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In quantum mechanics, physical states are represented by rays in Hilbert space H , which is a vector space
imbued by an inner product 〈 | 〉, whose physical meaning arises as the overlap 〈φ|ψ〉 for |ψ〉 a pure state
(description of preparation) and 〈φ| a projective measurement. However, current quantum theory does not
formally address the consequences of a changing inner product during the interval between preparation and
measurement. We establish a theoretical framework for such a changing inner product, which we show is
consistent with standard quantum mechanics. Furthermore, we show that this change is described by a quantum
operation, which is tomographically observable, and we elucidate how our result is strongly related to the
exploding topic of PT-symmetric quantum mechanics. We explain how to realize experimentally a changing
inner product for a qubit in terms of a qutrit protocol with a unitary channel.
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Hilbert-space inner product is fundamental to quan-
tum mechanics (QM), and its physicality relates to norm
through the Born interpretation and to fidelity and distin-
guishability through its complex angle [1]. The uniqueness
of the inner product associated to a quantum system has
come under scrutiny following the advent of PT-symmetric
QM. PT-symmetric systems are described by non-Hermitian
Hamiltonians invariant under the combined action of par-
ity (P) and time (T) inversion symmetries [2–5], and they
are predicted to exhibit novel physical phenomena, which
have been simulated on a variety of experimental platforms
[6–14]. These phenomena have been explained by observing
that non-Hermitian Hamiltonians with unbroken PT symme-
try are Hermitian with respect to a different Hilbert-space
inner product [3,15–17]. Changing Hilbert-space inner prod-
uct is valuable for certain quantum information processing
(QIP) tasks [18] such as nonorthogonal state discrimination
[19], cloning [20], and quantum algorithms [21,22], but per-
functory applications have led to counter-factual conclusions
[18,23,24] including violation of the no-signalling principle
[25]. Our aim is to prescribe the correct procedure for chang-
ing Hilbert-space inner product and to devise an experiment
to validate our prescription.

Consistency of a changing Hilbert-space inner product
with standard QM and the unobservability of such a change
in closed systems have been investigated. A C∗-algebraic ap-
proach shows that a set of non-Hermitian operators comprises
the observables of a quantum mechanical system if and only
if the operators are Hermitian with respect to a new Hilbert-
space inner product [26]. Such a modified inner product is
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the key to proving the equivalence of PT-symmetric QM with
the Dirac-von Neumann formulation of QM in the case of
closed systems, i.e., systems in which every time evolution is
a unitary operation [3,15,17,27–31]. Furthermore, this equiva-
lence implies that any change in inner product is unobservable
in experiments on closed systems [32]. Therefore, the above
proposals that use the inner-product change for QIP tasks as
well as the counter-factual claims are not applicable to closed
systems.

Evolution generated by PT-symmetric Hamiltonians has
been implemented experimentally for applications includ-
ing sensing [33–35], cloaking [36,37], and unidirectional
propagation [38]. These experiments simulate PT-symmetric
dynamics on classical [6,7,9,10] or quantum [8,11,39,40] sys-
tems by balancing loss and gain. Another way to simulate
PT-symmetric Hamiltonians with real spectra is by dilating
the nonunitary propagator to a nonlocal unitary operator over
multiple subsystems, which has been demonstrated on qubit
systems [13,41–48]. However, none of these simulation strate-
gies involve effecting a change of inner product.

PT-symmetric Hamiltonians and a changing Hilbert-space
inner product are known to be consistent with standard QM
for closed systems, but they are not yet known to be consistent
for open systems. To solve these outstanding problems, we
construct an operational framework, consistent with the C∗-
algebraic formulation of QM, which accommodates a change
in inner product between preparation and measurement. Fur-
thermore, neither PT symmetry nor a changing Hilbert-space
inner product are observable in closed systems, but could be
observable in open systems [32]. We show our change in inner
product is implemented by a quantum operation (henceforth
assumed to be completely positive and trace nonincreasing),
which can be observed using tomography. Next we connect
our framework to the burgeoning topic of PT-symmetric QM
by explaining how an inner-product-changing quantum oper-
ation can be used to implement PT-symmetric dynamics in
an open system. Finally, at the empirical level, we describe a
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FIG. 1. (a) Diagram illustrating the relation between the ∗ oper-
ation of A and the † operation of B(H ) under the representation
π . (b) Commutative diagram depicting the change of representation
from π to πη under Rη. Operationally, Rη represents a trivial trans-
formation, i.e., no change, in S. (c) Commutative diagram illustrating
the relation between the maps Fη, Eη, and Iη.

potential experimental simulation for changing the inner prod-
uct of a qubit by subjecting a qutrit to unitary evolution and
neglecting the third Hilbert-space dimension during prepa-
ration and measurement but not during evolution. We also
extend this simulation procedure to d-dimensional systems.

To construct the operational framework for changing
the inner product associated to a quantum system between
preparation and measurement, we adopt the C∗-algebraic
framework of QM [49], which provides freedom in repre-
senting a given system on different Hilbert spaces following
the Gel’fand-Naimark-Segal (GNS) construction [50,51]. We
employ this representation freedom first to construct repre-
sentations of the C∗ algebra on a pair of Hilbert spaces whose
inner products are related by a given metric operator η. We
then define the change in inner product by η as the identity
isomorphism between the two Hilbert spaces. To operational-
ize the change in inner product, we use commutative diagrams
that connect this isomorphism to a quantum operation be-
tween the bounded operators on the two Hilbert spaces and
finally observe that the quantum operation induces an observ-
able physical transformation on the system.

In the operational approach, the operators of a quantum
system form a unital C∗ algebra A = {A}, which is equipped
with a ∗ operation that captures the notion of adjoint. The
algebra A is representable on a possibly infinite dimensional
Hilbert space H = (V , 〈 | 〉), comprising a complete vector
space V and an inner product 〈 | 〉, which is a nondegenerate
sesquilinear form. In Fig. 1(a), observables are self-adjoint
elements of A and correspond to allowed measurements. A
representation of A is a product-preserving linear map

A π→ B(H ) : π (A∗) = (π (A))†, (1)

where B(H ) denotes the space of bounded linear operators
acting on H and † denotes the Hermitian conjugate. Such
a representation can be obtained using the GNS construction
[50,51]. Product preservation ensures that if I is the identity
operator in A, then π (I ) is the identity operator in B(H ).
An operator M ∈ B(H ) satisfying M† = M is called a self-
adjoint or a Hermitian operator.

