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Assuming time-scale separation, a simple and unified theory of thermodynamics and stochastic thermody-
namics is constructed for small classical systems strongly interacting with their environments in a controllable
fashion. The total Hamiltonian is decomposed into a bath part and a system part, the latter being the Hamiltonian
of mean force. Both the conditional equilibrium of the bath and the reduced equilibrium of the system are
described by canonical ensemble theories with respect to their own Hamiltonians. The bath free energy is
independent of the system variables and the control parameter. Furthermore, the weak coupling theory of
stochastic thermodynamics becomes applicable almost verbatim, even if the interaction and correlation between
the system and its environment are strong and varied externally. We further discuss a simple scenario where the
present theory fits better with the common intuition about system entropy and heat.
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I. INTRODUCTION

One of the most significant discoveries of statistical
physics in the past few decades is that thermodynamic vari-
ables can be defined on the level of the dynamic trajectory
[1–3]. Studies of these fluctuating quantities in nonequi-
librium processes have led to significant results such as
fluctuation theorems [2] and the Jarzynski equality [3], as
well as a much deeper understanding of the second law of
thermodynamics.

Consider, for example, a small classical system with
Hamiltonian H (x, λ) weakly interacting with its bath, such
that the interaction energy and statistical correlation between
the system and the bath are negligibly small. Here, x = (q, p)
are the canonical variables, and λ is an external control pa-
rameter. The differential work and heat at trajectory level are
defined as

d̄W ≡ H (x, λ + dλ) − H (x, λ) ≡ dλH (x, λ), (1.1a)

d̄Q ≡ H (x + dx, λ) − H (x, λ) ≡ dxH (x, λ), (1.1b)

respectively. Throughout this paper, we use the notations
dλH (x, λ) and dxH (x, λ) for differentials of H (x, λ) due to
variations of λ and of x, respectively [4]. These notations
will greatly simplify the presentation of our theory. With
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H (x, λ) identified as the fluctuating internal energy, the first
law at the trajectory level then follows directly: dH = dλH +
dxH = d̄W + d̄Q. Further using the time-reversal symme-
try of Hamiltonian dynamics or Langevin dynamics, one
can derive the Crooks function theorem, Jarzynski equality,
and Clausius inequality. Mathematical expressions for various
thermodynamic variables of weak coupling stochastic thermo-
dynamics are shown in the center column of Table I of Sec. V.
For pedagogical reviews, see, e.g., Refs. [2,3].

In recent years, there has been significant interest in
generalizing thermodynamics and stochastic thermodynamics
to small systems that are strongly coupled to the environ-
ment, both classical [5–16] and quantum [6,8,17–28]. Strong
interactions between a system and its environment cause
ambiguities in the definitions of system thermodynamic quan-
tities [6,8]. If the system size is large and the interactions are
short ranged, the correlations between system and bath are
confined to the interfacial regions and hence do not influence
the bulk properties of the system. This is indeed the rea-
son why classical thermodynamics and statistical mechanics
are so successful in describing the equilibrium properties of
macroscopic systems, even if these systems may be strongly
interacting with the environment near the interfaces. Small
systems, however, have no “bulk,” and their thermodynamic
properties may be overwhelmingly dominated by their inter-
actions and correlations with the environment. Should one
relegate the interaction energy to the system or to the bath?
Should one treat the mutual information between the system
and bath variables as part of the system entropy or the bath
entropy? There seems to be no general principle in favor of
any particular answer. For critical and insightful discussions
of these fundamental issues, see the recent articles by Jarzyn-
ski [7] and by Talkner and Hänggi [8].
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Numerous versions [5–7,12,29] of strong coupling ther-
modynamic theories have been proposed in recent years.
The theory that is probably the most influential was devel-
oped by Seifert [5] and critically evaluated by Talkner and
Hänggi [6,8]. In this theory, one uses the Hamiltonian of mean
force (HMF) HX [16,30,31] to construct the equilibrium free
energy F = −T ln

∫
e−βHX and then defines equilibrium sys-

tem energy and entropy via E = ∂βF/∂β, S = −β2∂F/∂β.
Whereas these relations exactly hold in equilibrium ther-
modynamics, they must be deemed as definitions of energy
and entropy in Seifert’s theory of strong coupling thermo-
dynamics. Interestingly, these definitions correspond to the
particular decomposition of total thermodynamic variables
Atot = Asys + Abath, where Abath is the thermodynamic variable
of the bare bath, with the interaction between the system and
bath switched off. Hence it can be said that Seifert allocates
the entire interaction energy to the system. These definitions
of energy and entropy are further bootstrapped to nonequilib-
rium situations [5], and fluctuation theorems and the Clausius
inequality are subsequently established. The resulting formu-
las (the right column of Table I) in strongly coupled regimes
are markedly more complicated than those in weak coupling
theory (the center column). These differences, however, dis-
appear as the interaction Hamiltonian vanishes, and the HMF
reduces to the bare system Hamiltonian.

Strasberg and Esposito [14] recently studied the strong
coupling problem from the viewpoint of time-scale separation
(TSS). They consider a system involving both slow and fast
variables. By assuming fast variables in conditional equi-
librium, they show that Seifert’s theory can be derived by
averaging out the fast variables. Furthermore, they proposed
a definition of total entropy production in terms of the relative
entropy, which is a variation of the entropy production defined
in Ref. [27], and show that it is equivalent to the entropy
production in Seifert’s theory. The conditional equilibrium
of the bath also allows one to prove the positivity of the
instantaneous rate of total entropy production, rather than the
positivity of the total entropy production of an entire process.
The importance of TSS has long been known. It was in-
voked heuristically to justify adiabatic approximation [32,33],
Markov modeling [34], and dimensional reduction of dynamic
theories [35,36].

