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Deep learning techniques have opened a new venue for electronic structure theory in recent years. In contrast
to traditional methods, deep neural networks provide much more expressive and flexible wave function Ansitze,

resulting in better accuracy and timescale behavior. In order to study larger systems while retaining sufficient
accuracy, we integrate a powerful neural-network-based model (FermiNet) with the effective core potential
method, which helps to reduce the complexity of the problem by replacing inner core electrons with additional
semilocal potential terms in the Hamiltonian. In this work, we calculate the ground-state energy of 3d transition

metal atoms and their monoxides, which is quite challenging for the original FermiNet work, and the results
are consistent with both experimental data and other state-of-the-art computational methods. Our work is an
important step for a broader application of deep learning in the electronic structure calculation of molecules and

materials.
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I. INTRODUCTION

The last decade has witnessed incredibly fast development
of artificial intelligence. Deep learning [1] has become widely
used and has received great success in computer vision [2,3],
natural language processing [4,5], and recommendation sys-
tems [6,7], just to name a few areas. In the past few years,
deep learning technology has been broadly applied in com-
putational physics and chemistry to tackle key challenges in
ab initio molecule modeling [8-20], which are crucial for
materials design, drug discovery, and other applications.

Deep learning techniques can be roughly divided into two
categories. The first category, machining learning force field,
aims at improving the efficiency of simulation while retaining
the accuracy at a higher level of theory [8—10]. These methods
usually require labeled data (such as energy and force of a
given structure) and then train the neural network by mini-
mizing the deviation between its prediction and the labeled
data. The second category, neural-network-based quantum
Monte Carlo (QMC) [11-18], targets more accurate electronic
structure and only needs unlabeled sample data in training. A
deep neural network can provide a much more expressive and
flexible wave function ansatz than traditional forms used in
QMC, which leads to better accuracy. The recently developed
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PauliNet and FermiNet are two promising examples [13-15]
that have shown the ability to outperform traditional methods
such as coupled cluster with single, double and perturbative
triple excitations [CCSD(T)] in certain systems. In spite of
their advantages, these methods also have their own draw-
backs: the enormous amount of parameters in deep neural
networks strictly restrict the simulation speed and system size
that can be studied. For example, it would take the FermiNet
a month to simulate a system of about 30 electrons using 16
V100 GPUs in its TensorFlow version [13].

In order to extend neural network electronic structure cal-
culations to larger systems, the computation complexity has to
be reduced and one helpful approach is the so-called effective
core potential (ECP) method (also known as pseudopotential).
See Ref. [21] for a review. Electrons in each system can
be divided into core electrons and valence electrons. Core
electrons, filling inner shells of the system, are tightly bound
around the atom cores, and it is mainly the valence electrons
in the outer shell that determine the property of the system.
The ECP method simply removes the core electrons from
computation and introduces semilocal potential terms to ef-
fectively simulate their influence on valence electrons, and in
this way the number of electrons in the calculation is reduced
and the whole computation process is accelerated. The ECP
method is widely employed in traditional electronic structure
calculations, such as density functional theory (DFT), post
Hartree-Fock, and QMC. In particular, the development of
ECPs for QMC is still a hot subject of research. Neverthe-
less, there are already a number of ECPs designed or used
in QMC calculations, such as Burkatzki-Filippi-Dolg (BFD)
ECP [22], Stuttgart (STU) ECP [23], Trail-Needs (TN) ECP
[24], and correlation consistent (cc) ECP [25,26]. These ECPs
are examined carefully in traditional QMC simulations, but
their numerical stability and performances have not yet been
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examined in deep neural networks, which has a much more
complex structure to express wave functions.

In this work, we investigate the implementation of the ECP
method into a deep neural network, namely, FermiNet. The
main aim is to improve the efficiency of deep neural network
modeling, so as to increase the size of the system that we can
handle with FermiNet. Based on our method, we calculate the
ground-state energy of 3d transition metal atoms and their
monoxides. The results show satisfactory consistency with
both experimental data and other accurate ab initio methods.
We also discuss some details of how to improve the training
efficiency of the ECP-based FermiNet.

The remainder of this paper is organized as follows. In
Sec. II, we introduce briefly the theoretical framework of
the neural network, the ECP method, the workflow, and the
calculation details. In Sec. III, we present our calculations and
results. In Sec. IV, we discuss our calculation and training in
more detail. In Sec. V, we give a summary and outlook.

