom is initially in the
state |0〉.

The experimental proposal in Ref. [17] is to then perform
interferometry on the atom. This consists of the following
steps. The Hadamard gate is applied to the atom, resulting in
the transformation

|0〉 → |+〉 = 1√
2

(|0〉 + |1〉), (4a)

|1〉 → |−〉 = 1√
2

(|0〉 − |1〉). (4b)

Then the atom-oscillator system evolves according to the
Hamiltonian equation (1) for time t , described by the unitary
operator

Ûq(t ) = e−iĤt . (5)

To describe the system in a thermal state, we first calculate the
evolution for an arbitrary coherent state |α〉. After evolving for
a time t the combined atom-oscillator state is given by (up to
a global phase)

Ûq(t )|+〉|α〉

= 1√
2

(
eiθ (t )|0〉|α+(t )〉 + e−iθ (t )|1〉|α−〉), (6)

where

α±(t ) = αe−iωt ± g

ω

(
1 − e−iωt

)
, (7a)

θ (t ) = g

ω
Im(α(1 − e−iωt )). (7b)

Therefore, if the oscillator begins in a thermal state, the
combined system will evolve under Ûq(t ) to the state

Ûq(t )(|+〉〈+| ⊗ ρth )U †
q (t )

= 1

π ñ

∫
e− |α|2

ñ
1

2

(
eiθ (t )|0〉|α+(t )〉 + e−iθ (t )|1〉|α−〉)

× (
e−iθ (t )〈0|〈α+(t )| + eiθ (t )〈1|〈α−|)d2α. (8)

After this evolution a phase shift ϕ is applied to the atom state
|1〉, which is realized by the unitary operator

Ûϕ = eiϕ |1〉〈1| + |0〉〈0|. (9)

Then another Hadamard gate [Eqs. (4a) and (4b)] is applied
to the atom. Finally, the position of the atom is measured. The
probability of the atom to be in the state |0〉 is

Pq,ϕ = 1

2
+ 1

2
e−16 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 cos ϕ. (10)

The interference visibility is defined as

V = maxϕ Pq,ϕ − minϕ Pq,ϕ

maxϕ Pq,ϕ + minϕ Pq,ϕ

. (11)

After inserting in Eq. (10) we get

V = e−16 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 . (12)

The visibility decays to its minimum value at t = π/ω, when
the atom is maximally entangled with the harmonic oscillator
(8). The visibility then returns to the maximum value 1 at t =
2π/ω, when the atom is fully disentangled from the harmonic
oscillator. This pattern is repeated with the period 2π/ω.
These are referred to as the periodic collapse and revival of the
interference visibility, which in the fully quantum mechanical
picture can be attributed to the entanglement between the two
systems.

The periodic appearance and disappearance of entangle-
ment can be clearly seen by examining the explicit form
of the unitary time evolution operator. For this purpose, we
generalize the σ̂z operator in Eq. (1) to any operator Ô that
commutes with â and â†,

ĤO = ωâ†â + g(â + â†)Ô. (13)

The corresponding unitary time evolution operator can be
expressed as

ÛO(t ) = e−iĤOt (14)

= ei g2

ω2 (ωt−sin ωt )Ô2

e−iωt â†âe− g
ω

((eiωt −1)â†−(e−iωt −1)â)Ô.

The last exponential factor is a displacement operator of the
oscillator, conditioned on the state of the atom. At times t =
2nπ/ω, where n ∈ Z, the last two factors in Eq. (14) reduce to
the identity, meaning that at these times ÛO(t ) is independent
of â and â†, and the atom and the oscillator decouple. The
first factor is usually associated with a nonlinear geometric
phase gate on the mode described by Ô. In Ref. [19], a similar
interferometric setup was considered but with coherent states
of light. In that case the nonlinear factor in (14) caused an
additional loss of visibility. Since the model considered here
only studies interferometry with a single qubit, there is no
additional loss of visibility. Indeed, since σ̂ 2

z is the identity
operator, the nonlinear factor only appears as a global phase.