Jarzynski [7] developed a more comprehensive (and hence
more complex) theory for strong coupling thermodynamics
and systematically discussed the definitions of internal en-
ergy, entropy, volume, pressure, enthalpy, and Gibbs free
energy. The formalism was established around the concept
of volume, whose definition is somewhat arbitrary. All other
thermodynamic variables are uniquely fixed by thermody-
namic consistency once the system volume is (arbitrarily)
defined. Jarzynski further showed that Seifert’s theory is a
special case of his (Jarzynski’s) framework, i.e., the “partial
molar representation.” Jarzynski discussed in great detail the
“bare representation,” where the system enthalpy coincides
with the HMF. The total entropy production is, however, the
same in both representations. Jarzynski made an analogy be-
tween the arbitrariness in the definition of thermodynamic
variables in the strong coupling regime and the gauge de-
gree of freedom in electromagnetism, which was criticized by
Talkner and Hänggi [8].

The main purpose of this paper is to show that, with TSS
and the ensuing conditional equilibrium of bath variables, a
much simpler thermodynamic theory can be developed for
strongly coupled small classical systems. More specifically,
we will show that by identifying the Hamiltonian of mean
force (HMF) as the system Hamiltonian, and relegating the
remaining part of the total Hamiltonian to the bath, both
the equilibrium ensemble theory and the weak coupling the-
ory of stochastic thermodynamics remain applicable, almost
verbatim, in the strong coupling regime. Work and heat,
entropy, and energy all retain the same definitions and the
same physical meanings as in the weak coupling theory, as
long as the bath entropy understood as conditioned on the
system state. Fluctuation theorems, the Jarzynski equality,
and the Clausius inequality can all be proved using nonlinear
Langevin dynamics [37,38], whose validity relies on TSS
but not on the strength of coupling. Using the conditional
equilibrium nature of the bath, it can be rigorously demon-
strated that dS − βd̄Q is equal to the entropy change of
the universe, which establishes the meaning of the Clausius
inequality as increasing the total entropy. Finally, we will
also show that our theory, though significantly simpler, is
consistent with all previous theories, in the sense that the
total entropy productions in all theories are mathematically
equivalent. Summarizing, we achieve a natural unification of
thermodynamics and stochastic thermodynamics at both weak
and strong coupling regimes.

A logical consequence of TSS is that the dynamic evolution
of slow variables can be modeled as a Markov process, such as
Langevin dynamics with white noise. In the strongly coupled
regime, the noises are, however, generically multiplicative.
In a complementary paper [38], two of us develop a theory
of stochastic thermodynamics using nonlinear Ito-Langevin
dynamics, establish its covariance property, and derive the
Crooks fluctuation theorem, Jarzynsk equality, and Clausius
inequality. The definitions of thermodynamic quantities are
identical in this paper and in Ref. [38], if we take gi j = δi j

in Ref. [38]. (The theory in Ref. [38] was developed for
Langevin dynamics on an arbitrary Riemannian manifold
with invariant volume measure

√
gdd x, whereas in this pa-

per, we consider Hamiltonian systems with Liouville measure∏
i d pidqi.) The combination of these two works provides a

covariant theory of thermodynamics and stochastic thermo-
dynamics for systems strongly interacting with a single heat
bath, with TSS as the only assumption.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our decomposition of the total Hamilto-
nian and discuss the equilibrium thermodynamic properties of
strongly coupled systems. In Sec. III, we discuss the nonequi-
librium thermodynamic properties of the system. Work and
heat retain the same definitions and same physical mean-
ings as in the weak coupling theory, i.e., the energy changes
of the combined system and of the bath, respectively. In
Sec. IV, we discuss the connection between heat and entropy
change of the bath, conditioned on the slow variables. In
Sec. V, we compare our theory with previous theories by
Seifert [5], by Talkner and Hänggi [6,8], by Jarzynski [7],
and by Strasberg and Esposito [14] and show that they are
all equivalent. We will also discuss a simple scenario where
the present theory fits better with the common intuition about
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system entropy and heat. In Sec. VI we make concluding
remarks.

II. EQUILIBRIUM THEORY

In this section, we shall demonstrate that by identifying
the HMF as the system Hamiltonian and the remainder of the
total Hamiltonian as the bath Hamiltonian, canonical ensem-
ble theory can be straightforwardly adapted to describe the
equilibrium properties of systems that are strongly coupled
to their baths. There is also a related decomposition of total
thermodynamic quantities into system parts and bath parts.
The bath free energy turns out to be the same as that of a bare
bath and is independent of the state of slow variables or of the
external control parameter.

A. Decomposition of the total Hamiltonian

We shall use X, Y to denote fast and slow variables and x, y
to denote their values. We shall also call X the system and Y
the bath. Let the total Hamiltonian be

HXY(x, y; λ) = H0
X(x; λ) + HY(y) + H0

I (x, y; λ), (2.1)

where H0
X(x; λ) and HY(y) are the bare system Hamiltonian

and bare bath Hamiltonian, whereas H0
I (x, y; λ) is the bare

interaction. Note that every term on the right-hand side is
independent of temperature, and the bare bath Hamiltonian
HY(y) is independent of λ. Our starting point, Eq. (2.1), is
more general than those in Ref. [5–7], where the bare interac-
tion H0

I (x, y; λ) is assumed to be independent of λ.
Throughout this paper, we shall assume that XY is weakly

interacting with a much larger superbath whose dynamics is
even faster than Y. We will call YZ the environment and XYZ
the universe. We shall use

∫
y ≡ ∫

dNy to denote integration
over y and similar notation for integration over x and z. These
notations are especially useful when we dealing with integrals
of differential forms. Let T = 1/β be the temperature, which
is assumed to be fixed throughout this paper. We shall set
the Boltzmann constant kB = 1, and hence all entropies are
dimensionless.

We shall define the system Hamiltonian HX(x; λ, β ) and
interaction Hamiltonian HI (x, y; λ, β ) as

HX(x; λ, β ) = H0
X(x) − T ln

∫
y e−β(HY+H0

I )

∫
y e−βHY

= −T ln

∫
y e−βHXY∫
y e−βHY

, (2.2)

HI (x, y; λ, β ) = H0
I (x, y; λ) + T ln

∫
y e−βHY

∫
y e−β(HY+H0

I )
, (2.3)

both of which depend on β and λ. Note that HX(x; λ, β ) is
precisely the Hamiltonian of mean force (HMF) defined and
used in previous works [5,6,16,30,39].