We now define states and explain how to represent states
as operators on Hilbert space. States correspond to allowed

preparations of the system [Fig. 1(b)]. A state ω is a posi-
tive linear functional on A that is normalized, i.e., ω(I ) = 1.
This definition is extended to include any subnormalized pos-
itive linear functional, i.e., ω(I ) � 1, which corresponds to
probabilistic preparation in the state ω/ω(I ) with probability
ω(I ) [52]. Supernormalized positive linear functionals are
not valid states according to this probabilistic interpretation
[53]. Let D(H ) := {ρ : ρ � 0, ρ = ρ†, tr(ρ) � 1} ⊂ B(H )
denote the set of density operators with ρ ∈ D(H ) repre-

senting a state ω by ρ
#π�→ ω if and only if the expectation

value tr(ρπ (A)) = ω(A) ∀A. As #π is uniquely determined by
π , we say that ω is represented by ρ ∈ D(H ) under π . We
denote by S = {ω}, the set of all states that are represented
by density operators under π . For the special case of pure ω,
ρ = |ψ〉 〈ψ | for some |ψ〉 ∈ H with 〈ψ |ψ〉 � 1. The trans-

formation |ψ〉 lift�→ |ψ〉 〈ψ | relates Hilbert-space vectors to the
density operators in D(H ) [54].

Now that we have explained states and their represen-
tations, we now discuss changing representation to being
over a different Hilbert space. Given a self-adjoint positive-
definite metric operator η ∈ B(H ), a new Hilbert space
Hη = (V , 〈 | 〉η ) can be constructed [26] such that the inner
products of the two Hilbert spaces are related by 〈• | •〉η :=
〈•| η•〉. A representation πη on Hη can be constructed through
(see Appendix A)

π (•)
Rη�→ πη(•) := Rπ (•)R−1,Rη : B(H ) → B(Hη ), (2)

where R = η
−1/2 is a linear isometry from H to Hη. We note

that this isometry has been used to prove that Hamiltonians
with unbroken PT symmetry are consistent with standard
QM, in the case of closed systems [18,27–29,41]. We refer
to the quantum channel Rη as a “change in representation”

[Fig. 1(b)]. In representation πη, the state ω
#πη← � Rη(ρ) such

that tr(Rη(ρ)πη(A)) = ω(A)∀A, and Rη(ρ) �= ρ in general.

For any pure state ω, ∃ |ψ〉 ∈ Hη such that ω
#πη← � |ψ〉 〈ψ | η liftη← �

|ψ〉 (see Appendix A3). As

tr(ρπ (A)) = tr(Rη(ρ)πη(A)) ∀ω, A, (3)

representations π and πη are physically, i.e., observationally,
indistinguishable. The right-hand side of Eq. (3) can also be
interpreted as preparation (state) described in π followed by
a change in representation from π to πη effected by Rη and
finally measurement (observable) described in πη. Change in
representation between preparation and measurement sets the
stage for our definition of change in inner product.

We define a change in inner product by η to be the iden-
tity isomorphism Iη : H → Hη such that every |ψ〉 �→ |ψ〉.
For any pair |ψ〉 , |φ〉 ∈ H , the inner product between the
pair of transformed vectors Iη |ψ〉 , Iη |φ〉 is 〈ψ |η|φ〉, and
the change is trivial if η = π (I ); i.e., for all pairs |ψ〉 , |φ〉,
〈ψ |η|φ〉 = 〈ψ |φ〉. Our definition is motivated by proposals to
effect PT-symmetric evolution and measurement by changing
the Hilbert-space inner product [19,21] but without a prescrip-
tion for making such changes operationally or mathematically.
Next we explain separately, for the cases η � π (I ) and η �
π (I ), how the isomorphism Iη can be physically realized as a
quantum operation.
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FIG. 2. Commutative diagram showing the action of Fη decom-
posed in terms of Gη and Rη.

The change in inner product by η � π (I ) is physically
realizable via the operation

Eη : B(H ) → B(Hη ) : M �→ Mη, (4)

which is not trace preserving for η �= π (I ) (see Appendix
B). The operation Eη mimics the action of Iη at the level of

density operators, because |ψ〉 lift�→ |ψ〉 〈ψ | whereas Iη |ψ〉 liftη�→
|ψ〉 〈ψ | η = Eη(|ψ〉 〈ψ |). The operation Eη induces a linear
map Fη : S → S such that, for any pure ω ∈ S , both ω and
Fη(ω) are represented by the same |ψ〉 under the represen-
tations π and πη respectively. However, ω and Fη(ω) are
not necessarily the same state [Fig. 1(c)]. Even in the special
case where the two states differ by a scaling factor, they are
inequivalent in our setting. The expectation value of I with
respect to Fη(ω) gives the success probability of the inner-
product changing quantum operation on the state ω. Eη can be
implemented experimentally by lossy purity-preserving oper-
ations, i.e., operations that are not necessarily deterministic
and transform the set of pure states into itself. In the Heisen-
berg picture, the operators transform according to the map

Eop
η : B(H ) → B(Hη ) : M �→ ηM. (5)

This transformation Eop
η could modify commutator relations

as we show in Appendix C.
In the case η � π (I ), Eη is completely positive but trace-

increasing for some ρ ∈ B(H ) and hence not a quantum
operation. In such cases, a scaled version of change in inner
product can be implemented in the following way: choose
κ ∈ (0, 1) such that κη � π (I ) and observe that Eκη = κEη

with Eκη a quantum operation. Therefore, Eκη implements
change in inner product by η � π (I ) up to a scaling factor
κ . Such a scaled version of change in inner product is useful
to reverse the effect of operation Eη when η � π (I ). In this
case, the isomorphism Iη−1 : Hη → H reverses the change
in inner product and the corresponding Eη−1 is not a valid
operation because η−1 � πη(I ). Nevertheless, we can choose
κ = 1/‖η−1‖, where ‖ • ‖ denotes the operator norm [55], and
observe that Eκη−1 ◦ Eη(ρ) = κρ for all ρ ∈ B(H ). There-
fore, the operation Eκη−1 : B(Hη ) → B(H ) reverses, with
probability κ , the change in inner product by η.

The metric operator η can be estimated via quantum pro-
cess tomography [56] for η � π (I ), or κη if otherwise. The
change in inner product by η � π (I ) is implemented via the
operation (Fig. 2)

Eη = Rη ◦ Gη, Gη : B(H ) → B(H ) : M �→ η
1/2Mη

1/2, (6)

for the Kraus rank-1 operation Gη. Then the Kraus operator
η

1/2 and therefore η can be estimated by quantum process
tomography for trace nonincreasing channels [57]. In the other

FIG. 3. Diagram showing implementation of a PT-symmetric dy-
namics using change in inner product and unitary dynamics.

case η � π (I ), the change in inner product is implemented by
the operation Eκη from which κη is estimated similarly; how-
ever, the above procedure does not yield κ and η separately.