II. METHOD

A. Theoretical framework

Solving the Schrodinger equation is always the main
task of electronic structure calculation. Under the Born-
Oppenheimer approximation [27], atomic motion is frozen
and the equation for the electron wave function i can be
formulated as
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where x; = (r;, 0;) denotes the spatial position and spin of
the ith electron. R; and Z; are the spatial position and the
charge of the Ith nucleus, which are treated as external
parameters for a given molecule structure. Moreover, since
electrons obey Fermi-Dirac statistics, the wave function ¥
needs to be antisymmetric with respect to the permutation
of (X1, X3, ..., Xy). The antisymmetric requirement together
with its high-dimensional nature make the Schrodinger equa-
tion notoriously hard to solve. In order to obtain highly
accurate results, the time complexity of the state-of-the-art
methods, such as CCSD, scales as large as N or more, where
N is the total number of electrons in the system.

Recently, deep neural network models, such as FermiNet
and PauliNet [13—15], are proposed and shed new light on the
electronic structure problem. Based on the variational princi-
ple, these deep learning methods approach the ground-state
wave function via minimizing the energy expectation value
Ey, which reads
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Here vy is simply the wave function output by the neural
network and 8 denotes all the parameters within.

Ey =

@

Traditional Variational Monte Carlo (VMC) approaches
usually start from the Hartree-Fock wave function, which
reads

¢1(x1) d1(Xy)

Yur(x) = : L 3)
on(X1) dn(Xn)

where {¢;} denotes the molecular orbitals for the electrons. In
deep neural networks [12—-15], the one-electron orbital ¢;(x;)
is extended to ¢;(X;;X-;), where X_; denotes all the electron
coordinates except X;, and it can be seen as a generalization of
widely used backflow transformation [28]. In order to ensure
the antisymmetry of ¥, ¢;(X;;X-;) is required to be permuta-
tion invariant with respect to permutation of x.;. With this
generalization employed, the simulation accuracy is highly
improved and the time complexity is retained as the traditional
VMC approach, which scales as N*.

However, existing deep neural networks, namely, FermiNet
and PauliNet, suffer from a large prefactor in its asymptotic
N* time scaling. The enormous amount of parameters and
linear operations within neural networks reduces their com-
putation efficiency, and the largest system size they can study
is limited up to dozens of electrons. In order to enlarge the
system size we can study, it is natural to employ the ECP
method, which has already been widely used in the quan-
tum chemistry community. Within the ECP framework, core
electrons decouple with the valence electron, and additional
semilocal potential terms are added to the Hamiltonian to
mimic core electron effects, which read as
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where n, denotes the number of valence electrons and |Im)
represents the spherical harmonics. Moreover, the potential
terms Vioc and V; are simply functions of r,, which represents
the radial distance between the valence electron and the nu-
cleus. These potential terms are usually expanded in Gaussian
basis sets, which read as

Vitr) = r? ) Apre P 5)
k

where Ay, B, and ny are the expansion parameters, and [
and k denote the angular quantum number and the expansion
index, respectively.

Note that effective core potentials usually diverge near the
nucleus due to the »—2 term in Eq. (5), making the QMC
simulation unstable. There are several kinds of ECPs such as
ccECP, STU ECP, BFD ECP, and TN ECP overcoming this
problem via exact cancellation of diverging terms in Eq. (4),
which are more suitable for quantum Monte Carlo simulations
[22-26]. In this work, we adopt the recently proposed ccECP
[25,26]. Other ECPs can be implemented in a similar way with
FermiNet.

B. Workflow

The workflow of our work is an extension of FermiNet,
with modifications related to the integrated ECP method.