III. SEMICLASSICAL APPROACHES

In this section we present several semiclassical models
which reproduce the same periodic collapse and revival pat-
tern as seen in the fully quantum mechanical case (12). In
these models, the only quantum element in the setup is the
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atom, which is modeled as a two-level system. We start with a
general formalism where the atom is subject to a random uni-
tary channel, and then we explicitly consider three examples.

A. General formalism

In our semiclassical models we perform the same atom in-
terferometry experiment, but we replace Ûq(t ) with a random
unitary channel. To be specific, the atom is prepared in the |+〉
state. It then evolves under a random unitary channel whose
effect on the atomic state is described by

ρ(t ) = 〈Ûsc(t )|+〉〈+|Û †
sc(t )〉c, (15)

where Ûsc(t ) a phase shift unitary operator,

Ûsc(t ) = eiφ(t )|1〉〈1| + |0〉〈0|, (16)

φ(t ) is a real-valued random variable at each time, and 〈·〉c

refers to taking the average over the classical probability dis-
tribution of random variables. The phase shift φ(t ) can, for
instance, be generated via the Hamiltonian of the atom,

Ĥsc = G(t )σ̂z, (17)

where

G(t ) = −1

2

dφ(t )

dt
. (18)

The atomic state can be explicitly written as

ρ(t ) = 1

2
|1〉〈1| + 1

2
|0〉〈0| + 1

2
〈eiφ(t )〉c|1〉〈0|

+ 1

2
〈e−iφ(t )〉c|0〉〈1|. (19)

To finish the interferometry, in the same way as in the quantum
case, a phase shift ϕ is applied to |1〉, then the Hadamard gate
[Eqs. (4a) and (4b)] acts on the atom, and finally we measure
the atom position. The interference visibility is derived to be

V = |〈eiφ(t )〉c|. (20)

The condition for reproducing the quantum collapse and re-
vival of the visibility is therefore

|〈eiφ(t )〉c| = e−16 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 . (21)

Any random unitary channel, i.e., classical probability distri-
bution of φ(t ), which can satisfy the condition equation (21),
will reproduce the same visibility as a function of time as gov-
erned by the quantum interaction Hamiltonian equation (1).
This will be true if the classical uncertainty associated with
φ(t ) vanishes with period 2π/ω, but remains at intermediate
times. We will now give several examples of such a φ(t ).

B. Example semiclassical model 1

The first semiclassical model is based on a semiclassi-
cal mean-field approximation to the quantum Hamiltonian
equation (1). We assume that the atom is a two-state quantum
system, while the mechanical oscillator is classical. The atom
evolves according to the Hamiltonian

Ĥsc1 =
√

2gx(t )σ̂z, (22)

where x(t ) is the dimensionless position of the mechanical
oscillator, which is related to the physical displacement X of
the oscillator via the “zero-point length,” x = X

√
mω. The

mechanical oscillator is assumed to only see the mean-field
effect of the atom, i.e., the force applied from the atom onto
the mechanical oscillator is F = −√

2mωg〈σ̂z〉. As the atom
is in the state (|0〉 + |1〉)/

√
2 before the interaction with the

mechanical oscillator starts, and the interaction equation (22)
only induces a phase difference between the two basis states
|0〉 and |1〉, F = 0 holds throughout the time evolution. There-
fore we can write the time evolution of the dimensionless
mechanical oscillator position as

x(t ) = x0 cos ωt + p0 sin ωt, (23)

where x0 is the initial value of dimensionless position and
p0

√
mω is the initial value of the momentum. The energy of

the classical oscillator is therefore

E (x0, p0) = ω

2

(
x2

0 + p2
0

)
. (24)

The Hamiltonian (22) induces evolution according to the
unitary

Usc1(t ) = exp

(
−i

√
2g

∫ t

0
dτx(τ )σz

)
. (25)

This is (up to a global phase) of the form (16), where

φ(t ) = −2
√

2g
∫ t

0
dτx(τ )

= −2
√

2
g

ω
(x0 sin ωt + p0(1 − cos ωt )). (26)