We now discuss how to implement dynamics generated by
a diagonalizable Hamiltonian HPT with unbroken PT symme-
try in finite dimensions over a time t � 0, by building on
our framework for changing inner product. The dynamical
transformation generated by HPT is

ρ
UPT�→ κUPTρU †

PT, UPT := e−iHPTt/h̄, (7)

for some κ ∈ (0, 1), where both ρ, UPT(ρ) ∈ D(H ) represent
states under π . We show that this dynamics can be imple-
mented by first changing the inner product, then applying an
appropriate unitary channel and finally reversing the change
in inner product. To explain this sequence, we consider an
arbitrary pure state represented by |ψ〉 ∈ H , which is to be
transformed to that represented by

√
κUPT |ψ〉 ∈ H (lower

row of Fig. 3). Next, we compute a metric operator η �
π (I ) ∈ B(H ) that satisfies the quasi-Hermiticity condition

H†
PT = ηHPTη−1; (8)

the existence of such an η is guaranteed as HPT has unbroken
PT symmetry [58]. The Hamiltonian HPT is self-adjoint with
respect to the inner product of the new Hilbert space Hη.
Therefore, UPT represents unitary dynamics on Hη, which
constitutes the second step of the sequence. Prior to im-
plementing UPT, we transform |ψ〉 ∈ H to |ψ〉 ∈ Hη via a
change in inner product using Iη. Finally, the transforma-
tion from UPT |ψ〉 ∈ Hη to

√
κUPT |ψ〉 ∈ H is equivalent to

reversing the change in inner product using Iη−1 with prob-
ability κ . This sequence extends to general mixed states by
the application of lift, liftη maps and linearity (upper row of
Fig. 3); here ŨPT ∈ B(Hη ) is the unitary channel satisfying
liftη(UPT |ψ〉) = ŨPT( liftη(|ψ〉)), for all |ψ〉 ∈ Hη.

PT-symmetric dynamics in Eq. (7) can be expressed as a
sequence of channels acting exclusively on B(H ), thereby
paving the way for experimental simulation of PT-symmetric
systems. Following the upper row of Fig. 3, we start by
expressing UPT [Eq. (7)] as UPT = Eκη−1 ◦ ŨPT ◦ Eη. Similar
to Eq. (6), we express the reverse change in inner prod-
uct as Eκη−1 = Gκη−1 ◦ Rκη−1 , for Gκη−1 : B(H ) → B(H ) :
Gκη−1 (M ) = κη−1/2Mη

1/2 and Rκη−1 : B(Hη ) → B(H ) is the
channel effecting the change in representation form πη to π .
We then rewrite UPT as

UPT = Gκη−1 ◦ (Rκη−1 ◦ ŨPT ◦ Rη ) ◦ Gη, (9)

which is the desired decomposition. The channels Gκη−1 , Gη

have single Kraus operators
√

κη−1/2 and η
1/2 respectively.

013016-3



KARUVADE, ALASE, AND SANDERS PHYSICAL REVIEW RESEARCH 4, 013016 (2022)

FIG. 4. Simulation of the application of Gη on ρ with success
probability tr(Gη̃(ρ ) ⊕ 0).

The maps Rη, Rκη−1 only effect change in representation
and operationally are equivalent to no change. Finally, the
transformation Rκη−1 ◦ ŨPT ◦ Rη implements a channel cor-
responding to the unitary Kraus-operator η

1/2UPTη
−1/2 acting

on H , generated by the Hamiltonian

hPT = η
1/2HPTη

−1/2 ∈ B(H ), (10)

which can be verified to be self-adjoint, i.e., h†
PT = hPT, using

the quasi-Hermiticity condition in Eq. (8).
We now design a qutrit procedure for an agent to simulate

successfully the change in inner product by η � π (I ) of a
qubit system with algebra A, which is represented on a two-
dimensional Hilbert space H2 by π . Our procedure, which
shall simulate the operation Gη (Fig. 2), uses a unitary opera-
tion on the three-dimensional Hilbert space H3 = H2 ⊕ H1

followed by a projective measurement on to H2 and postselec-
tion, as we now explain. For any η � π (I ), we first construct
the metric operator

η̃ := 1

‖η‖η ⇒ Gη = ‖η‖Gη̃, (11)

and the unitary operator Uη̃ ∈ B(H3) that satisfies

Gη̃(ρ) ⊕ 0 = PUη̃σU †
η̃ P, σ := ρ ⊕ 0, ∀ρ ∈ B(H2), (12)

where P is the orthogonal projector on H2. The matrix repre-
sentation of Uη̃ is (see Appendix D)

[Uη̃] =
(

[η̃]
1
2 u

−eiθ ū� eiθ r

)
, spec(η̃1/2 ) = {1, r}, θ ∈ [0, 2π ),

(13)
where [ ] denotes matrix representation, u is the eigenvector
of [η̃]1/2 with eigenvalue r and ‖u‖ = √

1 − r2. Furthermore,
ū� is the Hermitian conjugate of the vector u. Both θ and the
global phase of u are free parameters. The qutrit unitary oper-
ator Uη̃ is part of the overall simulation procedure [Eq. (12)].

Now we explain how an agent can sequentially apply each
operator in Eq. (12) to simulate Gη (Fig. 4). The agent is
provided with a description of 2 × 2 matrix [η], in the logical
basis {|0〉 , |1〉} and a quantum state σ [Eq. (12)]. The task is to
generate the state (Gη(ρ) ⊕ 0)/tr(Gη(ρ) ⊕ 0) with probability
tr(Gη̃(ρ) ⊕ 0). The agent first computes [η̃] [Eq. (11)] and
[Uη̃] [Eq. (13)] and then applies physical operations corre-
sponding to Uη̃ on σ followed by projective measurement P
[Eq. (12)]. For nonzero measurement outcome, which occurs
with probability tr(Gη̃(ρ) ⊕ 0), the postmeasurement state ob-

tained is [Eq. (11)]

Gη̃(ρ) ⊕ 0
tr(Gη̃(ρ) ⊕ 0)

= Gη(ρ) ⊕ 0
tr(Gη(ρ) ⊕ 0)

. (14)

The agent discards the state if the measurement outcome is
zero. This concludes the simulation procedure. The agent
may further estimate the success probability tr(Gη̃(ρ) ⊕ 0),
if required, by repeating the simulation procedure on a large
number of copies of σ provided to them and then calculating
the ratio of nonzero measurement outcomes to the total num-
ber of copies used [59].

In Appendix E, we provide an explicit procedure to sim-
ulate the dynamics [Eq. (7)] of the qubit PT-symmetric
Hamiltonian [2], by sequentially applying the operators in
Eq. (9) and by using the qutrit simulation procedure to im-
plement Gη,Gκη−1 . In Appendix F, we design a simulation
procedure, similar to our qutrit procedure given above, for
changing the inner product of a d-dimensional system using
a 2d-dimensional system for any positive integer d . Further-
more, we use our procedure to simulate the dynamics of a
d-dimensional PT-symmetric Hamiltonian by using only 2d
dimensions, instead of d3 dimensions as required in the Stine-
spring dilation approach [60].

We also design a scheme to verify tomographically
whether a prover can perform an arbitrary change of inner
product using our qutrit simulation procedure. Input to the ver-
ification scheme is a threshold function Dth : B(H2) → (0, 1)
given as a black-box. The output is “accept” if ‖Gη ⊕ 0 −
Ĝη‖1→1 � Dth(η) or “reject” otherwise, where Ĝη : B(H3) →
B(H3) represents a tomographic reconstruction of the qutrit
process implemented by the prover, Gη ⊕ 0 extends the action
of Gη to B(H3) and ‖ • ‖1→1 is the induced Schatten (1 → 1)-
norm [61]. The verifier supplies to the prover a randomly
chosen valid η, a positive integer N sufficiently large for the
process tomography [62] and copies of the quantum states σi

encoding ρi on demand, where {ρi} is chosen based on the
tomography procedure in use. The prover returns N copies
of the qutrit states on which the change of inner product is
successful as well as the success ratios for each ρi, both of
which are used by the verifier to reconstruct Ĝη. To ensure
that the verifier does not accept the process performed by a
dishonest prover implementing only qubit-unitary channels
and randomly discarding the system, it suffices to set the
threshold to Dth(η) = 1/3(λ1 − λ2), where λ1 > λ2 > 0 are
the eigenvalues of η (see Appendix G).