We now obtain a new decomposition of HXY:

HXY(x, y; λ) = HX(x; λ, β ) + HY(y) + HI (x, y; λ, β ). (2.4a)

Note that even though both HX and HI depend on β, the total
Hamiltonian on the left-hand side of Eq. (2.4a) is independent

of β. We further define the bath Hamiltonian as

Hbath(y; x, λ, β ) ≡ HY(y) + HI (x, y; λ, β ) (2.4b)

and rewrite Eq. (2.4a) as

HXY(x, y; λ) = HX(x; λ, β ) + Hbath(y; x, λ, β ). (2.4c)

We also define the bath partition function as

ZY(x, λ, β ) =
∫

y
e−βHbath (y;x,λ,β ), (2.5)

which is conditioned on X = x and generally also depends on
both x and λ. Using Eqs. (2.4b) and (2.3), we easily see that

ZY(x, λ, β ) =
∫

y
e−β(HY+H0

I )

∫
y e−βHY

∫
y e−β(HY+H0

I )

=
∫

y
e−βHY ≡ Z0

Y(β ), (2.6)

where Z0
Y(β ) is the partition function of the bare bath, with

the interaction Hamiltonian between X and Y completely
switched off.

Hence the bath partition function ZY(x, λ, β ) as defined by
Eq. (2.5) is independent of x and λ:

∂ZY(x, λ, β )

∂x
= ∂ZY(x, λ, β )

∂λ
= 0, (2.7)

and we shall from now on simply write it as ZY(β ). Equation
(2.7) will play a very significant role in our theory.

B. Conditional equilibrium of the bath

In an intermediate time scale, the fast variables equilibrate,
whereas the slow variables barely change. Hence Y achieves
equilibrium conditioned on X = x, described by the condi-
tional Gibbs-Boltzmann distribution:

pEQ
Y|X(y|x) = 1

ZY(β )
e−βHbath (y;x,λ,β ), (2.8a)

with ZY(β ) defined in Eq. (2.5). We further define the condi-
tional free energy of the bath:

FY(β ) ≡ −T ln ZY(β ) = −T ln Z0
Y(β ) = F 0

Y (β ), (2.8b)

where F 0
Y (β ) is the free energy of the bare bath. Equations

(2.8a) and (2.8b) define a conditional canonical ensemble,
which describes the equilibrium physics of the fast variables
in the intermediate time scales, during which the slow vari-
ables change very little. In this ensemble theory, x serves as a
parameter, just like λ and β.

The internal energy and entropy of the bath in the condi-
tional equilibrium state are defined in a standard way:

EY(x) =
∫

y
pEQ

Y|X(y|x)Hbath(y; x, λ, β ), (2.9a)

SY|X=x = −
∫

y
pEQ

Y|X(y|x) ln pEQ
Y|X(y|x), (2.9b)

which are related to the free energy FY(β ) via

FY(β ) = EY(x) − T SY|X=x. (2.9c)
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SY|X=x is known in information theory [40] as the conditional
Shannon entropy of Y given X = x. Note that even though
FY(β ) does not depend on x and λ, both EY(x) and SY|X=x do.

Even though the free energy of the bath conditioned on the
system state is equal to that of the bare bath, there are impor-
tant differences between other thermodynamic quantities of
the bath and the bare bath. For example, the internal energy
and entropy of the bare bath are given by

E0
Y =

∫
y

e−βHY

Z0
Y(β )

HY(y), (2.10a)

S0
Y = −

∫
y

e−βHY

Z0
Y(β )

ln
e−βHY

Z0
Y(β )

, (2.10b)

respectively, which are manifestly different from Eqs. (2.9a)
and (2.9b).

C. Joint equilibrium of the system and bath

In long time scales, XY achieve a joint equilibrium, which
is described by the joint Gibbs-Boltzmann distribution

pEQ
XY(x, y) = e−βHXY (x,y;λ)

ZXY(β, λ)
, (2.11)

where ZXY(β, λ) is the canonical joint partition function

ZXY(β, λ) =
∫

xy
e−βHXY

=
∫

xy
e−βHX−βHbath . (2.12a)

From this we can obtain various thermodynamic quantities for
this joint canonical ensemble in a standard way:

FXY(β, λ) = −T ln ZXY(β, λ), (2.12b)

EXY(β, λ) =
∫

x,y
pEQ

XY(x, y)HXY(x, y; λ), (2.12c)

SXY(β, λ) = −
∫

x,y
pEQ

XY(x, y) ln pEQ
XY(x, y), (2.12d)

FXY(β, λ) = EXY − T SXY. (2.12e)

The joint canonical ensemble describes the equilibrium statis-
tical properties of both slow and fast variables.

D. Reduced equilibrium of the system

We may also study the equilibrium distribution of slow
variables alone. This reduced canonical distribution can be
obtained from Eq. (2.11) by integrating out the fast variables:

pEQ
X (x) =

∫
y

pEQ
XY(x, y)

= 1

ZXY(β, λ)

∫
y

e−βHX−βHbath

= ZY(β )

ZXY(β, λ)
e−βHX , (2.13)

where we used Eq. (2.5) and the fact that ZY(β ) is independent
of x. Hence the equilibrium distribution of X is canonical with

respect to the system Hamiltonian HX(x; λ). This is, of course,
well known, since we have defined HX(x; λ) as the HMF.

It is then convenient to define the partition function of slow
variables,

ZX(β, λ) ≡
∫

x
e−βHX (x;λ,β ), (2.14)

so that Eq. (2.13) assumes the standard canonical form

pEQ
X (x) = 1

ZX(β, λ)
e−βHX . (2.15)

Integration of Eq. (2.13) then yields

ZXY(β, λ) = ZX(β, λ)ZY(β ). (2.16)

The above results prompt us to construct a reduced canon-
ical ensemble theory for the system, with free energy, internal
energy, and entropy given by

FX = −T ln ZX(β, λ), (2.17a)

EX =
∫

x
pEQ

X (x)HX(x; λ), (2.17b)

SX = −
∫

x
pEQ

X (x) ln pEQ
X (x), (2.17c)

FX = EX − T SX. (2.17d)

These definitions of system energy and entropy are
manifestly different from the strong coupling theory in
Refs. [5,6,8], even though the free energy is the same in the
two theories.