If we assume that the classical harmonic oscillator is in a ther-
mal state at inverse temperature β, then the energy distribution
is given by a Boltzmann distribution,

p[E (x0, p0)] = βω

2π
e− βω

2 (x2
0+p2

0 ). (27)

Thus we see that the variables x0 and p0 have a normal
distribution with standard deviation

√
1/βω. Therefore the

interferometric visibility is

∣∣〈eiφ(t )〉c

∣∣ =
∣∣∣∣
∫

dx0d p0 p[E (x0, p0)] eiφ(t )

∣∣∣∣
= e−16nc

g2

ω2 sin2 ωt
2 , (28)

where we defined the classical phonon number as nc = 1/βω.
This is in the same form as Eq. (21) except that the factor
ñ + 1/2 in the exponential is replaced by nc. Recall that
the quantum thermal phonon number is expressed as ñ =
1/( exp(ω/kBT ) − 1). For high temperature, kBT � ω, we
have that ñ + 1/2 ≈ nc. The visibility equation (28) is thus
indistinguishable from the quantum visibility equation (12).
If the temperature is low, the difference between ñ + 1/2 and
nc is significant. However, the quantum visibility can be repro-
duced if the classical oscillator begins in a higher temperature,
so that the standard deviations of x0 and p0 are proportional to√

ñ + 1/2, instead of the thermal width
√

nc.
We can explain the revival and collapse of the interfero-

metric visibility in this semiclassical model as follows. The
phase shift in this example is proportional to the integral of
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the position (26) of the classical oscillator from its initial
position at time t = 0. The uncertainty in the initial position
and momentum of the oscillator translates into uncertainty in
the phase shift, which leads to a reduction in visibility. How-
ever since the motion of the mechanical oscillator is periodic,
the integral of the position will be zero with certainty every
mechanical period t = 2π/ω, implying that the phase shift at
these times is certainly zero and therefore the visibility will
periodically revive.

Note that this semiclassical model based on the mean-
field interaction with a classical oscillator shares the same
idea as the optomechanical example in Ref. [19], and it has
been suggested recently [20] to provide evidence against the
proposal in Ref. [17]. In the next sections we describe other
semiclassical models that do not correspond to the interaction
of the atom with a classical thermal mechanical oscillator, but
which nevertheless reproduce the same interference visibility
as Eq. (12).

C. Example semiclassical model 2

The second semiclassical model assumes an interaction
Hamiltonian

Ĥsc2 =
√

2gx̃0 cos
(ωt

2

)
σ̂z, (29)

where x̃0 is a Gaussian random variable with mean 0 and
standard deviation

√
ñ + 1/2. The corresponding phase mod-

ulation φ(t ) in Eq. (16) is

φ(t ) = −4
√

2
g

ω
sin

(ωt

2

)
x̃0. (30)

At times t = 2nπ/ω where n ∈ Z, φ(t ) = 0; thus the random-
ness which depends on x̃0 disappears, leading to full revival of
the interference visibility. It is straightforward to show that the
visibility equation (12) is recovered.

This example might be considered a special case of
the first, with p0 = 0. In such a case there is no uncer-
tainty in the initial momentum of the classical oscillator. As
a result, the integral of the position (26) is periodically zero
with half the period; therefore in order to match (12) in this
example, the classical oscillator must have half the frequency,
as seen in (29).

The phase modulation equation (30) is the product of
one random variable and a periodic time-dependent func-
tion. In comparison, in the first semiclassical model, Eq. (26)
contains two random variables, each one multiplied by a
periodic time-dependent function. It is possible to construct
more semiclassical models, by summing up larger numbers
of terms, each term made of the product between a random
variable and a periodic time-dependent function. In the next
section, we will describe a systematic way of constructing
semiclassical models based on the characteristic function of
classical random variables.