In conclusion, we have three major results. First, we have
operationalized Hilbert-space inner-product change in a way
that is both observable and fully compatible with axiomatic
quantum mechanics. Physically we can understand this inner-
product change as a lossy quantum operation effecting a
change in norm. This lossy operation is reminiscent of how
superluminality is reconciled by electromagnetic absorption
[63], with loss in our case forbidding past counterfactual
claims. Consistency of our work is proven using C∗ algebra
and representations. Alternatively, our claims can be ver-
ified experimentally by conducting two physically distinct
experiments. One experiment is for the lower-dimensional
lossy quantum operation and the other experiment is for
the higher-dimensional unitary channel with both realizations
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yielding the same success ratio and measurement statistics
for a given task. Our theory fully explains unbroken PT-
symmetric quantum mechanics in all its forms as being about
changing Hilbert-space inner product and observing its con-
sequences. Our scheme for simulating qubit PT-symmetric
Hamiltonians only requires one extra Hilbert-space dimension
and no interaction with the environment, which eliminates
the requirements for multiple subsystems and entangling op-
erations used in existing schemes [13,41,44,47,48]. We also
show how to simulate d-dimensional (d � 2) PT-symmetric
Hamiltonians using 2d dimensions, as opposed to using d3

dimensions in the Stinespring dilation approach. Our results
open possibilities for simulating PT-symmetric dynamics on
new experimental platforms, such as transmons, where high
fidelity qutrit-unitary operations have already been demon-
strated [64,65].
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by the Natural Sciences and Engineering Research Council of
Canada (NSERC). S.K. is grateful for a University of Calgary
Eyes High International Doctoral Scholarship and an Alberta
Innovates Graduate Student Scholarship. A.A. acknowledges
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APPENDIX A: CONSTRUCTING A REPRESENTATION OF
THE C∗ ALGEBRA ON THE HILBERT SPACE WITH A

DIFFERENT INNER PRODUCT

In this section, we show the construction of the Hilbert
space Hη with inner product related to that of H by the
metric operator η, the construction of a ∗-representation of
the C∗ algebra A on this new Hilbert space, and finally the
representation of states in S using density operators on Hη.

1. Constructing a new Hilbert space from the metric operator

For a possibly infinite dimensional Hilbert space H ,
we denote by L(H ) and B(H ) the algebra of linear and
bounded linear operators on H respectively. We also denote
by D(H ) := {ρ ∈ B(H ) : ρ � 0, ρ† = ρ, trρ � 1} the set
of density operators acting on Hη.

Definition 1 ([55]). The adjoint of an operator A ∈ B(H )
is the unique operator A† ∈ B(H ) satisfying

〈φ|A|ψ〉 = 〈ψ |A†|φ〉 ∀ |φ〉 , |ψ〉 ∈ H . (A1)

The operator A is self-adjoint if A = A†.
Definition 2 ([55]). An operator A ∈ L(H ) is positive-

definite if

〈φ|A|φ〉 > 0 ∀ |φ〉 ∈ H , |φ〉 �= 0. (A2)

The following theorem is adapted from the Appendix A of
Ref. [26].

Theorem 1. For any Hilbert space H = (V , 〈 | 〉) and a
self-adjoint, positive-definite operator η ∈ B(H ),

1. the sesquilinear form

〈•|•〉η := 〈•|η|•〉 (A3)

is nondegenerate, therefore an inner product on V .

2. The vector space V is complete with respect to the
norm induced by the inner product 〈•|•〉′, therefore Hη =
(V , 〈 | 〉η ) is a Hilbert space.

2. Constructing a ∗-representation on the new Hilbert space

We now construct a ∗-representation of the algebra A on
the new Hilbert space Hη constructed in Theorem 1. In the
following, H and Hη are two Hilbert spaces with their inner
product related by the metric operator η as in Theorem 1,
A is a C∗ algebra of operators and π : A → B(H ) is a ∗-
representation of A. We first establish some results required
for constructing such a new representation. The following
lemma, which establishes the inverse of the metric operator
η, is adapted from the Appendix A of Ref. [26].

Lemma 2. Any self-adjoint and positive-definite opera-
tor η ∈ B(H ) is invertible. Furthermore, the inverse η−1 ∈
B(H ) is self-adjoint and positive-definite.

We next show that the bounded operator spaces on H and
Hη coincide.

Lemma 3. M ∈ B(H ) if and only if M ∈ B(Hη ).
Proof. Let ‖ • ‖, ‖ • ‖η respectively denote the operator

norms in H , Hη. From Eq. (A3),

‖M‖η = ∥∥η
1/2Mη

−1/2
∥∥, ∀ M ∈ B(H ). (A4)

If M ∈ B(H ), then

‖M‖η �
∥∥η

1/2
∥∥ · ‖M‖ · ∥∥η

−1/2
∥∥ < ∞ (A5)

and therefore, M ∈ B(Hη ). To verify the reverse implication,
note that

‖M‖ = ∥∥η
−1/2

(
η

1/2Mη
−1/2

)
η

1/2
∥∥

�
∥∥η

−1/2
∥∥ · ‖M‖η · ∥∥η

1/2
∥∥ < ∞, (A6)

for all M ∈ B(Hη ).
The next lemma relates † to ‡, with the latter denoting the

adjoint with respect to the inner product 〈•|•〉′ of Hη.
Lemma 4. For any M ∈ B(H ), M‡ = η−1M†η. Addition-

ally, η‡ = η.
Proof. By definition of ‡, we have

〈φ|M|ψ〉η = 〈ψ |M‡|φ〉η, ∀ |ψ〉 , |φ〉 ∈ V ,

∀ M ∈ B(H ). (A7)

Using Eq. (A3),

〈φ|M|ψ〉η = 〈φ|ηM|ψ〉 = 〈ψ |M†η|φ〉 = 〈ψ |η−1M†η|φ〉η,
∀ |ψ〉 , |φ〉 ∈ V , ∀ M ∈ B(H ). (A8)

Then M‡ = η−1M†η follows from the comparison of Eq. (A7)
and Eq. (A8), and η‡ = η can be obtained by substituting M =
η in this relation.

We are now ready for the construction of a ∗-representation
of A on Hη.

Theorem 5. Let π : A → B(H ) be a ∗-representation of a
C∗ algebra A. Then πη : A → L(Hη ) : A �→ η

−1/2π (A)η1/2 is
a ∗-representation of A on Hη.

