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Parametric-interaction-induced avoided dressed-state crossings in cavity QED: Generation of
quantum coherence and equally weighted superposition of Fock states
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We present a paradigm in the field of cavity QED by bringing out remarkable features associated with the
avoided crossing of the dressed-state levels of the Jaynes-Cummings model. We demonstrate how the parametric
couplings, realized by a second order nonlinearity in the cavity, can turn the crossing of dressed states into
avoided crossings. We show how one can generate coherence between the avoided crossing of dressed states.
Such coherences result, for example, in quantum beats in the excitation probability of the qubit. The quality
of quantum beats can be considerably improved by adiabatically turning on the parametric interaction. We
show how these avoided crossings can be used to generate superpositions of even or odd Fock states with the
remarkable property of equal weights for the states in superposition. The fidelity of generation is more than 95%.
In addition, we show strong entanglement between the cavity field and the qubit with the concurrence parameter
exceeding 90%.
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I. INTRODUCTION

Avoided level crossing [1,2] is the phenomenon where two
energy levels cannot be pushed through each other and has
been an important branch of physics. This phenomenon was
first discovered in 1932 by studying a two-level system in
quantum mechanics [3,4]. Suppose that there are two energy
levels labeled by E1 and E2, respectively. In the absence of
external perturbation these two levels would have crossed
if the original energy states were degenerate, i.e., �E =
E1 − E2 = 0. However, in the presence of a perturbation on
a two-level system, the energy exchange between two states
takes place. Therefore, the eigenvalues of the system will not
become degenerate but will have a hyperbolic shape where the
minimal energetic distance is proportional to the perturbation
strength [5]. The phenomenon of level repulsion is called
the avoided level crossing, which has been widely used in
many different quantum systems, including atoms [6,7], semi-
conductor devices [8], and other systems [1,2,9–12], which
can be described as a “general” two-state system with some
couplings. In cavity QED systems, the avoided level crossing
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can be achieved by using the atom-cavity coupling strength.
The avoided level crossing then becomes the famous vacuum
Rabi splitting [13–19].

In the avoided level crossing region, the two states become
strongly mixed, yielding various interesting phenomena. For
example, a direct and natural consequence of the avoided
crossing is the entanglement behavior [20–23]. This has
been exploited to some extent in earlier works that seek to
create entangled states such as the W or Greenberger-Horne-
Zeilinger state by using the superpositions of two states that
develop at avoided crossings [24–26]. Moreover, the Landau-
Zener tunneling between two energy levels takes place if
these two levels of a time-dependent Hamiltonian are avoided
crossing [6,27–29]. A Berry phase is accumulated in addition
to a dynamical phase if an eigenstate encircles adiabatically
degeneracy points [30]. The first-order quantum phase tran-
sition, an abrupt change in the ground state of a many-body
system as parameters of a system vary, is related with the
avoided crossings of two lowest energy levels [28].

In this paper, we present a paradigm in the field of cav-
ity QED by bringing out effects associated with the avoided
crossing of the dressed-state levels of the Jaynes-Cummings
(JC) model. We demonstrate how the parametric couplings
can turn the crossing of dressed states into avoided crossings.
Note that this is different from the avoided crossings men-
tioned earlier in the context of the vacuum Rabi splittings. We
show how one can generate coherence between the avoided
crossing of dressed states. Such coherences can be monitored
via the quantum beats in the excitation probability of the qubit.
These avoided crossings can be used to generate superposi-
tions of even or odd Fock states with the remarkable property
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FIG. 1. (a) Schematic diagram of a single qubit-cavity QED sys-
tem where the cavity photons are generated via the second-order
nonlinearity with nonlinear interaction strength G induced by a
strong pump field. Here, the qubit transition frequency ω0 is iden-
tical to the cavity resonant frequency, and the qubit-cavity coupling
strength is denoted by g. (b) Dressed-state picture of the system
where |±, n〉 ≡ (|e, n〉 ± |g, n + 1〉)/

√
2. The red and green arrows

correspond to the transitions involving two- and four-photon pro-
cesses, respectively.

of equal weights for the states in superposition. In addition,
there is strong entanglement between the cavity field and the
qubit. The qubit could be an atom or superconducting qubit or
a quantum dot. As an example we can produce superpositions
of photonic Fock states such as |0〉 + i|2〉, |0〉 + i|4〉, and
|1〉 + i|3〉 [31].