013021-2
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The main workflow can be divided into three phases: pre-
train, train, and inference. In the pretrain phase, the neural
network is trained to match the Hartree-Fock wave function,
obtained via the PYSCF package [29]. Then the neural network
is trained to minimize the expected energy value. Note that
with the ECP employed, the gradient formula for energy opti-
mization is slightly modified as follows,

Grad = ]Euﬂ(r)[(E(r) - Eyﬂ(r) [E(r)])Vglog |¢]],
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where E 2 )[-] represents the expectation value according to
the distribution ¥%(x) and it is evaluated via the traditional
Markov chain Monte Carlo (MCMC) approach. Moreover, Ey;
denotes the semilocal energy contribution from the effective
core potential and its specific form reads as follows [30]:

1,0(1’1,...
1//([‘1,

,l';,..-,I‘N)
7rv,~~er)’

Vi Yin(®) [ a9 90
vim

(N
where Y, denotes the spherical harmonics. This integral is
over the solid angle €, of the valence electron vector r,, with
respect to the nucleus. Although, in the mean-field approxima-
tion, the integration has a closed-form result, an analytic result
does not exist for the wave function i produced by FermiNet
and thus numerical integration methods are used. After a long
enough training process until the energy converges, the final
energy result can be obtained from a separate inference phase,
in which energy is estimated via the pure MCMC approach
without training.

C. ECP implementation details

Before carrying out the numerical integration concretely,
we note that the integrand in Eq. (7) can be simplified further.
The polar axis of the integrand can be set parallel to r,, and the
outer Y;,,(2,) terms are reduced to constants [31], then terms
in Eq. (7) read as follows:
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where P is the Legendre polynomial and 6, denotes the polar
angle with the polar axis set to r, now. The integral in Eq. (8)
is over the unit sphere of the vth valence electron with respect
to the nucleus and there are quite a few choices of integration
quadrature suitable for this situation [32-35]. We decided to
use the 12-point icosahedron quadrature in the calculation be-
cause it has acceptable accuracy as well as a reasonably small
number of points. In the 12-point icosahedron quadrature, 12
points and their weights are properly chosen so that the inte-
gration on a unit sphere is exact for integrands withonly / < 5
components when decomposed in the Y}, basis, which suffices
for our calculations. Specifically, for the 12-point icosahedron
integral quadrature, we approximate the integration

=L / ae f(R) ©)
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TABLE I. Numerical setup.

Name Value
Framework JAX [36]

Main computing resource 8 Nvidia V100 GPU cards
Optimizer KFAC [37]

Optimization hyperparameters Same as in Refs. [13,14]
Batch size 4096

Number of HF pretrain iteration 3000

Number of training iteration 500 000

Number of inference iteration 100 000

Pretrain basis ccECP-cc-pVDZ [25]

on a unit sphere by the sum

2 10
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with the points g; and b; written in spherical coordinates (6, ¢)
as

a; =[0,0], a;=[n,0]
b [arctan2, 2 (i — 1)] forl1 <i<5, (11
" |[r —arctan2, Z(2i — 11)]  for6 < i < 10,
and the coefficients A and B are
A=B= 5. (12)

The coordinates of the 12 points are written in a certain
coordinate system, whose orientation remains arbitrary and
each choice can be related by a global rotation. Generally
speaking, for an arbitrary integrand, its integral result varies
in a different coordinate system, since the employed 12-point
icosahedron quadrature is only exact for / < 5 components.
In order to cancel out the error introduced by the orientation
choices, we could average the results from randomly chosen
orientations, and then the result would actually be an unbiased
Monte Carlo estimation on a unit sphere.

In our calculation, however, we only chose one random
orientation for each sample at one Monte Carlo step to have
satisfactory training speed, with some sacrifices in the vari-
ance of the energy estimation. Although more orientation
configurations in each estimation step would help decrease
the variance, in our calculation, a one-orientation estimation
has already given a satisfactory variance compared to that
introduced from the MCMC steps.

D. Calculation specification

Based on the open-sourced FermiNet package [13,14],
the numerical setup for our calculations is listed in Table I.
Note that in most cases we used the default values for
hyper-parameters provided in the open-sourced repository for
FermiNet. The neural networks are trained on the internal
machine learning platform in ByteDance Inc., which supports
elastic resources and large-scale training tasks.
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TABLE II. Calculated ground-state energy in Hartree for Ga, Kr, and 3d transition metals, using various methods with ccECP: FermiNet
+ ECP, CCSDT(Q), FCI with both 5Z basis (aug-cc-pV5Z for Ga and Kr, and cc-pCV5Z for 3d transition metals) and CBS limit, and DMC
using millions of determinants in its trial wave function. The results of the latter three methods are from Ref. [26]. CCSDT(Q) at CBS limit
achieves the lowest energy for 3d transition metals, and our method performs the second best. For heavier transition metals such as Cu and
Zn, our calculated energies are around 10 millihartrees higher than the CCSDT(Q)/CBS ones, while the other methods’ results are more than
40 millihartrees higher. FCI result for Ga is listed instead of CCSDT(Q) since Ga only has three valence electrons with ECP employed.