Proof. The range of the map πη is B(Hη ), which
follows from the fact that η1/2, η−1/2, π (A) ∈ B(Hη ), fol-
lowing Lemma 3 and definition of π , for all A ∈
A. The map πη is linear by construction, and it
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is product preserving because πη(AB) = η
−1/2π (AB)η1/2 =

η
−1/2π (A)(η1/2η

−1/2 )π (B)η1/2 = πη(A)πη(B). Therefore πη is a
representation. The representation πη is also ∗-preserving, as

πη(A∗) = η
−1/2π (A∗)η1/2 = η

−1/2π (A)†η
1/2 = η

1/2π (A)‡η
−1/2

= (
η

−1/2π (A)η1/2
)‡ = πη(A)‡. (A9)

Therefore πη is a ∗-representation of A on Hη.

3. Representing states on the new Hilbert space

We now characterize the set of states represented by the
set of density operators D(Hη ) and construct vector repre-
sentation of the pure states under πη. Recall that #π : ρ �→ ω

such that ω(A) = tr(ρπ (A)) ∀A ∈ A. The map #πη is defined
analogously for the πη representation. In the following lemma
we show how the density operators acting on H and Hη are
related, which we further use to prove that the set of states
represented under πη coincides with that represented under π ,
namely S .

Lemma 6. An operator ρη ∈ D(Hη ) if and only if

ρη = η
−1/2ρη

1/2 (A10)

for some ρ ∈ D(H ).
Proof. Let B := {|ei〉} be an orthonormal basis of H .

We first show that Bη := {| fi〉 := η
−1/2|ei〉} is an orthonor-

mal basis of Hη. The orthonormality of {| fi〉} follows from
〈 fi| f j〉′ = 〈ei|η−1/2ηη

−1/2|e j〉′ = δi j . We prove that {| fi〉} is
a basis by showing that any |φ〉 ∈ V can be expressed
as |φ〉 = ∑

i 〈 fi|φ〉′ | fi〉. Let |ψ〉 = η
1/2 |φ〉. Then |ψ〉 =∑

i 〈ei|ψ〉 |ei〉. Now premultiplying by η
−1/2 and substituting

| fi〉 = η
−1/2 |ei〉, |ψ〉 = η

1/2 |φ〉 yields the desired expression
|φ〉 = ∑

i 〈 fi|φ〉′ | fi〉. Note that this sum is convergent because
the set {| fi〉} is orthonormal [55].

To prove the forward implication, we note that
Hilbert Schmidt norm of any ρ ∈ D(H ) is finite, i.e.,∑

i∈B ‖ρ |ei〉 ‖2 < ∞, and tr(ρ) = ∑
i∈B〈ei|ρ|ei〉 < ∞; both

these properties follow from ρ being a trace-class operator
[55]. For ρη ∈ B(Hη ) satisfying Eq. (A10),∑

i∈Bη

‖ρη | fi〉 ‖2
η =

∑
i∈B

∥∥η
−1/2ρ |ei〉

∥∥2

η

=
∑
i∈B

〈ei|(η−1/2ρ)†η(η−1/2ρ)|ei〉

=
∑
i∈B

‖ρ |ei〉‖2 < ∞. (A11)

Therefore, ρη is a Hilbert-Schmidt operator in B(Hη ). Fur-
thermore,

tr(ρη ) =
∑
i∈Bη

〈 fi|ρη| fi〉η =
∑
i∈B

〈ei|η−1/2ηρηη
−1/2|ei〉

=
∑
i∈B

〈ei|ρ|ei〉 = tr(ρ). (A12)

Therefore, ρη is a trace-class operator with tr(ρη ) � 1 and
hence ρη ∈ D(Hη ). Similarly, the reverse implication that for
any ρη ∈ D(Hη ), the operator η

1/2ρηη
−1/2 ∈ D(H ) is proved

by starting with an orthonormal basis {| fi〉} for Hη and ob-
serving that {η1/2 | fi〉} is an orthornormal basis for H .

We now show that both D(H ) and D(Hη ) represent the
same set of states, S , under the respective ∗-representations.

Lemma 7. ρη

#πη→ ω if and only if ρ
#π→ ω, where ρ, ρη are

related by Eq. (A10).
Proof. To prove the forward implication, note ω(A) =

tr(ρπ (A)) ∀A by the definition of #π . Then tr(ρπ (A)) =
tr(ρηη

−1/2π (A)η1/2) = tr(ρηπη(A)) using the cyclic property of
trace and the definition of πη respectively. Therefore ω(A) =
tr(ρηπη(A)) ∀A, and therefore, ρη

#πη→ ω. The reverse impli-
cation can be proved by following the same steps in reverse
order.

Finally, we represent pure states in S by vectors in the
Hilbert space Hη. Recall that a state ω ∈ S has a vector-
representation |ψ〉 ∈ H under π if

ω(A) = 〈ψ |π (A)|ψ〉 ∀A ∈ A. (A13)

We now extend this definition to the representation πη.
Definition 3. A state ω ∈ S has a vector representation

|ψ〉 ∈ Hη under πη if

ω(A) = 〈ψ |πη(A)|ψ〉
η

∀A ∈ A. (A14)

Let the ball B1(H ) := {|ψ〉 ∈ H :
√〈ψ |ψ〉 � 1} denote

the set of normalized and subnormalized vectors in H .
Recall that the map lift : B1(H ) → D(H ) : |ψ〉 �→ |ψ〉 〈ψ |
connects the vector representation |ψ〉 of a pure state ω

to its density operator representation |ψ〉 〈ψ | under π . We
now construct an analogous map liftη : B1(Hη ) → D(Hη ) for
the representation πη, where the ball B1(Hη ) := {|ψ〉 ∈ Hη :√〈ψ |ψ〉η � 1}.

Definition 4. The map liftη : B1(Hη ) → D(Hη ) is defined
to be the map that satisfies the following condition: for any
state ω ∈ S with vector representation |ψ〉 ∈ Hη and density
operator representation ρη ∈ D(Hη ), liftη : |ψ〉 �→ ρη.

We now derive the explicit action of liftη.
Lemma 8. The map liftη has action liftη : B1(Hη ) →

D(Hη ) : |ψ〉 �→ |ψ〉 〈ψ | η.
Proof. Let liftη : |ψ〉 �→ ρη and #πη : ρη �→ ω. Following

the definition of #πη and liftη,

〈ψ |πη(A)|ψ〉
η

= tr(ρηπη(A)) = ω(A) ∀A. (A15)

As 〈ψ |πη(I )|ψ〉
η

= ω(I ) � 1, |ψ〉 ∈ B1(Hη ). Using
Eq. (A3), we get 〈ψ |πη(A)|ψ〉

η
= 〈ψ |ηπη(A)|ψ〉. Then

using the cyclic property of the trace, this expectation value
can be expressed as

〈ψ |ηπη(A)|ψ〉 = tr( |ψ〉 〈ψ | ηπη(A)) ∀A, (A16)

therefore, ρη = |ψ〉 〈ψ | η ∈ D(Hη ). This leads to the desired
action of liftη.