II. CONVERTING DRESSED LEVELS CROSSING INTO
AVOIDED CROSSINGS VIA PARAMETRIC

PERTURBATIONS

To begin with, we consider the standard JC model where a
single two-level qubit with transition frequency ω0 is trapped
in a single mode cavity with resonant frequency ω0 iden-
tical to qubit frequency. In addition as shown in Fig. 1(a),
the qubit-cavity coupling strength is denoted by g, and the
cavity is driven by pumping at frequency ωP, a second-order
nonlinear crystal with the nonlinear interaction strength G,
corresponding to the well-known optical parametric ampli-
fication (OPA) process. In a frame rotating with frequency
ωP/2, the Hamiltonian of the system can be written as

H = �(a†a + σ+σ−) + g(aσ+ + a†σ−) + G(a2 + a†2),
(1)

where a† (a) is the creation (annihilation) operator of the
cavity mode, and σ+ = |e〉〈g| and σ− = σ

†
+ are the spin raising

and lowering operators of the qubit. Here, � = ω0 − ωP/2
is the detunings of the cavity and the qubit with respect to
ωP/2. The structure of the spectrum of the eigenstates of
Eq. (1) is discussed in Refs. [32,33]. For many other important
outcomes of Eq. (1) in different contexts, see Refs. [34–42].
Obviously, in the absence of the driving field, i.e., G = 0,
the system goes back to a typical JC model. However, in the
presence of the optical parametric amplification, i.e., G �= 0,
all the new physical effects arise which we discuss in detail
below. Before we discuss full numerical results, we like to
highlight the physics behind the dressed-state crossing and the
formation of avoided crossings.

FIG. 2. Eigenvalues of the system against the detuning � with
system parameters g = 1 and G = 0.1. Avoided level crossing in-
volving |+, 0〉 and |−, 2〉 (|+, 0〉 and |−, 4〉) is indicated by label
I (II). The lower two plots are the zoom-ins near the avoided level
crossing regimes.

For G = 0, as shown in Fig. 1(b), the eigenstates are the
well-known doublets in the JC model, i.e., |±, n〉 ≡ (|e, n〉 ±
|g, n + 1〉)/

√
2 with eigenvalue λ±,n ≡ (n + 1)� ± √

n + 1g.
Obviously, the energy of eigenstate |+, n〉 increases, but the
energy of eigenstate |−, n〉 decreases as the qubit-cavity cou-
pling strength g is enhanced. Thus, two eigenstates will cross
at a specific detuning which is locked with the coupling
strength. In the presence of the perturbation, i.e., the pump
field, avoided level crossing between dressed states will occur,
yielding quantum beats, entanglement, and the superposition
state of even or odd Fock states. We present a simple, rather
approximate discussion to bring out how the avoided cross-
ings result.

Consider the dressed state |+, 0〉 and |−, 2〉 with ener-
gies λ+,0 = � + g, λ−,2 = 3� − √

3g. These two dressed
states cross at λ+,0 = λ−,2 for � = (1 + √

3)g/2. Let us
now assume that G is small so that we can retain the
coupling of |+, 0〉 and |−, 2〉 as illustrated by the red ar-
row in Fig. 1(b). Note that |+, 0〉 = (|e, 0〉 + |g, 1〉)/

√
2 and

|−, 2〉 = (|e, 2〉 − |g, 3〉)/
√

2 are coupled in two different
ways via the parametric drive which causes two photon tran-

sitions |e, 0〉
√

2G⇐⇒ |e, 2〉 and |g, 1〉
√

6G⇐⇒ |g, 3〉. This coupling
results in two new energy levels which are now sepa-
rated at � = (1 + √

3)g/2 by 2|〈+, 0|G(a2 + a†2)|−, 2〉| =√
2(

√
3 − 1)G. This example demonstrates in a simple way

how the parametric drive can produce avoided crossing of
the dressed states |+, 0〉 and |−, 2〉. In Fig. 2 we show the
behavior of the eigenvalues of the Hamiltonian, i.e., Eq. (1),
as a function of � for g = 1, G = 0.1. We have kept the
parametric coupling law so that we could work with truncated
Hilbert space up to five photons. We display two avoided

013014-2



PARAMETRIC-INTERACTION-INDUCED AVOIDED … PHYSICAL REVIEW RESEARCH 4, 013014 (2022)

FIG. 3. Dynamical evolution of the mean photon number 〈a†a〉
(blue) and probability of finding qubit in the excited state Pe (red)
with initial condition �(0) = |e, 0〉. Panels (a) and (b) correspond
to the avoided level crossings I and II with the detuning � =
(1 + √

3)g/2 and � = (1 + √
5)g/4, respectively. Here, the system

parameters are given by g = 1.0 and G = 0.1.

crossings involving dressed states |+, 0〉 and |−, 2〉 (|+, 0〉
and |−, 4〉).