D. Characteristic function method and example semiclassical
model 3

We can construct semiclassical models directly from
Eq. (16). The condition for reproducing the quantum visibility,
Eq. (21), is related to the characteristic function of a random

variable. At each time t , φ(t ) is a random variable. Its charac-
teristic function is

�φ(t )(k) = 〈eikφ(t )〉c. (31)

The condition equation (21) is therefore the requirement

|�φ(t )(k = 1)| = e−16 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 . (32)

There are an infinite number of �φ(t )(k) [and therefore φ(t )]
that satisfy Eq. (32). As an example, we choose

�φ(t )(k) = e−16k2 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 . (33)

This can be the characteristic function of a single Gaus-
sian random variable, or the sum of several independent
Gaussian random variables. For the former case, φ(t ) is a
Gaussian random variable with mean 0 and time-dependent
variance

σ 2 = 32
g2

ω2
(ñ + 1

2
) sin2

(ωt

2

)
. (34)

Note that the semiclassical example 2 considered in the pre-
vious section is included in this situation. For the latter case,
we apply this characteristic function method to explicitly con-
struct another semiclassical model, named example 3. To be
specific, we can split the characteristic function equation (33)
into the product of two exponentials, each one corresponding
to the characteristic function of a Gaussian random variable,

�φ(t )(k) = e−16k2 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 sin2 ωt

× e−16k2 g2

ω2 (ñ+ 1
2 ) sin2 ωt

2 cos2 ωt
. (35)

Thus φ(t ) = v1 + v2 is the sum of two independent zero-mean
Gaussian random variables v1 and v2, with variance

σ 2
v1

= 32
g2

ω2
(ñ + 1

2
) sin2

(ωt

2

)
sin2(ωt ), (36a)

σ 2
v2

= 32
g2

ω2
(ñ + 1

2
) sin2

(ωt

2

)
cos2(ωt ). (36b)

These can be realized by choosing

v1 = 4
√

2
g

ω
sin

(ωt

2

)
sin(ωt )x1, (37a)

v2 = 4
√

2
g

ω
sin

(ωt

2

)
cos(ωt )x2, (37b)

where x1 and x2 are two independent Gaussian random
variables with mean 0 and standard deviation

√
ñ + 1/2. By

making use of Eqs. (17) and (18), we get the Hamiltonian

Ĥsc3 = − 1√
2

g
[(

3 sin
3ωt

2
− sin

ωt

2

)
x1

+
(

3 cos
3ωt

2
− cos

ωt

2

)
x2

]
σ̂z. (38)

IV. NONCLASSICALITY

So far our approach has been to treat the problem in a semi-
classical picture where only the atom position is a quantum
mechanical degree of freedom and it is subject to a random
unitary channel. In this section we look at nonclassicality of
the system when it is treated quantum mechanically as a whole
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(as described in Sec. II). To analyze whether entanglement
can be inferred, we calculate the Wigner function negativity
of the oscillator state when it interacts with the atomic inter-
ferometer. The negativity of the Wigner function is a measure
of the nonclassicality of a quantum state [21] and quantifies
the extent to which the corresponding Wigner function has
negative values. The Wigner function of a quantum state |ψ〉
is defined as

W (q, p) = 1

2π h̄

∫
dx〈q − 1

2
x|ψ〉〈ψ |q + 1

2
x〉e ipx

h̄ . (39)

The negativity of a Wigner function is defined as

δ(W ) =
∫

dq d p [|W (q, p)| − W (q, p)]

=
∫

dq d p |W (q, p)| − 1. (40)

The scheme in Ref. [17] relies on enhancing the sensi-
tivity for detecting entanglement (by witnessing the decline
and revival of the entanglement visibility) through increased
temperature of the oscillator. To the extent the state (8) is
entangled, the state of the oscillator should be in a super-
position and hence nonclassical. The Wigner negativity was
used in Ref. [22] to study whether an oscillator achieved
nonclassical states if it is located in one arm of a single-
photon interferometer. There it was found that the negativity
decreased as the initial temperature increased. We do a similar
calculation here.