APPENDIX B: QUANTUM OPERATION FOR
IMPLEMENTING THE CHANGING INNER PRODUCT

In this section, we construct the quantum operation that
implements the change in inner product by η � π (I ). Change
in inner product is defined by the identity isomorphism Iη :
H → Hη [see Fig. 1(c) in main text]. We now show how Iη

is extended to B(Hη ) through the map Eη defined below.
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Theorem 9. Let η � π (I ) and Eη : B(H ) → L(Hη ) :
M �→ Mη. Then

1. range(Eη ) ⊆ B(Hη ),
2. Eη satisfies the following commutative diagram:

(B1)

3. Eη is a quantum operation.
Proof. To prove Statement 1, note that for any M ∈ B(H ),

the operator Mη ∈ B(Hη ) because

‖Mη‖η = ‖η1/2(Mη)η−1/2‖ � ‖η1/2‖2 · ‖M‖ � ∞, (B2)

where the first equality follows from Eq. (A4). The commu-
tative diagram in Statement 2 follows immediately from the
action of liftη map in Lemma 8.

We now show that Eη is a valid quantum operation, i.e.,
a completely-positive, trace nonincreasing map. To prove the
positivity of Eη, let M � 0, so that it can be expressed as
M = AA† [55]. Then Eη(M ) = AA†η, which can expressed
as Eη(M ) = BB‡ with B = Aη

1
2 . Therefore Eη(M ) ∈ B(Hη )

is positive if M is positive, which proves the positivity of Eη.
Complete positivity of Eη can be proven by showing

that the map Eη ⊗ Ik : B(H ) ⊗ B(Ck ) → B(Hη ) ⊗ B(Ck )
is positive, for every positive integer k, where Ik denotes
the identity map on B(Ck ). The action of the new map
is given by [Eη ⊗ Ik](N ) = N (η ⊗ Ik ), with Ik ∈ B(Ck ) the
identity operator. Operator [Eη ⊗ Ik](N ) ∈ B(Hη ) ⊗ B(Ck )
because ‖η ⊗ Ik‖ = ‖η‖η · ‖Ik‖ = ‖η‖η. For proving posi-
tivity, let N ∈ B(H ) ⊗ B(Ck ) be a positive operator, so
that N = CC†. Then [Eη ⊗ Ik](N ) = CC†(η ⊗ Ik ), which can
be expressed as [Eη ⊗ Ik](N ) = DD‡ with D = C(η

1
2 ⊗ Ik ),

thereby proving positivity of [Eη ⊗ Ik](N ) and consequently
positivity of Eη ⊗ Ik .

To prove that Eη is trace nonincreasing, let ρ ∈ D(H ) and
note that trace is independent of the inner product [Eq. (A12)].
We have tr(ρη) = tr(η1/2ρη

1/2 ) and

tr(η1/2ρη
1/2 ) = tr|η1/2ρη

1/2| � ‖η1/2‖2tr|ρ| � tr(ρ), (B3)

where |M| =
√

(M†M ) and we used |M| = M for any M � 0.
The first inequality in Eq. (B3) is a property of the trace norm
[55], and the last inequality in Eq. (B3) follows from the fact
that η � π (I ) and therefore, ‖η1/2‖2 � 1.

APPENDIX C: TRANSFORMATION OF THE OPERATORS
UNDER CHANGING THE INNER PRODUCT

An inner product changing channel could modify the com-
mutation relations between the operators. In this section, we
demonstrate such a change with an explicit example of a qubit
system undergoing an inner-product change. Consider a qubit
system undergoing change in inner product by

η = 1

1 + r sin φ

(
1 −ir sin φ

ir sin φ 1

)
, 0 � r < 1. (C1)

The Pauli operators X,Y, Z ∈ B(H ) acting on the original
Hilbert space along with the identity operator I2 ∈ B(H )

generate the u(2) algebra. These operators transform accord-
ing to Eq. (5) in the main text following the inner-product
change by η. This transformation is given by the map Eop

η .
The transformed operators satisfy the commutation relations[

Eop
η (X ), Eop

η (Y )
] = 2ia Eop

η (Z ),[
Eop

η (I2), Eop
η (Z )

] = 2i(1 − a) Eop
η (X ),[

Eop
η (Y ), Eop

η (Z )
] = 2ia Eop

η (X ),[
Eop

η (I2), Eop
η (X )

] = −2i(1 − a) Eop
η (Z ),[

Eop
η (Z ), Eop

η (X )
] = −2i(1 − a) Eop

η (I2) + 2iaEop
η (Y ),[

Eop
η (I2), Eop

η (Y )
] = 0, (C2)

where a = 1/(1 + r sin φ). These commutation relations are
different from those of u(2) algebra for r �= 0, or equivalently
a �= 1.

APPENDIX D: MATRIX REPRESENTATION OF THE
QUTRIT UNITARY OPERATOR THAT SIMULATES

CHANGE IN INNER PRODUCT OF A QUBIT SYSTEM

In this section, we derive the matrix representation of the
qutrit unitary operator Uη̃ [see Eq. (12) in main text] employed
in the simulation of the change in inner product of a qubit
system. Equation (10) in the main text requires that PUη̃P =
η̃

1/2, so that Uη̃ can be expressed as

[Uη̃] =
(

[η̃]
1
2 u

v̄� reiθ

)
(D1)

for some vectors u, v ∈ C2, a number r ∈ [0, 1] and a phase
θ ∈ [0, 2π ). The unitarity conditions U †

η̃ Uη̃ = Uη̃U †
η̃ = I3 lead

to

[η̃] + uū� = I2, (D2)

[η̃]
1
2 u + reiθv = 0, (D3)

ū�u + r2 = 1 ⇒ ‖u‖ = 1 − r2. (D4)

Postmultiplying Eq. (D2) by u and substituting Eq. (D4)
yields [η̃]u = r2u, which implies that u is the eigenvector of
[η̃]1/2 with eigenvalue r. Then Eq. (D3) yields v = −e−iθ u
as desired, with the global phase of u and θ being the free
parameters.

APPENDIX E: SIMULATION OF A QUBIT
PT-SYMMETRIC HAMILTONIAN USING SINGLE QUTRIT

We now design a qutrit procedure that simulates the dy-
namics of a qubit Hamiltonian with unbroken PT symmetry.
Our design is based on the qutrit procedure for simulating the
change in inner product of a qubit system, provided in the
main text (Fig. 4). We illustrate our Hamiltonian-simulation
procedure using the PT-symmetric Hamiltonian HPT from [3].

The matrix form of HPT is

[HPT] =
(

reiφ s
s re−iφ

)
, s > r sin φ � 0. (E1)
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Dynamics generated by HPT is denoted by the operator UPT

[Eq. (6) in main text],

ρ
UPT�→ κUPTρU †

PT, UPT := e−iHPTt/h̄, κ = 1

‖η−1
2 ‖ . (E2)

As proved in the main text, UPT can be expressed as a sequence
of operations acting exclusively on B(H2),

UPT = Gκη−1
2

◦ (Rκη−1
2

◦ ŨPT ◦ Rη2 ) ◦ Gη2 , (E3)

where Rκη−1 ◦ ŨPT ◦ Rη : B(H2) → B(H2) is the channel
with unitary Kraus operator η

1/2UPTη
−1/2 and the Kraus

operator is generated by self-adjoint Hamiltonian hPT =
η

1/2HPTη
−1/2.