III. COHERENCES AND QUANTUM BEATS

To quantify the above physical discussion, we numerically
solve the Schrödinger equation ∂�/∂t = −iH� with � be-
ing the wave function of the system. In Fig. 3, we plot the
mean photon number 〈a†a〉 and the probability of finding a
qubit in the excited state Pe as a function of the normalized
evolution time gt . Here, we choose the detuning � = (1 +√

3)g/2 (i.e., the avoided level crossing I) and other system
parameters are the same as those used in Fig. 2. As shown in
Fig. 3(a), there exist two different oscillation frequencies in
time evolution of 〈a†a〉 and Pe. The faster oscillation results
from the effective qubit-cavity coupling with a short period
of T1 = π/g, while the slower oscillation originates from the
energy difference at the avoided level crossing with a long
period of T2 = 2π/[(

√
6 − √

2)G] (the beat frequency is de-
fined as fbeat = 1/T2). At the quiet spots, the mean photon
number reaches its maximum, but the population of the qubit
excited state Pe = 0.5. Likewise, at the avoided level crossing
II [i.e., � = (1 + √

5)g/4], quantum beat behavior can also
be observed in the cavity excitation spectrum and population
of the qubit excited state. The corresponding beat frequency
is much shorter than that for the avoided level crossing I.

FIG. 4. Reduction of the multiphoton-induced noise in the mean
photon number 〈a†a〉 (blue) and the population in the qubit ex-
cited state Pe (red) by switching the parametric drive adiabatically.
Here, the pump field is set as a time-dependent Gaussian profile,
i.e., G = G0(1 + tanh [(t − T0)/(2τ0 )])/2 with τ0 = 5 and T0 = 50.
Other system parameters are the same as those used in Fig. 3(b).

It is to be noted that the beats result from the generated
coherence between states (|+, 0〉 ± |−, 4〉)/

√
2. Compared

with the results at the avoided level crossing I, it is also
noticed that there exists more noise in the cavity excitation
spectrum due to the multiphoton process, i.e., involvement
of states with photon numbers different from those involved
in crossings. The chosen parameter G/g = 0.1 corresponds
to an OPA oscillating well below threshold value defined by
2G < �, although recent investigations [38,39] use values of
G close to threshold value. We note that the OPA cavities
have been extensively used in the context of the generation
of squeezed light where these even have been operated near
threshold (see, e.g., the classic work of Ref. [43]). In fact, the
noise induced by the multiphoton process can be eliminated
by switching the parametric drive adiabatically. To this end,
we assume that the pump field has a time-dependent Gaussian
profile, i.e., G = G0(1 + tanh [(t − T0)/(2τ0)])/2 with τ0 = 5
and T0 = 50. Other system parameters are the same as those
used in Fig. 3(b). As shown in Fig. 4, the times for achieving
quantum beats are delayed by T0, but the periods of oscillation

FIG. 5. Dynamical evolution of the (a) mean photon number
〈a†a〉 and (b) probability of finding qubit in the excited state Pe for
qubit and cavity dissipation rates γ = κ = 0.01. Here, we choose
G = 0.2, � = 1.430 and other system parameters are the same as
those in Fig. 6. The inset figure in panel (a) demonstrates the Wigner
function of the cavity photon state at gt = 17.9.
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FIG. 6. The density matrix of the intracavity photon state (a) and
the Wigner function (b) by numerically solving the Schrödinger
equation. Here, the evolution time gt ≈ 31 and the detuning is chosen
as � = (1 + √

3)g/2, corresponding to the avoided level crossing I.

induced by the qubit-cavity coupling and quantum beats re-
main unchanged. Moreover, we find that the adiabatic driving
can eliminate the noise in the cavity excitation spectrum and
the spin evolution. Compared with the results in Fig. 3(b), the
cavity field and population of the qubit excited state evolve
more smoothly.

Note that we do not include cavity decay as typically
quantum beats (and for that matter all coherence effects) are
studied in the transient domain, i.e., during a period which is
smaller than the cavity decay time. The domain that we con-
sider is reached with superconducting qubits where g/κ can
be more than 200 [44]. In Fig. 5, we show the results for qubit
and cavity dissipation rates γ = κ = 0.01, g = 1, G = 0.2,
and � = 1.430. Clearly, the quantum beats and catlike photon
states [see the inset figure in panel (a)] survive even with these
system parameters.