Element FermiNet-+ECP CCSDT(Q)/5Z CCSDT(Q)/CBS DMC(MD)
Sc —46.5536(1) —46.5494 —46.557 04(81) —46.550(1)
Ti —58.0895(1) —58.0826 —58.092 63(76) —58.085(1)
% —71.4346(1) —71.4274 —71.441 78(59) —71.421(2)
Cr —86.6349(1) —86.6236 —86.641 09(33) —86.625
Mn —103.8828(10) —103.8718 —103.8919(10) —103.859(2)
Fe —123.3754(1) —123.3626 —123.388 04(93) —123.358(2)
Co —145.1409(1) —145.1232 —145.1541(10) —145.115(4)
Ni —169.3760(1) —169.3546 —169.3912(12) —169.345(2)
Cu —196.3873(1) —196.3584 —196.4038(10) —196.353(3)
Zn —226.3516(2) 2263210 —226.3699(18) —226.320(3)
Kr —18.472 355(8) —18.4660 —18.472 59(27) —18.4680(1)
FermiNet-+ECP FCI/5Z FCI/CBS DMC(MD)
Ga —2.039 853(2) —2.0396 —2.0399 15(13) —2.0392(2)

III. RESULTS

In this work, we mainly study 3d transition metals, namely,
from Sc to Zn, and their monoxides. Their ground-state en-
ergy and dissociation energy (DE) are relatively difficult to
compute using traditional methods.! Moreover, ccECP can re-
move a significant amount of core electrons from calculations
for those systems. For instance, a Sc atom has 21 electrons
in total, while we only need to consider 11 electrons with
ccECP. We also performed calculations on the elements Ga
and Kr, where most electrons are treated as core electrons by
ccECP, so as to show the benefits to computation efficiency.
From now on, we refer to our ECP-based FermiNet method as
FermiNet+ECP.

For the ground-state energy of 3d transition metals, our
results are close to the state-of-the-art CCSDT(Q) at the com-
plete basis set (CBS) limit and outperform projection methods
such as fixed-node diffusion Monte Carlo (DMC) [26]. For
the dissociation energy of transition metal monoxides, our
results are consistent with highly accurate CCSD(T), semis-
tochastic heat bath configuration interaction (SHCI), auxiliary
field quantum Monte Carlo (AFQMC), and density matrix
renormalization group (DMRG) results [25,39].

A. Atoms

In this section, we study the ground-state energy of atoms
using FermiNet with ccECP. We carry out calculations on the
elements Ga and Kr and 3d transition metals, with the results
listed in Table II. For comparison, we list CCSDT(Q) and
DMC results with ccECP for 3d transition metals; moreover,
full configuration interaction (FCI) results are listed for Ga
instead of CCSDT(Q) since Ga has only three valence elec-
trons. The listed data are all from Ref. [26]. Note that all the

IResults calculated with various methods can be found in
Refs. [25,26,38,39].

compared methods are dealing with the same effective core
Hamiltonian since they use the same ECP; hence, it is fair to
make comparisons on the ground-state energy.

Among all the compared methods employed for 3d
transition metals, CCSDT(Q) at CBS limit, despite its non-
variational nature and basis-set extrapolation error, has the
lowest energy for all considered systems, and thus we use its
results as the reference, against which the differences from
other results are plotted in Fig. 1. Our method achieves the
second-best result. In particular, our result is better than that of
the CCSDT(Q) method with basis cc-pCV5Z, the largest finite
basis set used in CCSDT(Q) calculation for those atoms to
our knowledge, which is as expected since a neural-network-
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FIG. 1. Ground-state energy of 3d transition metals calculated
using FermiNet+ECP (blue dots), compared with CCSDT(Q)/cc-
pCV5Z (orange squares), and DMC (green triangles) results
provided in Ref. [26], all with ccECP. Here we show the relative dif-
ference against CCSDT(Q)/CBS. It is clear that our method achieves
better results than the compared ones, even though they are still
around 10 millihartrees higher than the referential result for heavier
atoms.
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TABLE III. Comparison of calculated DE of 3d transition metal monoxides against the experimental data [41], the CCSD(T)/CBS result
[25], and the calculated results from SHCI, AFQMC, and DMRG [39]. CCSD(T) results use ccECP and the associated basis while SHCI,
AFQMC, and DMRG use TN ECP. Specifically, SHCI and AFQMC use the aug-ccpV5Z basis and DMRG uses the aug-ccpVDZ basis. Our
DE result is calculated with the ground-state energy of both monoxides (listed here) and atoms (listed in Table II), and we use —75.066 55
hartree as the ground-state energy for atom O [13]. The bond length of monoxides in our calculation is the same as the one in the CCSD(T)
result [25].