E. Decomposition of thermodynamic variables

Comparing Eqs. (2.17a)–(2.17d) with Eqs. (2.9a)–(2.9c)
and (2.12a)–(2.12e), we find the following decomposition of
total thermodynamic quantities into system parts and bath
parts:

FXY(β, λ) = FX(β, λ) + FY(β ), (2.18a)

EXY = EX + 〈EY(x)〉X, (2.18b)

SXY = SX + SY|X, (2.18c)

where 〈EY(x)〉X and SY|X are averages of EY(x) and SY|X=x,
respectively, over fluctuations of X,

〈EY(x)〉X =
∫

x
pEQ

X (x)EY(x), (2.19a)

SY|X = 〈SY|X=x〉X =
∫

x
pEQ

X (x)SY|X=x. (2.19b)

SY|X is called the conditional Shannon entropy of Y given
X in information theory [40]. Note the subtle differences
between the name for SY|X and the name for SY|X=x.

There are numerous pleasant features of the equilibrium
thermodynamic theory developed here: Firstly, all equilibrium
distributions are Gibbs-Boltzmann distributions with respect
to the corresponding Hamiltonian. Secondly, all entropies are
Gibbs-Shannon entropies with respect to the corresponding
probability density function (pdfs). As a consequence, the
formulas in Eqs. (2.8a) and (2.8b), (2.9a)–(2.9c), (2.12a)–
(2.12e), and (2.17a)–(2.17d) are all the same as those in
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canonical ensemble theory. These features are remarkable,
since they indicate that standard canonical ensemble theory
is applicable both to the system and to the bath, regardless of
the strong interaction and correlation between them. Thirdly,
Eq. (2.8b) says that the bath free energy FY(β ) is equal to
the bare bath free energy F 0

Y (β ) and is independent of λ and
x. This feature leads to substantial conceptual simplification
since we are only interested in the physics of slow variables.
Consider, for example, that we immerse a DNA chain into
an aqueous solvent, or stretch it in the solvent, or tune the
interaction between a nanoengine and its environment. There
is no need to worry about the change in the bath free energy,
because it stays constant by construction.

All these convenient features follow from the particular de-
composition of the total Hamiltonian equations (2.4a)–(2.4c).
There are, however, some subtleties resulting from the tem-
perature dependence of HX, which will be discussed in Sec. V.
We shall also give a detailed comparison between our theory
and the previous theories by Seifert [5], Talkner and Hänggi
[6,8], and Jarzynski [7] in Sec. V.

III. NONEQUILIBRIUM THEORY

In this section, we shall show that with the HMF HX
identified as the fluctuating internal energy, the weak coupling
theory of stochastic thermodynamics becomes applicable in
the strong coupling regime.

A. Definitions of energy and entropy

The mission of stochastic thermodynamics starts with
definitions of system thermodynamic variables in general
nonequilibrium situations. We define the fluctuating inter-
nal energy of the system as HX(x; λ, β ), the HMF. The
nonequilibrium internal energy is then defined as the ensem-
ble average of HX:

EX[pX] ≡ −
∫

x
pXHX. (3.1)

Throughout this paper we use A[pX] to denote a nonequi-
librium thermodynamic variable, to distinguish it from the
equilibrium version A. We also define the system entropy as
the Gibbs-Shannon entropy:

SX[pX] ≡ −
∫

x
pX(x, t ) ln pX(x, t ). (3.2)

We shall not need to define stochastic entropy in this paper.
The nonequilibrium free energy of the system is also defined
in the standard way:

FX[pX] = EX[pX] − T SX[pX]

=
∫

x
pX(HX + T ln pX), (3.3)

which turns out to be the same as the free energy defined in
several previous theories [5,6,8,14].

Note that these definitions of nonequilibrium entropy, en-
ergy, and free energy are identical to those in weak coupling
theory, with HX understood as the system Hamiltonian. For
equilibrium state pX = pEQ

X , these thermodynamic variables

reduce to their equilibrium counterparts, Eqs. (2.17b), (2.17c),
and (2.17a), respectively.

B. Work and heat at the trajectory level

Let us now discuss differential work and heat at the trajec-
tory level of system variables.

The Hamiltonian of the universe, including system, bath,
and superbath, is given by

HXYZ = HXY + HZ

= HX + Hbath + HZ, (3.4)

with HXY given by Eqs. (2.4a)–(2.4c). We assume that the
interaction between XY and Z is negligibly small but nonethe-
less is strong enough to drive thermal equilibration between
XY and Z.

We consider a microscopic process with infinitesimal du-
ration dt , where x, y, z and λ change by dx, dy, dz and
dλ. Whereas dλ is externally controlled, dx, dy, dz are de-
termined by evolution of the Hamiltonian dynamics. As is
generally adopted in stochastic thermodynamics, work is de-
fined as the change in the total energy of the universe:

d̄W̃ = dHXYZ. (3.5)

For now we shall assume that x, y, z, λ are all smooth func-
tions of t [41]. We can then expand Eq. (3.5) in terms of
dx, . . . , dλ up to the first order. The coefficients are just the
partial derivatives of HXYZ with respect to dx, . . . , dλ. Now
note that the universe XYZ is thermally closed. Hence, if λ is
fixed, HXYZ must be conserved. In other words, Eq. (3.5) can
change only due to λ:

d̄W̃ = ∂HXYZ

∂λ
dλ ≡ dλHXYZ. (3.6)

Further using Eqs. (3.4) and (2.4a), we can rewrite the preced-
ing equation as

d̄W̃ = dλ(HXY + HZ) = dλHX + dλHI , (3.7)

where in the last equality we have used the fact that both HY
and HZ are independent of λ. Hence the microscopic work
d̄W is independent of the state of the superbath.