To study the state of the oscillator directly, we consider it
at a half mechanical period t = π/ω where the entanglement
is largest, and we decouple it from the atom by projecting the
atom onto the state |+〉〈+|, so as to not destroy the oscillator
superposition. The Wigner function of the oscillator in this
state can be written in dimensionless quadrature operators as

Wρth (Q, P) = W+(Q, P) + W−(Q, P) + Wint(Q, P), (41)

where

W±(Q, P) = 1

N
exp[

1

2ñ + 1
( − 2P2 − (√

2Q ±
√

8λ
)2

)],

(42a)

Wint(Q, P) = 2

N
exp

(
1

2ñ + 1

(−2P2 − 2Q2
))

cos (8Pλ),

(42b)

where λ = g/ω and where

N = π (2ñ + 1)
(
1 + e−8λ2(2ñ+1)

)
. (43)

We see that when λ = 0, the Wigner function is a Gaussian
centered at the origin in phase space corresponding to the
initial thermal state.

The integral (40) must be performed numerically, and we
show the results in Fig. 1. We see that the negativity increased
with coupling strength λ, and when the interaction strength
is zero, the oscillator remains in a thermal state and hence
is classical. For larger λ, the oscillator state contains more
coherence at a half mechanical period and hence larger nega-
tivity. However, the negativity decreases with initial oscillator

FIG. 1. Wigner negativity for the oscillator in state (8) at a half
mechanical period t = π/ω and after decoupling from the atom.
Wigner function is given by (41). The negativity increases for larger
interaction strength λ but decreases with increasing initial oscillator
temperature.

temperature, and to achieve large negativity with high tem-
perature requires a larger λ to introduce enough coherence to
compensate for the thermal noise.

This can be seen directly by rewriting (41) more
compactly as

Wρth (Q, P) (44)

= 2

N
exp

(−2P2 − 2Q2

2ñ + 1

)

× ( exp

( −8λ2

2ñ + 1

)
cosh

(
8Qλ

2ñ + 1

)
+ cos(8Pλ)),

in which the negativity of the Wigner function is caused solely
by the cosine term. This term will cause more negativity
with larger λ. Decreasing ñ also increases the negativity as it
suppresses the exp-cosh term. The Wigner function will only
be negative for Q sufficiently close to zero, with the troughs
occurring at P = (2n + 1)π/8λ for n ∈ Z.

In other words, the evolved state (8) of the oscillator
becomes more classical as the initial temperature increases.
This is to be expected from our first semiclassical model (see
Sec. III B), which identically reproduces the same visibility
decline and revival as the fully quantum mechanical model
in the case of high temperatures, and differs only at lower
temperatures. Unless the oscillator is very close to its ground
state, the nonclassicality is vanishingly small, especially for
very low coupling strengths. Since λ 
 1 in Ref. [17], one
would need to operate at and independently verify the ground
state of the oscillator to infer entanglement generation.

Let us look more closely at the negativity in the small-
coupling regime λ 
 1. Let us assume that the system is in
the ground state, ñ = 0, since as we saw earlier, the negativity
decreased with increasing temperature. From (44) one can use
the triangle inequality to obtain

|Wρth (Q, P)| � 2

N
exp

(−2P2 − 2Q2
)

(45)

× ( exp
(−8λ2) cosh (8Qλ) + 1).
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Therefore, after integrating, we have

δ(Wρth ) � tanh
(
4λ2

)
. (46)

For λ 
 1, we can approximate this as

δ(Wρth ) � 4λ2. (47)

Thus we see that for small λ the negativity of the oscillator
state produced in the experiment (8) becomes vanishingly
small, even when the system begins in the ground state. For
finite temperature, it effectively vanishes.

V. DISCUSSION

The authors of Ref. [17] support their claim that the col-
lapse and revival of the interferometric visibility constitute
a true signature of entanglement by proving a theorem that
shows that if no quantum entanglement is generated, the visi-
bility cannot revive. The theorem rests on some assumptions,
and since we claim to be providing semiclassical models
which do not generate any entanglement but nevertheless
display the same collapse and revival signature, we ought
to discuss how our models contradict the theorem proved in
Ref. [17]. Here, we quote the theorem in full.

Theorem 1. Let L be a channel on HA ⊗ HB where HA is a
two-state system and HB is arbitrary. Assume that:

(1) The channel L generates time evolution, in a manner
consistent with the time-translation invariance, thus obeying
a semigroup composition law Lt→t ′′ = Lt→t ′Lt ′→t ′′ for all t �
t ′ � t ′′.