Dissociation energy (hartree)

System  Ground Sstate energy (hartree) ~ FermiNet+ECP  Experimental Data CCSD(T) SHCI AFQMC DMRG
ScO —121.8765(1) 0.2564(2) 0.2566(3) 0.2550(11)  0.25684(1)  0.2585(16)  0.2422
TiO —133.4073(1) 0.2513(2) 0.2548(25) 0.2517(11)  0.25444(1)  0.2568(16)  0.2397
VO —146.7417(2) 0.2406(3) 0.2405(31) 0.2464(7) 0.24439(1)  0.2462(15)  0.2268
CrO —161.8682(13) 0.1668(14) 0.1670(22) 0.1684(3) 0.17424(1)  0.1717(22)  0.1649
MnO —179.0892(2) 0.1399(12) 0.1423(29) 0.1390(7) 0.14377(1)  0.1436(18)  0.1268
FeO —198.5927(1) 0.1508(2) 0.1555(3) 0.1525(11)  0.15671(1)  0.1549(18)  0.1359
CoO —220.3459(2) 0.1385(3) 0.1519(33) 0.1396(18) NA NA NA

NiO —244.5855(4) 0.1430(5) 0.1439(11) 0.1561(11) NA NA NA

CuO —271.5504(16) 0.0965(17) 0.1131(11) 0.1010(6) 0.10987(1)  0.1105(25)  0.1046
ZnO —301.4705(3) 0.0523(5) 0.0608(14) 0.0536(18) NA NA NA

related ansatz has the ability to approach the CBS limit [40].
Fixed-node DMC results with a multireference trial wave
function are also plot in Fig. 1. DMC typically requires mil-
lions of determinants in its trial wave function in order to
decrease the fixed-node error. In comparison, neural-network-
based methods can achieve better accuracy than the DMC
method with only dozens of determinants. Moreover, the gap
between results from CCSDT(Q)with cc-pCV5Z and the CBS
limit increases quite significantly as the number of electrons
increases, and similarly for DMC. Comparatively, the discrep-
ancy from our results to the referential ones is much smaller
for heavier transition metals such as Cu and Zn, suggesting
that the ECP method works well with FermiNet in those larger
systems.

We also note that there is an insignificant difference be-
tween FermiNet+ECP and FCI4-ECP/CBS results for Ga.
There are two reasons that might account for the difference:
FCI+ECP/CBS has a basis-set extrapolation error and the
expressive ability of the FermiNet ansatz is restricted due to
the finite number of neural network parameters.

AFQMC(MD) ‘7
B. Transition metal monoxides SHCI ‘
In order to show our methods can be used to obtain high-
quality ab initio data comparable to experiments, we compute CCSD(T) s

the dissociation energy DE of 3d transition metal monoxides,
defined as

DE(X) = E(X) + E(O) — E(XO), (13)

where X O denotes the monoxide of element X and E(-) de-
notes the ground-state energy. For monoxides, we only apply
ECP to transition metal atoms while all electrons for the O
atom are included, and we use —75.066 55 Ha for E (O) (same
as the result given in the original FermiNet paper [13]).

We compare our calculated DE against high-accuracy elec-
tronic structure methods such as SHCI, CCSD(T), DMC,
DMRG, and AFQMC in Table III. Moreover, since DFT is
broadly employed in computational studies of transition metal
systems, we also list DFT results using the B3LYP exchange

correlation functional for comparison. All these compared
results are from Refs. [25,39], and we only take results cal-
culated with the largest basis set provided. We use the same
equilibrium bond length for monoxides as CCSD(T) results
in the supplementary material of Ref. [25]. For completeness,
we also list our calculated ground-state energy of monoxides
in Table III.