Note that the work d̄W̃ as given by Eq. (3.7) depends on
x, y, λ, dλ. In stochastic thermodynamics, we keep track of
the dynamic evolution of x but not of y. Hence, to obtain the
differential work at the trajectory level of system variables, we
need to average Eq. (3.7) over the conditional equilibrium as
given by Eq. (2.8a):

d̄W =
∫

y
pEQ

Y|X(y|x) d̄W̃

=
∫

y
pEQ

Y|X(y|x)(dλHX + dλHI ). (3.8)

This equation and many analogous equations below are under-
stood as the volume integral of differential forms. Be careful
not to confuse the differential forms d̄W̃ , dλHX, etc., with the
volume measure dNy which is hidden in

∫
y.
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Now, taking the λ differential of Eq. (2.5), and further using
Eq. (2.7), we find ∫

y
pEQ

Y|X(y|x)dλHI = 0. (3.9)

Hence Eq. (3.8) reduces to

d̄W = dλHX = ∂HX

∂λ
dλ. (3.10)

Hence, even though the interaction Hamiltonian HI may be
tuned externally, the work d̄W at the trajectory level is
nonetheless independent of HI .

Taking the differential of Eq. (3.4) and using Eq. (3.5), we
obtain

dHX = d̄W̃ − d (HB + HZ). (3.11)

As in the above, we take the average Eq. (3.11) over fluctua-
tions of YZ, which results in

dHX = d̄W + d̄Q, (3.12)

d̄Q ≡ −d〈HB + HZ〉YZ, (3.13)

where 〈 · 〉YZ means the average over YZ and d̄Q is the differ-
ential heat at the trajectory level of the system variables. Since
HX is defined as the fluctuating internal energy and d̄W is the
work at the trajectory level, Eq. (3.12) can be interpreted as
the first law at the trajectory level if d̄Q = −d (HB + HZ) is
interpreted as the heat at the trajectory level. Equation (3.13)
then says that the heat d̄Q is negative the average energy
variation of the environment YZ. Such an interpretation of
heat is exactly the same as that in the weak coupling stochastic
thermodynamics.

However, the differential of fluctuating internal energy
dHX can be written as the sum of dλH and dxHX:

dHX = dλHX + dxHX. (3.14)

Comparing this with Eq. (3.12), we obtain an alternative ex-
pression for d̄Q:

d̄Q ≡ dHX − d̄W = dxHX, (3.15)

which must be equivalent to Eq. (3.13). It is tempting to
rewrite dxHX in terms of partial derivatives

dxHX = ∂HX

∂x
dx. (3.16)

This is, however, valid only if x(t ) is differentiable so that
dx is linear in dt . In the limit of time-scale separation, we
expect that a typical path of slow variables x(t ) becomes
that of Brownian motion, which is everywhere continuous
but nondifferentiable. As a consequence, dx(t ) scales as

√
dt

(Ito’s formula), and we need to expand dxHX up to the second
order in dx, if the product on the right-hand side of Eq. (3.16)
is defined in Ito’s sense. We can also interpret the product
on the right-hand side of Eq. (3.16) in Stratonovich’s sense.
Then Eq. (3.16) remains valid even if x(t ) is a typical path of
Brownian motion. In this paper, we shall not write dxHX in
terms of partial derivatives, so that we do not need to worry
about the issue of stochastic calculus.

Note that the definitions of work and heat at the trajectory
level, Eqs. (3.10) and (3.15), are the same as those in the weak
coupling theory.

C. Work and heat at the ensemble level

To obtain work and heat at the ensemble level, we need
to average corresponding objects at the trajectory level over
the (generally out-of-equilibrium) statistical distribution of
dynamic trajectories of X. This is a rather nontrivial task.
Luckily, d̄W as given by Eq. (3.10) is independent of dx.
Hence we do not need to know the pdf of dx, but only need to
average Eq. (3.10) over statistical distribution pX(x, t ) at time
t , and obtain the differential work d̄W at the ensemble level:

d̄W =
∫

x
pXdλHX. (3.17)

Now we want to take the ensemble average of heat,
Eq. (3.15), which does depend on dx ≡ x(t + dt ) − x(t ),
whose distribution is not encoded in the instantaneous distri-
bution pX(x, t ). A dynamic theory for dx, such as nonlinear
Langevin dynamics, would supply the necessary information.
This route was pursued in the complementary work, Ref. [38].
Here, we take a detour by studying the average of dHX. Let
pX(x, t ) and pX(x, t + dt ) be the pdfs of x at t and at t + dt ,
respectively, and d pX(x, t ) be the differential of pX(x, t ) as
given by

d pX(x, t ) = pX(x, t + dt ) − pX(x, t )

= ∂ pX(x, t )

∂t
dt . (3.18)

Let us calculate the differential of the internal energy as given
by Eq. (3.1):

dEX[pX] = d〈HX〉 = d
∫

x
HX pX. (3.19)

Since x is integrated over on the right-hand side, the differen-
tial d is due to changes in λ and in p(x, t ):

d〈HX〉 =
∫

x
(dλHX) pX +

∫
x

HX d pX. (3.20)

However, the first term on the right-hand side is just the work
at the ensemble level, as we defined in Eq. (3.17). Hence the
second term must be the heat at the ensemble level,

d̄Q =
∫

x
HXd pX = 〈d̄Q〉, (3.21)

and Eq. (3.20) becomes the first law at the ensemble level:

dEX[pX] = d̄W + d̄Q. (3.22)

The definitions of work and heat at the ensemble level,
Eqs. (3.17) and (3.21), are again the same as those in the weak
coupling theory of stochastic thermodynamics.

IV. PHYSICAL MEANINGS OF HEAT

In this section, we shall establish the connections between
heat (both at the trajectory level and at the ensemble level) and
entropy change of the environment, conditioned on the system
state and possibly other thermodynamic variables. We shall
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also discuss the physical meanings of the Clausius inequality
and total entropy production. The results are again the same
as those in the weak coupling theory, with the conditioning of
slow variables properly taken into account.

A. Heat at the trajectory level

The universe XYZ is thermally closed and evolves accord-
ing to Hamiltonian dynamics with the Hamiltonian given in
Eq. (3.4). Due to TSS, with x fixed, the environment YZ is
described by a microcanonical ensemble with fixed energy.
We define the Boltzmann entropy of the environment as a
function of its energy EYZ:

SYZ(EYZ) ≡ ln �YZ(EYZ)

≡ ln
∫

y,z
δ(Hbath + HZ − EYZ), (4.1)

where Hbath is defined in Eq. (2.4b), and �YZ(EYZ) is the area
of the YZ hypersurface with constant bath energy EYZ. Note
that SYZ(EYZ) generally also depends on x, λ, β parametri-
cally through Hbath. We shall, however, not explicitly display
the parameters x, λ, β, in order not to make the notations
too cluttered. Strictly speaking, SYZ(EYZ) is the Boltzmann
entropy of the environment conditioned on X = x.