(2) The two-level subsystem HA has its populations pre-
served under the time evolution, σz(t ) = σz(0).

(3) L is a separable channel: all of its Kraus operators
are simple products. In particular, this means that any ini-
tial separable (non-entangled) state evolves to a separable
state: ρ(t ) = Lt [ρ(0)] is separable for all separable initial
states ρ(0).

Then the visibility V (t ) is a monotonic function of time.
In our semiclassical models, the quantum channel is the

random unitary channel given by Eqs. (15) and (16). Since it
commutes with σz, it clearly satisfies assumption 2, and by
appending an arbitrary Hilbert space HB, we see that L ⊗ I
satisfies assumption 3 as well. Thus the conflict with this
theorem must lie in the first assumption. Indeed, the proof
of Theorem 1 in Ref. [17] relies on the form of Lindblad
master equation, where the Lindblad operators are time in-
dependent. The sufficient and necessary condition for the
existence of such a Lindblad master equation is the divisibility
of the master equation (the first condition of Theorem 1). The
additional assumption of time-translation invariance implies
that the Lindblad operators are time independent, and this is
used in the proof. This is equivalent to requiring the quantum
channel to satisfy a one-parameter semigroup composition
law Lt1 Lt2 = Lt1+t2 .

Our semiclassical models are not divisible; thus they do
not correspond to a Lindblad master equation for the atom.
However, our first semiclassical model is in fact time transla-
tion invariant. Although there is explicit time dependence in
the Hamiltonian in our semiclassical models, which indicates
that the Hamiltonian is not time translation invariant, that does
not mean that the corresponding random unitary channel after

averaging over the classical randomness is not time translation
invariant. It is straightforward to check that our first semi-
classical model is time translation invariant by showing that
L0→τ = Lt→t+τ for all t .

The existence of our semiclassical models demonstrates
that the conditions of this theorem are very restrictive, as many
simple semiclassical models reproduce the decline and revival
of interferometric visibility.

VI. CONCLUSIONS

Experiments to probe the quantum nature of gravity have
become promising research directions in recent years. While
some proposals aim to test specific models [11–14], others
focus on indirect signatures of the quantization of gravity
through gravitational generation of entanglement [15–17,23].
The proposed signature in Ref. [17] is the loss and revival
of visibility in an atomic interferometer, under specific as-
sumptions on the dynamics. Here, we show that this signature
appears also in simple semiclassical models; thus such a
signature by itself cannot indicate entanglement between the
systems. According to the Ehrenfest theorem, the average
behavior of a harmonic oscillator can be classically described.
It is thus important to explore the classical picture to test
whether specific signatures can reflect quantum behavior. The
semiclassical models we have discussed are reasonably gen-
eral and applicable to other systems and states. In fact, a
random unitary channel represents the time evolution of a
quantum system under the influence of classical systems con-
taining classical uncertainties [18]. As the collapse and revival
of the interference visibility can be reproduced by the atom
subject to random unitary channels, they cannot be considered
good signatures of entanglement generation.

Our results do not contradict the claims of Ref. [17]
since the models we present do not satisfy the conditions
on the dynamics under which entanglement can be inferred.
However, our findings highlight that such conditions are
violated in many semiclassical scenarios. This indicates that
the conditions imposed on the dynamics in Ref. [17] are
very restrictive: They exclude simple and reasonable classi-
cal dynamics and thus leave little room to test against the
inference of entanglement generation unless there is supple-
mentary evidence that the conditions are satisfied. For the
very low coupling strengths envisioned in the experiment, the
nonclassicality vanishes unless the oscillator is nearly exactly
in its ground state. It therefore remains a significant challenge
to verify the quantum nature of the interaction in such an
experimental scenario.

Note added. Recently, we were made aware of Ref. [20].
Reference [20] is closely related to Sec. III B in showing that
collapses and revivals can also be explained using a semiclas-
sical mean-field model.
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