To visualize the overall performance of the FermiNet +
ECP calculation, in Fig. 2 we plot the fitted density of the
difference between the calculated result and the experimental
data [41] of the 3d transition metal monoxide DE for each
method. Here we compare with the experimental data be-
cause they can serve as reasonable references when comparing

B3LYP

DMRG

DMC(SD) | =S|
| E—

=Tl

-0.02 -0.01 0.00 0.01
Error relative to Exp. result (Ha)

FermiNet + ECP

FIG. 2. Fitted density of the difference from calculated transition
metal monoxide DE to the experimental data [41] in hartree for each
method, where the violin shape corresponds to the distribution of
calculated data. The CCSD(T) data (with ccECP) are from Ref. [25]
while others (with TN ECP [24]) are from Ref. [39]. Individual data
points are indicated by small vertical lines. The red shaded region,
centered at 0 and with width 0.007 hartree, indicates the acceptable
discrepancy between calculated results and experimental data. All
the data from SHCI and AFQMC, as well as most data from our
method and CCSD(T), fall into that region.
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methods using different ECPs and basis sets. However, it is
worth noting that experimental results are not completely self-
consistent among different studies, which may differ from one
to another by as much as 0.5 eV [39,41]. Therefore, we place
a shaded region (with a width of 0.007 hartree) on Fig. 2 to in-
dicate acceptable discrepancy from the experimental data. All
data from very accurate methods such as AFQMC and SHCI
fall into this interval. Our results mostly fall into this interval
except for a long tail on the left, led by the CoO, CuO, and
ZnO results. We comment on the issue associated with those
monoxides later, but overall our calculations provide results
almost as accurate as the current state-of-the-art electronic
structure approaches. DMRG, DMC, and B3LYP data have
less overlap with this interval. We want to point out that those
methods perform less ideally for different reasons: DMRG is
known to be an accurate method, but the heavy cost limits its
calculation of these molecules to the aug-ccpVDZ basis set.
So the basis set incompleteness error has dominated its DE
underestimation. DMC is largely limited by the fixed-node
approximation and the single determinant trial wave function
employed. For transition metal oxides, a multiconfigurational
wave function is needed and the fixed-node DMC based on
the single determinant trial wave function does not perform
satisfactorily. For DFT, it is known that the results strongly
depends on the chosen exchange correlation functional. The
comparison of different functionals is beyond the scope of this
work, but we present the results of one functional, namely,
the B3LYP functional, which is a hybrid functional known
as one of the well-behaving functionals for transition metal
oxides. Yet the results shows that B3LYP underestimates the
DE by an average of 15 millihartrees. Therefore, we conclude
that FermiNet + ECP is more accurate and reliable than DFT
and should be promoted in future studies to tackle larger
transition-metal-containing molecules and materials.

The fitted density shape of the CCSD(T) result is similar
to ours, but it has long tails on both sides. The good per-
formance of CCSD(T) on transition metal monoxides was
also mentioned in a recent study using the full configuration
interaction quantum Monte Carlo approach [38]. Here we
show that FermiNet 4+ ECP outperforms CCSD(T) slightly for
the majority of 3d transition metal monoxides. In Fig. 3 we
present a finer comparison between our method and CCSD(T)
at the CBS limit [25], where the difference from the exper-
imental data is compared for each system. For most of the
monoxides, our results are close to the CCSD(T) ones, except
for VO, NiO, and CuO. For VO and NiO, our results are very
close to the experimental data. For CuO, both our result and
the CCSD(T) one are quite far away from the experimental
reference (greater than 10 millihartrees), while ours are farther
away. We discuss more on our CoO, CuO, and ZnO results in
the next section. Note that compared to CCSD(T), known as
the golden standard in quantum chemistry, our method has not
only comparable accuracy but also better computational scal-
ing, namely, N 4 same as FermiNet, as opposed to CCSD(T)’s
N7, where N stands for the number of electrons considered in
the computation.