Suppose that in the initial state the system is at x with exter-
nal parameter λ, and the universe XYZ has total energy EXYZ.
The energy of the environment is then EYZ = EXYZ − HX. In
the final state the system is at x + dx with external parameter
λ + dλ, and the universe has total energy EXYZ + d̄W , with
d̄W given by Eq. (3.10). (Recall that the work is defined as
the change in total energy.) The energy of the environment
in the final state is then E ′

YZ = EXYZ + d̄W − HX − dHX,
where dHX is given by Eq. (3.14). The Boltzmann entropies
of the environment in the initial and final states are hence

SYZ(EYZ) = SYZ(EXYZ − HX), (4.2a)

SYZ(E ′
YZ) = SYZ(EXYZ + d̄W − HX − dHX), (4.2b)

respectively. Note that EXYZ is much larger than dHX, d̄W ,
because the size of the superbath is much larger than XY. Ex-
panding Eq. (4.2b) in terms of d̄W and dHX and subtracting
from it Eq. (4.2a), we obtain

dSYZ(EYZ) = SYZ(E ′
YZ) − SYZ(EYZ)

= β(d̄W − dHX) = −βd̄Q, (4.3)

where β = ∂SYZ/∂EYZ is the inverse temperature. Further
using Eq. (3.15), we find

−βd̄Q = dSYZ(EYZ), (4.4)

which establishes the connection between the differential heat
d̄Q at the level of the system trajectory and the differential of
the environment Boltzmann entropy dSYZ(EYZ) conditioned
on X = x.

B. Heat at the ensemble level and total entropy production

Recall that XY is in contact with a much larger superbath Z
and that Y is always in conditional equilibrium. If the system
is in a nonequilibrium state pX(x), the joint pdf of XY is given

by

pXY(x, y) = pX(x) pEQ
Y|X(y|x), (4.5)

where pEQ
Y|X(y|x) is given in Eq. (2.8a). The nonequilibrium

free energy for the system is already defined in Eq. (3.3).
Let us similarly define the nonequilibrium free energy of the
combined system XY:

FXY[pXY] ≡
∫

x,y
pXY(HXY + T ln pXY). (4.6)

For XY, there is no difference between the Hamiltonian and
the Hamiltonian of mean force, since XY is in weak interac-
tion with Z. Substituting Eq. (4.5) into Eq. (4.6), and using
Eqs. (2.4b) and (2.8a) and (2.8b), we obtain

FXY[pXY] = FX[pX] + FY(β ), (4.7)

which says that FXY[pXY] and FX[pX] differ only by an
additive constant FY(β ), which is, according to Eq. (2.7),
independent of λ and x and hence needs to be worried about
when we study nonequilibrium processes. Equation (4.7) is a
nonequilibrium generalization of Eq. (2.18a).

Let us now consider variations of λ and pX and study the
resulting variation of free energies. Taking the differential of
Eq. (3.3), we obtain

dFX[pX] = d̄W + d̄Q − T dSX[pX], (4.8)

where d̄W and d̄Q are work and heat at the ensemble level,
given in Eqs. (3.17) and (3.21), respectively. We can rewrite
this result into

dSX[pX] − βd̄Q = β(d̄W − dFX[pX]). (4.9)

We can also do a similar thing for dFXY[pX], and we obtain
an analogous result:

dSXY[pXY] − βd̄QXY = β(d̄WXY − dFXY[pXY]), (4.10)

where d̄WXY and d̄QXY are the work and heat at the ensemble
level of XY,

d̄WXY =
∫

x,y
pXYdλHXY, (4.11)

d̄QXY =
∫

x,y
d pXY HXY. (4.12)

Using Eqs. (4.5) and (3.9) in Eq. (4.11), we see that

d̄WXY = d̄W. (4.13)

Taking the differential of Eq. (4.7), we find

dFX[pX] = dFXY[pXY]. (4.14)

Combining the preceding two equations with Eqs. (4.9) and
(4.10), we find

dSXY[pXY] − βd̄QXY = β(d̄WXY − dFXY[pXY])

= dSX[pX] − βd̄Q

= β(d̄W − dFX[pX]). (4.15)

Now recall that XY is weakly coupled to the superbath
Z and hence the weak coupling theory of stochastic thermo-
dynamics is applicable. It tells us that dSXY[pXY] − βd̄QXY
is positive definite and can be interpreted as the change in
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TABLE I. Major formulas of thermodynamics and stochastic thermodynamics. According to the present theory, formulas in the center
column are applicable both in the weak coupling regime and in the strong coupling regime, with HX being the Hamiltonian of mean force. The
formulas in Seifert’s theory [5], which are substantially more complex, are shown in the right column. The differences disappear in the weak
coupling limit, where HX reduces to the bare system Hamiltonian, which is independent of β. FT, function theorem; ineq., inequality; TM,
thermodynamic.

TM quantities and laws Weak coupling theory and the present theory Seifert’s strong coupling theory

Fluctuating internal energy HX H̃X ≡ ∂ββHX

Internal energy EX[pX] = ∫
x pXHX ẼX[pX] = ∫

x pX∂ββHX

Entropy SX[pX] = − ∫
x pX ln pX S̃X[pX] = ∫

x pX(− ln pX + β2∂βHX )

Free energy FX = EX − T SX FX = ẼX − T S̃X = EX − T SX

Work at trajectory level d̄W = dλHX d̄W = dλHX

Heat at trajectory level d̄Q = dxHX d̄Q̃ = dxHX + β∂βdxHX + β∂βdλHX

1st law at trajectory level dHX = d̄W + d̄Q dH̃X = d̄W + d̄Q̃
Work at ensemble level d̄W = ∫

x pX dλHX d̄W = ∫
x pX dλHX

Heat at ensemble level d̄Q = ∫
x HX d pX d̄ Q̃ = ∫

x[(∂ββHX )d pX + β∂β (dλHX )pX]