Our qutrit procedure for simulating UPT involves imple-
menting each operation in Eq. (E3) using qutrit unitaries
and measurements, as we now explain through Steps 1–4.
The input to the simulation procedure is ρ ∈ B(H2) embed-
ded as σ := ρ ⊕ 0 ∈ B(H3) and a time t > 0. The output

of the procedure is the state UPTρU †
PT

tr(UPTρU †
PT )

with probability
1

‖η−1
2 ‖ tr(UPTρU †

PT). The simulation steps are

1. Calculate the metric operator and its inverse: The agent
calculates η2, η−1

2 satisfying the quasi-Hermiticity condition
H†

PT = η2HPTη−1
2 . A choice of η2 and, therefore η−1

2 , is

[η2] = 1

s + r sin φ

(
s −ir sin φ

ir sin φ s

)
, (E4)

[
η−1

2

] = 1

s − r sin φ

(
s ir sin φ

−ir sin φ s

)
, (E5)

with ‖η2‖ = 1 and ‖η−1
2 ‖ = (s + r sin φ)/(s − r sin φ).

2. Simulate change in inner product by η2: Agent imple-
ments the qutrit procedure (Fig. 4) to simulate Gη2 by setting
η̃ = η2 and for a single copy of σ . A choice of the qutrit
unitary Uη2 [see Eq. (D1)] simulating the action of Gη2 is

Uη2 =
⎛⎝ (1 + q)/2 −i(1 − q)/2 p

i(1 − q)/2 (1 + q)/2 −ip
−p −ip q

⎞⎠, (E6)

where

q =
√

s − r sin φ

s + r sin φ
= 1√

‖η−1
2 ‖

, p =
√

r sin φ

s + r sin φ
. (E7)

The output of this step is the qutrit state η
1/2
2 ρη

1/2
2

tr(η
1/2
2 ρη

1/2
2 )

⊕ 0 with

probability tr(η
1/2

2 ρη
1/2

2 ).
3. Simulate the unitary evolution generated by hPT: Agent

calculates hPT embedded in B(H3),

[hPT ⊕ 0] =
⎛⎝ r cos φ

√
s2 − r2 sin2 φ 0√

s2 − r2 sin2 φ r cos φ 0
0 0 0

⎞⎠,

(E8)
and implements the qutrit unitary operator e−i(hPT⊕0)t , which
is equivalent to simulating the channel (Rκη−1

2
◦ ŨPT ◦ Rη2 ) in

Eq. (E3). The output of this deterministic step is the qutrit state

(e−ihPTt (η
1/2
2 ρη

1/2
2 )

tr(η
1/2
2 ρη

1/2
2 )

eihPTt ) ⊕ 0, provided Step 2 is successful.

4. Simulate change in inner product by κη−1
2 : Agent ap-

plies the qutrit procedure (Fig. 4) to simulate Gκη−1
2

, by setting

η̃ = κη−1
2 . Note that we have κ = 1

‖η−1
2 ‖ = q2 [Eqs. (E3) and

(E6)]. A choice of Uκη−1
2

is

Uκη−1
2

=
⎛⎝ (1 + q)/2 i(1 − q)/2 p

−i(1 − q)/2 (1 + q)/2 ip
−p ip q

⎞⎠. (E9)

The output of this procedure is the qutrit state

(η
−1/2

2 e−ihPTtη
1/2

2 ρη
1/2

2 eihPTtη
−1/2

2 )

tr(η
−1/2

2 e−ihPTtη
1/2

2 ρη
1/2

2 eihPTtη
−1/2

2 )
⊕ 0 = UPTρU †

PT

tr(UPTρU †
PT)

⊕ 0

with probability tr(UPTρU †
PT )

‖η−1
2 ‖tr(η

1/2
2 ρη

1/2
2 )

.

Therefore, the output of the simulation procedure is the

state UPTρU †
PT

tr(UPTρU †
PT )

⊕ 0 with success probability given by the com-

bined probability of success in Steps 2,4, which is equal to
1

‖η−1
2 ‖ tr(UPTρU †

PT).

APPENDIX F: SIMULATION OF CHANGE IN INNER
PRODUCT AND PT-SYMMETRIC DYNAMICS OF A

d-DIMENSIONAL SYSTEM

We first explain a simulation procedure to change the inner
product of a d-dimensional system using 2d dimensions. We
assume that the algebra A of the system is represented on
a d-dimensional Hilbert space H (s)

d by π . Similar to the
qutrit simulation procedure explained in main text, the agent
simulating Gη for η � π (I ) first constructs the metric opera-
tor η̃ = 1

‖η‖η and the unitary operator Uη̃ ∈ B(H (s)
d ⊕ H (a)

d )
satisfying

Gη̃(ρ) ⊕ 0 = PUη̃σU †
η̃ P, σ := ρ ⊕ 0, ∀ρ ∈ B(H (s)

d ), (F1)

where 0 denotes the zero operator in B(H (a)
d ). The matrix

representation of a choice of Uη̃ is

[Uη̃] =
(

[η̃]
1
2 [1 − η̃]

1
2

[1 − η̃]
1
2 −[η̃]

1
2

)
. (F2)

Agent then implements Uη̃ followed by projective measure-
ment and postselection on to the subspace H (s)

d . All steps of
the simulation procedure are similar to the qutrit simulation
procedure for changing inner product explained in the main
text.

We now discuss how this simulation procedure for chang-
ing the inner product can be used for simulating PT-symmetric
dynamics in d dimensions using a 2d-dimensional system.
Similar to the d = 2 case discussed in Sec. E, the input to
the simulation procedure is ρ ∈ B(H (s)

d ) embedded as σ :=
ρ ⊕ 0 ∈ B(H (s)

d ⊕ H (a)
d ) and a time t > 0. The simulation

steps are as follows:
1. The agent calculates η satisfying the quasi-Hermiticity

condition H†
PT = ηHPTη−1 with ‖η‖ = 1.

2. The agent implements the procedure described above
to simulate Gη by setting η̃ = η and for a single copy of σ

[Eq. (F1)].
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3. The agent calculates hPT = η
1/2HPTη−1/2 embedded

in B(H (s)
d ⊕ H (a)

d ), and implements the unitary operator
e−i(hPT⊕0)t .

4. The agent applies the procedure described above to
simulate Gκη−1 , by setting η̃ = κη−1 such that κ = 1

‖η−1‖
[Eq. (F1)].

The output of this procedure is the state UPTρU †
PT

tr(UPTρU †
PT )

with

probability 1
‖η−1

2 ‖ tr(UPTρU †
PT).