Furthermore, we have carried out additional calcula-
tions for ScO with ECP used for both Sc and O. Our
results are E(O) = —15.88262(4) hartree and E(ScO) =
—62.6876(1) hartree. Note that the E(ScO) here is calculated
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FIG. 3. DE of transition metal monoxides calculated using Fer-
miNet + ECP (blue dots) compared to CCSD(T) (orange triangles)
both with ccECP. We show the relative difference against the experi-
mental data. Our results are quite close to the CCSD(T) ones, except
for VO, NiO, and CuO, in which cases our results are closer to the
experimental ones for VO and NiO.

with only 200 000 training iterations rather than 500 000
iterations in all-electron O simulation. The corresponding
dissociation energy for ScO is 0.2514(1) hartree, which is
slightly smaller than the dissociation energy with all-electron
0 0.2551(1) hartree and 0.2564(2) hartree with 200 000 and
500 000 training iterations, respectively. Overall, we estimate
that using ECP for O may lead to an underbinding of 3—4
millihartrees for the dissociation energy.

IV. DISCUSSION

In this section, we discuss some details of our calculations
and model training.

A. Efficiency

Efficiency and scalability, as well as accuracy, are our
main motivations for taking ECP into consideration. ECP
reduces the number of electrons to deal with in FermiNet,
but it also introduces the additional cost of numercial in-
tergration of the ECP Hamiltonian. In neural networks, the
cost of such numerical interaction has not been investigated.
Whether the combination of FermiNet with ECP can have
better computation efficiency and scalability than all-electron
(AE) calculations needs to be examined.

Compared with the original FermiNet, the computational
complexity for energy calculation is changed after ECP is
employed, which reads
Using ECP
—_—

O((N: + N,)*Y) O(NiniN?), (14)
where N, and N, denote the number of core and valence
electrons, and N, denotes the number of integral quadra-
ture points used in the ECP calculation. In our calculations,
icosahedron quadrature is employed and Ny, = 12. We can
see that the ECP method removes core electrons from
the calculation at the cost of additional forward times for
integrals.
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TABLE IV. The number of electrons and runtimes of a single
training iteration in AE and ECP calculations, respectively.

AE ECP

No. Single iteration No. Single iteration

Element electrons runtime (s) electrons runtime (s)
Ga 31 2.9 3 0.086
Kr 36 4.5 8 0.39
Sc 21 1.08 11 0.61
Ti 22 1.19 12 0.71
v 23 1.32 13 0.85
Cr 24 1.42 14 0.99
Mn 25 1.65 15 1.13
Fe 26 1.80 16 1.30
Co 27 2.00 17 1.55
Ni 28 2.11 18 1.73
Cu 29 2.32 19 1.99
Zn 30 2.59 20 2.16

Here we show the application of FermiNet + ECP on the
elements Ga and Kr in which cases the ECP method has a
significant advantage. With ccECP, we only need to consider
3 electrons for Ga and 8 electrons for Kr, while with all-
electrons we have to deal with 31 and 36 electrons for Ga
and K, respectively, which are already quite large systems
for FermiNet to handle. The computation runtimes are listed
in Table IV, where the data are obtained from 1000 training
iterations by taking the average of their runtime, and we also
ignore the first several iterations to avoid the effect of the ini-
tial warmup and/or the compilation process. It is apparent that,
compared with the AE calculation, the simulation efficiency is
highly improved with ECP employed.

In Table IV we also list the computation runtime of 3d
transition metal atoms, for which 10 core electrons are consid-
ered in ccECP. Because of the fixed number of core electrons,
the heavier the element, the smaller the difference between
AE and ECP is. For Sc there is about a 50% reduction in
the single-iteration runtime from ECP, whereas for Zn the
reduction is less than 20%. Nonetheless, we find that our

Sc

implementation of ECP in FermiNet has larger gains from
electron reduction than losses due to integration of the ECP
part, which suggests a promising future for applying various
ECPs in fast-developing neural network electronic structure
packages.

B. Optimizer comparison

Following the original work of FermiNet [13], we have
tested both ADAM [42] and KFAC [37] optimizers when
training neural networks with ECP. In terms of training run-
time, we find that the choice of optimizer does not matter
much, suggesting that the runtime is dominated by the forward
pass, especially the numerical integration introduced by the
ECP method. For instance, for the vanadium atom, one train-
ing step runs for around 0.8 s regardless of the optimizer. As
for the model performance, KFAC can lead the neural network
to a better state yielding lower energy. It also converges in
much fewer iterations, as shown in Fig. 4 where we show
atoms Sc, Ti, and V as examples. Energy optimized by KFAC
approaches 1% of the correlation energy error after around
10 000 iterations, while the one optimized by ADAM is not
close to that level of accuracy even after 1x 10° iterations.