1st law at ensemble level dEX = d̄W + d̄Q dẼX = d̄W + d̄ Q̃

2nd law (Clausius ineq.) dStot = dSX − βd̄Q = β(d̄W − dFX ) � 0 dStot = dS̃X − βd̄ Q̃ = β(d̄W − dFX ) � 0

Crooks FT pF (W ) = pR(−W )eβ(W −�FX ) pF (W ) = pR(−W )eβ(W −�FX )

Jarzynski inequality 〈e−βW 〉 = e−β�FX 〈e−βW 〉 = e−β�FX

total entropy of the universe XYZ. Equation (4.15) then says
that the total entropy production is the same, whether we
calculate it using the dynamic theory of XY or using the
reduced theory X alone. If we understand the dynamic theory
of X as a consequence of coarse graining of the XY dynamics,
then Eq. (4.15) says that entropy production is invariant under
coarse graining, as long as the fast variables remain in condi-
tional equilibrium. A similar result was obtained by Esposito
[42] in the setting of master equation dynamics.

Furthermore, assuming that XY evolves according to
Langevin dynamics (which follows if the dynamics of Z is
much faster than that of XY), the Clausius inequality can be
proved using the Langevin dynamics dSXY[pXY] − βd̄QXY �
0. Hence we have

dSXYZ = dSXY[pXY] − βd̄QXY

= β(d̄WXY − dFXY[pXY]) � 0. (4.16)

Combining Eq. (4.16) with Eq. (4.15), we finally obtain

dSXYZ = dSX[pX] − βd̄Q

= β(d̄W − dFX[pX]) � 0, (4.17)

which not only establishes the Clausius inequality but also
says that the physical meaning of dSX[pX] − βd̄Q is indeed
the variation of total entropy of the universe.

It is interesting to rewrite Eq. (4.17) into

−βd̄Q = d (SXYZ[pXYZ] − SX[pX])

= dSYZ|X. (4.18)

Hence −βd̄Q is the differential of SYZ|X, the conditional
Gibbs-Shannon entropy of YZ given the system state X.

V. COMPARISON WITH OTHER THEORIES

In this section, we provide a detailed comparison between
this paper and several previous influential works on strong

coupling thermodynamics. First of all, we list all major for-
mulas of our theory in the center column of Table I. These
formulas are identical to those of the weak coupling stochastic
thermodynamic theory, with HX understood as the Hamilto-
nian of mean force. In the weak coupling limit, HX simply
becomes the bare Hamiltonian of the system.

In the theory developed by Seifert [5] and critically eval-
uated by Talkner and Hänggi [6], the equilibrium free energy
of a strongly coupled system is defined in terms of the HMF
HX as

FX = −T ln ZX = −T ln
∫

x
e−βHX (x;λ,β ), (5.1)

which is the same as Eq. (2.17a). The equilibrium internal
energy and entropy are defined as

ẼX ≡ ∂βFX

∂β
=

∫
pEQ

X (HX + β ∂βHX), (5.2a)

S̃X ≡ −β2 ∂FX

∂β
=

∫
pEQ

X

(− ln pEQ
X + β2∂βHX

)
, (5.2b)

such that FX = ẼX − T S̃X remains valid. (We use Ã to denote
the thermodynamic quantity in Seifert’s theory if it is different
from the corresponding quantity A in our theory.) Note that in
our theory, energy and entropy are defined by Eqs. (2.17a)–
(2.17d).

Reviewing the results obtained in Sec. II C, the following
thermodynamic relations hold for XY:

EXY = ∂βFXY

∂β
, SXY = −β2 ∂FXY

∂β
. (5.3)

The free energy, energy, and entropy of the bath are then
defined as

F̃Y = FXY − FX = FY = F 0
Y , (5.4a)

ẼY = EXY − ẼX, (5.4b)
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S̃Y = SXY − S̃X, (5.4c)

where we used Eq. (2.8b). Combining these with Eqs. (5.3),
(5.2a), and (5.2b), we see that the bath energy and entropy in
Seifert’s theory [5] satisfy

ẼY = ∂βF 0
Y

∂β
, S̃Y = −β2 ∂F 0

Y

∂β
, (5.5)

where F 0
Y is the free energy of the bare bath, with the interac-

tion switched off. These results show that in Seifert’s theory,
the interaction energy and correlation are completely rele-
gated to the system. By contrast, in our theory, the interaction
energy and correlation are completely relegated to the bath, if
we interpret HX as the system Hamiltonian.

Seifert [5] further bootstraps Eqs. (5.2a) and (5.2b) to the
nonequilibrium case and defines fluctuating internal energy
H̃ , nonequilibrium internal energy Ẽ [pX], and nonequilibrium
entropy S̃[pX] as follows:

H̃X ≡ HX + β ∂βHX = ∂β (βHX), (5.6a)

ẼX[pX] =
∫

x
pX(HX + β ∂βHX), (5.6b)

S̃X[pX] ≡
∫

x
pX(− ln pX + β2∂βHX). (5.6c)

The differential of entropy is then given by

dS̃X = −
∫

x
ln pXd pX +

∫
X

pXβ2∂βdλHX. (5.7)

The nonequilibrium free energy is defined as

F̃X[pX] ≡ ẼX[pX] − S̃X[pX]

=
∫

x
pX(HX + T ln pX)

= FX[pX], (5.8)

which is the same as that of our theory, Eq. (3.3).
The work at the trajectory level and the work at the ensem-

ble level are defined in terms of change in total energy:

d̄W ≡ dHXYZ = dλH0
X = dλHX, (5.9)

d̄W ≡
∫

x
pX dλHX, (5.10)

which are identical to our definitions. The heat at the trajectory
level is then defined to satisfy the first law:

d̄Q̃ ≡ dH̃X − d̄W

= dxHX + β∂βdxHX + β∂βdλHX, (5.11)

d̄ Q̃ ≡
∫

x
[(∂ββHX)d pX + β∂β (dλHX)pX]. (5.12)

The left-hand side of the Clausius inequality can be calcu-
lated:

dS̃X − βd̄ Q̃ = dSX − βd̄Q = β(d̄W − dFX)

= −
∫

x
(ln pX + βHX)d pX, (5.13)

which is again the same as in our theory. As a consequence,
the first and second laws of thermodynamics in Seifert’s the-
ory [5] are equivalent to those in our theory. This means that
these two theories are equivalent to each other, even though
they use different definitions of internal energy, entropy, and
heat. Major formulas of Seifert’s theory are displayed in the
right column of Table I.