APPENDIX G: ADDITIONAL DETAILS ON THE
VERIFICATION SCHEME

We now prove a threshold distance Dth for the tomographic
verification scheme, for the qutrit procedure simulating the
change in inner product by an arbitrary η, provided in the main
text. The scheme allows a verifier to distinguish an honest
prover implementing the operation Gη from a dishonest prover
failing to implement the same. We assume that the dishonest
prover implements only unitary operations, on the qubit sub-
space, drawn from the set {Uj ⊕ 1 : Uj ∈ B(H2)}, where each
Uj is selected with probability p j , and the system is discarded
with probability p := 1 − ∑

j p j < 1. The quantum operation
implemented by the dishonest prover is given by

Ĝη(•) =
∑

j

p j (Uj ⊕ 1)† • (Uj ⊕ 1). (G1)

We now derive a lower bound for the induced Schatten (1 →
1)-norm distance [61] between the inner-product changing
operation Gη ⊕ 0 and the implemented operation Ĝη. Note that

‖Gη ⊕ 0 − Ĝη‖1→1 = max
T ∈B(H3 )

‖Gη ⊕ 1(T ) − Ĝη(T )‖tr

‖T ‖tr
,

(G2)

where ‖T ‖tr = tr(
√

T †T ). For T = 1
3 I3, ‖T ‖tr = 1. There-

fore,

‖Gη ⊕ 0 − Ĝη‖1→1

� 1

3
‖Gη ⊕ 0(I3) − Ĝη(I3)‖tr

= 1

3
‖η ⊕ 1 −

∑
j

p j (Uj ⊕ 1)†I3(Uj ⊕ 1)‖tr

= 1

3
‖η ⊕ 1 − (1 − p)I3‖tr. (G3)

We assume that the eigenvalues of η are denoted by λ1, λ2.
The eigenvalues satisfy 1 � λ1 > λ2 > 0 for any nontrivial η,
i.e., η �= I3. The trace distance ‖η ⊕ 1 − (1 − p)I3‖tr = |λ1 −
(1 − p)| + |λ2 − (1 − p)|. For any p ∈ [0, 1), it can be further
verified that ‖η ⊕ 1 − (1 − p)I3‖tr � (λ1 − λ2). Therefore,

Dth := (λ1 − λ2)

3
� ‖Gη ⊕ 0 − Ĝη‖1→1. (G4)

The above given value for Dth allows the verifier to distinguish
an honest prover from a dishonest one, provided the honest
prover implements the operation Gη with error less than Dth,
where error is quantified by the induced Schatten (1 → 1)-
norm.
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[9] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-

symmetric whispering-gallery microcavities, Nat. Phys. 10, 394
(2014).

[10] Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N.
Christodoulides, B. He, Y. Zhang, and M. Xiao, Observation of
Parity-Time Symmetry in Optically Induced Atomic Lattices,
Phys. Rev. Lett. 117, 123601 (2016).

[11] L. Xiao, X. Zhan, Z. Bian, K. Wang, X. Zhang, X. Wang, J.
Li, K. Mochizuki, D. Kim, N. Kawakami et al., Observation
of topological edge states in parity–time-symmetric quantum
walks, Nat. Phys. 13, 1117 (2017).

[12] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[13] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong,
and J. Du, Observation of parity-time symmetry breaking in a
single-spin system, Science 364, 878 (2019).

[14] J. Zhang, L. Li, G. Wang, X. Feng, B.-O. Guan, and J. Yao,
Parity-time symmetry in wavelength space within a single spa-
tial resonator, Nat. Commun. 11, 3217 (2020).

[15] A. Mostafazadeh, Exact PT -symmetry is equivalent to Her-
miticity, J. Phys. A 36, 7081 (2003).

[16] K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
and Z. H. Musslimani, Beam Dynamics in PT Sym-

013016-9

https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1119/1.1574043
https://doi.org/10.1080/00107500072632
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevLett.108.024101
https://doi.org/10.1038/nphys2927
https://doi.org/10.1103/PhysRevLett.117.123601
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4323
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1038/s41467-020-16705-8
https://doi.org/10.1088/0305-4470/36/25/312


KARUVADE, ALASE, AND SANDERS PHYSICAL REVIEW RESEARCH 4, 013016 (2022)

metric Optical Lattices, Phys. Rev. Lett. 100, 103904
(2008).

[17] C.-Y. Ju, A. Miranowicz, G.-Y. Chen, and F. Nori, Non-
Hermitian Hamiltonians and no-go theorems in quantum
information, Phys. Rev. A 100, 062118 (2019).

[18] S. Croke, PT -symmetric Hamiltonians and their applica-
tion in quantum information, Phys. Rev. A 91, 052113
(2015).

[19] C. M. Bender, D. C. Brody, J. Caldeira, U. Günther, B. K.
Meister, and B. F. Samsonov, PT-symmetric quantum state dis-
crimination, Philos. Trans. R. Soc. A 371, 20120160 (2013).

[20] X. Zhan, K. Wang, L. Xiao, Z. Bian, Y. Zhang, B. C. Sanders, C.
Zhang, and P. Xue, Experimental quantum cloning in a pseudo-
unitary system, Phys. Rev. A 101, 010302(R) (2020).

[21] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister,
Faster Than Hermitian Quantum Mechanics, Phys. Rev. Lett.
98, 040403 (2007).

[22] A. Mostafazadeh, Hamiltonians generating optimal-speed evo-
lutions, Phys. Rev. A 79, 014101 (2009).

[23] A. K. Pati, Violation of invariance of entanglement under local
PT symmetric unitary, arXiv:1404.6166.

[24] S.-L. Chen, G.-Y. Chen, and Y.-N. Chen, Increase of entan-
glement by local PT -symmetric operations, Phys. Rev. A 90,
054301 (2014).

[25] Y.-C. Lee, M.-H. Hsieh, S. T. Flammia, and R.-K. Lee, Local
PT Symmetry Violates The No-Signaling Principle, Phys. Rev.
Lett. 112, 130404 (2014).

[26] F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Quasi-Hermitian
operators in quantum mechanics and the variational principle,
Ann. Phys. (NY) 213, 74 (1992).

[27] A. Mostafazadeh, Conceptual aspects of PT -symmetry and
pseudo-Hermiticity: A status report, Phys. Scr. 82, 038110
(2010).

[28] A. Mostafazadeh, Pseudo-Hermitian representation of quantum
mechanics, Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010).

[29] M. Znojil, Non-self-adjoint Operators in Quantum Physics:
Ideas, People, and Trends, edited by F. Bagarello, J. P. Gazeau,
F. H. Szafraniec, and M. Znojil (Wiley, New York, 2015).

[30] A. Mostafazadeh, Energy observable for a quantum system with
a dynamical Hilbert space and a global geometric extension of
quantum theory, Phys. Rev. D 98, 046022 (2018).

[31] D.-J. Zhang, Q.-h. Wang, and J. Gong, Time-dependent
PT -symmetric quantum mechanics in generic non-Hermitian
systems, Phys. Rev. A 100, 062121 (2019).

[32] D. C. Brody, Consistency of PT-symmetric quantum mechanics,
J. Phys. A 49, 10LT03 (2016).
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