C. Model training details

Here we discuss a few technical issues occurred in calcu-
lating Co, Cu, Zn, and their monoxides, which may be related
to the bad performances presented in the above sections. The
first issue is that when training the neural network for these
atoms, it may start to produce a Not-a-number (NAN) value
after a number of iterations, which ruins the whole process.
To resolve this issue, we removed outliers in terms of the
local energy from the training process instead of simply do-
ing clipping. Surprisingly, there was a magical threshold for
outlier identification such that the training energy may be
around 10 millihartrees lower than the result with a lower or
higher threshold. In our case, such a threshold is 10 times the
standard deviation of the local energy in one training batch.
We did not observe such phenomena for monoxides and we
speculate that it is because electrons are less likely to be too

Ti Vv

100% 1§

10% 1

1%

Correlation energy error

AO AT AT AT AT AT

— KFAC

AO AT AT AT '\06 \S

AO AT AT AT AT AT

ADAM

FIG. 4. The log-log plot of the optimization progress of FermiNet with ECP for Sc, Ti, and V using optimizers KFAC (blue lines) vs
ADAM (orange lines). The horizontal axis is the number of training iterations. The vertical axis is the correlation energy error, calculated
using CCSDT(Q)/CBS with ccECP provided in Ref. [26]. For clarity, we show the median energy over the last 10% of iterations.

013021-7



LL FAN, REN, AND CHEN

PHYSICAL REVIEW RESEARCH 4, 013021 (2022)

close to the nuclei of transition metal atoms in molecules.
Note that during the inference phase we do not do such outlier
removal so that our calculated energy remains reliable and
variational. Therefore, although this is an issue to be further
investigated in future developments of FermiNet, we do not
expect it is the main cause of the deviation of our results from
experimental values.

Moreover, as mentioned in Sec. III B, our calculated DEs
for CoO, CuO, and ZnO are underestimated when compared
to the result of the most accurate methods and the experi-
mental data. The CoO result is 13 millihartrees lower, the
CuO result is 17 millihartrees lower, and the ZnO result is
8 millihartrees lower, in which cases the gap is more than
10% of their DE. Since our method is variational, it is more
likely that there is an overestimation of the total energy of
the monoxide. There are several potential reasons. First, we
used the same bond length as CCSD(T) [25] for monoxides’
equilibrium position, which may not be the optimal value
for FermiNet + ECP. A fine search of the optimal bond
length may improve the calculated DE by a few millihartrees.
Second, those monoxides are notoriously strongly correlated
and challenging systems for electronic structure calculations.
Although we have made it possible with FermiNet + ECP, the
system is at the limit of current computational capacity. Thus,
it remains unclear whether a more powerful network with a
larger number of layers and determinants can improve the
description of such strongly correlated systems. Last but not
least, we trained our neural networks up to 500 000 iterations,
up to which the convergence of the training process becomes
really slow. This maximum number of training iterations is
chosen based on our affordability, but the slow convergence
does indicate that the wave function represented by the neural
network is still evolving slowly. For such challenging systems,
we cannot rule out the possibility that further fine-tuning in the
network can eventually lead to better results. How the network
size and training process affect the performance of neural

networks is certainly an interesting topic for future studies,
especially for strongly correlated systems.

V. CONCLUSION

In this work, we have implemented the ECP method in the
existing deep learning work, namely, FermiNet. Employing
the ECP method pushes FermiNet towards studying larger
systems by reducing the cost while retaining the accuracy
to describe chemical bonding. Based on our implementa-
tion we carried out studies of 3d transition metal atoms and
their monoxides, which are challenging systems for elec-
tronic structure methods. The calculated results are consistent
with state-of-the-art computational methods and experimental
data. Comparing to more widely used methods such as DFT
and CCSD(T), FermiNet + ECP outperforms them in a broad
range of systems, suggesting a bright future for deep learning
techniques in molecules and materials modeling. Based on
this study, we expect ECPs can also be successfully used in
other neural networks, where benefits in computational effi-
ciency are likely to be similar to our work. We also want to
mention that investigating better network structures, such as
the Transformer network structure [4], may further improve
the accuracy and efficiency in solving electronic structures,
and related works are under way.
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