Talkner and Hänggi [6,8] accept the definitions of equilib-
rium thermodynamic quantities, Eqs. (5.2a) and (5.2b). Yet
they argue that the nonequilibrium thermodynamic quanti-
ties cannot be uniquely determined from their equilibrium
versions, which is of course valid. They also argue that the
Hamiltonian of mean force cannot be uniquely determined
from the equilibrium distribution of system variables alone
[43]. They further discuss more serious ambiguities associ-
ated with the definition of nonequilibrium work for quantum
systems.

Jarzynski [7] develops a more comprehensive (and hence
more complex) theory for strong coupling thermodynamics
and systematically discusses the definitions of internal en-
ergy, entropy, volume, pressure, enthalpy, and Gibbs free
energy. Using a pebble immersed in a liquid as a metaphor,
Jarzynski establishes his formalism around the concept of
volume, whose definition is somewhat arbitrary. All other
thermodynamic variables are uniquely fixed by thermody-
namic consistency once the system volume is (arbitrarily)
defined. Jarzynski further shows that Seifert’s theory [5] is a
special case of his (Jarzynski’s) framework, i.e., the “partial
molar representation.” Jarzynski discusses in great detail the
“bare representation,” where the system enthalpy coincides
with the HMF. The total entropy production is, however, the
same in both representations. The heat and work in the bare
representation are formally identical to those in our theory.
We note that for many small systems, volume or pressure
is seldom controlled. It is then unnecessary to distinguish
energy from enthalpy, or Helmholtz free energy from Gibbs
free energy.

In all the works discussed above, the interaction Hamil-
tonian HI is assumed to be independent of the external
parameter λ, whereas time-scale separation is not assumed. As
a consequence, it is possible to prove the integrated Clausius
inequality �S − βQ � 0 for a finite process but not possible
to prove the differential Clausius inequality dS − βd̄Q � 0
for every infinitesimal evolution step in the process. Barring
the issues of TSS and of λ dependence of the interaction
Hamiltonian HI , our theory can be understood as a simpli-
fication of Jarzynski’s bare representation, with the HMF
and free energy playing the role of enthalpy and Gibbs free
energy.

Strasberg and Esposito [14] studied the consequences of
TSS in the settings both of master equation theory and of
Hamiltonian dynamics. For master equation theory, using the
conditional equilibrium nature of the fast variables, they show
that a reduced theory of slow variables can be derived once the
fast variables are averaged out. Note, however, that the heat
and internal energy as given by Eqs. (33)–(35) of Ref. [14] still
pertain to the combined system. To obtain a thermodynamic
theory for the slow variables alone, one would have to sub-
tract from these quantities the parts due to fast variables. The
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resulting quantities would then pertain to the slow variables
only, and remain finite even if the dimension of the fast vari-
ables goes to infinity. For Hamiltonian dynamics, Strasberg
and Esposito propose a definition of total entropy production
as the relative entropy and show that, with TSS, it is equivalent
to that in Seifert’s theory [5], which is also equivalent to
entropy production in our theory, as we have demonstrated in
Eq. (5.13). By this, they confirm the consistency of Seifert’s
strong coupling theory.

By contrast, in this paper, we use TSS to carry out a
different decomposition of the Hamiltonian as discussed in
Sec. II A. This leads to a remarkable situation where all
formulas of the weak coupling theory of stochastic ther-
modynamics remain applicable even in the strong coupling
regime. These formulas are significantly simpler than those
in Seifert’s strong coupling theory [5]. For a comparison, see
Table I.

The differences between the present theory and Seifert’s
theory [5] are, however, not completely notational. Consider a
“fast” slow process with time duration dt where λ changes by
dλ. It is slow enough that the bath remains in conditional equi-
librium, and our stochastic thermodynamic theory remains
applicable. Yet it is also fast enough that the distribution pX
barely changes. Such a process can always be realized if TSS
is satisfied. Hence we have dλHX �= 0, but d pX = 0. Accord-
ing to the present theory, then both dSX and d̄Q vanish, and
hence the variation of total entropy dSX − βd̄Q also vanishes.
Now in Seifert’s theory, dS̃X and d̄ Q̃ are given by Eqs. (5.7)
and (5.12), respectively. Neither of these two vanishes even
if d pX = 0; yet the variation of the total entropy dS̃X − βd̄ Q̃
does vanish. This means that in Seifert’s theory there is an
exchange of entropy between the system and the bath even
though pX remains unchanged. While this does not violate the
second law of thermodynamics, it does contradict the common
intuition about entropy as a measure of a multitude of system
states: It is very strange if the pdf of a system variable stays
unchanged and yet the system entropy changes suddenly!

From this perspective, the present theory is more natural and
intuitive.

VI. CONCLUSION

In this paper, we have demonstrated that the usual theory
of strong coupling thermodynamics and stochastic thermody-
namics, which is based on the assumption of weak coupling
between the system and its environment, can be made applica-
ble in the strong coupling regime, if we define the Hamiltonian
of mean force as the system Hamiltonian. Our result is consis-
tent with previous theories by various authors, in the sense that
the first and second laws in different theories are mathemati-
cally equivalent. Overall, the present work can be understood
as a reinterpretation, synthesis, and simplification of various
previous theories of strong coupling stochastic thermodynam-
ics.

In future work, we will conduct a systematic study of the
coarse-graining process, i.e., integrating out fast variables to
obtain an effective dynamic theory for slow variables, with the
ratio of time scales between the slow and fast variables treated
as a small parameter. If this ratio is small but nonzero, there
should be a slight deviation of fast variables from conditional
equilibrium. We shall analyze how this deviation leads to
modification of dissipation in the dynamics of slow variables.
We shall also extend our theory to the quantum case and
develop a thermodynamic theory for small open quantum
systems strongly coupled to the environment.
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