IV. EQUALLY WEIGHTED SUPERPOSITION OF EVEN OR
ODD PHOTON NUMBER FOCK STATES

Next, let us study the properties of photon states and
the entanglement between qubit and cavity photons at the
quiet spot of quantum beats, where the coherences of two
dressed states are maximally established. Thus, the system
is evolved into the superposition state of two dressed states,
i.e., � ≈ (|e〉|even〉 + eiφ|g〉|odd〉)/A with φ being the rel-
ative phase and A being the normalized coefficient. Here,
the states |even〉 and |odd〉 denote the superposition of Fock
states with even or odd photon numbers, respectively. For
the crossing point I, the even and odd states can be approx-
imately expressed as |even〉 = (|0〉 + i|2〉)/

√
2 and |odd〉 =

(|1〉 + i|3〉)/
√

2 according to the numerical solutions of the
Schrödinger equation. Note that the parameter G is chosen
to be small so that Fock state superpositions with very high
fidelity can be generated. In Fig. 6(a), we show the density
matrix of the cavity photon state with system parameters g =
1.0 and t ≈ 31/g, where the superposition of states |+, 0〉 and
|−, 2〉 are perfectly generated by the coherence. Here, the ini-
tial condition is chosen as |e, 0〉 and the detuning � is chosen
near the avoided level crossing point I. As shown in Fig. 6(a),
the probabilities of finding the Fock states |0〉, |1〉, |2〉, and
|3〉 are approximately equal to each other. At the same time,
the coherences between Fock states |0〉 and |2〉 (|1〉 and |3〉)
denoted by diagonal bars in panel (a) reach their maximum. In
Fig. 6(b), we show the corresponding Wigner function of the
cavity photons, which exhibits a similar pattern of cat state,
where the negativities (one in the origin and the other two
in the second and fourth quadrants) of the Wigner function
represent the nonclassicality of the cavity photon state and

FIG. 7. (a), (d) Photon state distributions, (b), (e) the Wigner functions by solving the Schrödinger equation, and (c), (f) the analytical
Wigner functions. Panels (a)–(c) correspond to the case where the qubit excited state |e〉 is detected. Panels (d)–(f) show the case of detecting
the qubit ground state. Here, the evolution time gt ≈ 31 and the detuning is � = (1 + √

3)g/2, corresponding to the avoided level crossing I.
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the quantum interference fringes are denoted as a signature
of coherence of Fock states. In the following, we will discuss
how even or odd photon number Fock states result in the
negativities in the Wigner function. It should be noted that the
even and odd states that we generate are different from the cat
states involving squeezed coherent states which are generated
in the ultrastrong coupling regime [33,38,39,45–47]. With the
coherence between dressed states, the qubit and the cavity
photons are evolved into the maximally entangled state simul-
taneously. As shown in Fig. 7(a), if the qubit excited state |e〉
is detected, only Fock states with even photon numbers can be
observed with equal weights. In this case, the Wigner function
shown in panel (b) exhibits a similar pattern of even cat state,
where two negativities occur in the second and fourth quad-
rants symmetrically. To show the physical mechanism more
clearly, we analytically calculate the Wigner function W (α) =
(1/π2)

∫
d2λCw(λ) exp (αλ∗ − α∗λ) by assuming the photon

state |ph〉 = |even〉. Here, the characteristic function Cw(λ) =
Tr[ρD̂(λ)] with density matrix ρ = |ph〉〈ph| and the dis-
placement operator D̂(λ) = exp (λa† − λ∗a). Integrating the
characteristic function Cw by assuming λ = x′ + iy′, one can
obtain

W (α) = 2

π
e−2|α|2 [(1 − 2|α|2)2 + 4

√
2 Re(α)Im(α)]. (2)

Note that the first term in the square brackets is always pos-
itive and the value of the Wigner function at the origin is
always positive; the negativity of the Wigner function appears
in the regime of Re(α)Im(α) < −(1 − 2|α|2)2/(4

√
2) < 0.

As shown in Fig. 7(c), two negativities of this analytical
Wigner function also appear in the second and fourth quad-
rants, which matches well with the numerical result. On the
contrary, the cavity field will collapse to the superposition
of odd photon number Fock states with equal weights [see
Fig. 7(d)] if the qubit is measured in its ground state. The
corresponding Wigner function is shown in panel (e) by solv-
ing the Schrödinger equation, which is similar to the odd cat
state. Likewise, the Wigner function can also be calculated
analytically by assuming the density matrix ρ = |odd〉〈odd|,
which yields

W (α) = 1

π
e−2|α|2

[
−2(1 − 4|α|2)2 + 8|α|4

(
1 + 4

3
|α|2

)

+ 8
√

6

(
4

3
|α|2 − 1

)
Re(α)Im(α)

]
. (3)

Obviously, the analytical Wigner function shown in panel (f)
agrees well with the numerical one. It is clear to see that
the Wigner function at the origin is negative. We note that
interference fringes in the Wigner functions [see panels (b)
and (e)] prove the coherence between even or odd photon
number Fock states, while the negativity of the Wigner func-
tion indicates the nonclassicality of superposition states of
even or odd photon number Fock states.

The fidelity of the photon state can be evaluated according
to the formula Fph = 〈ph|ρT|ph〉 with target density matrix of
photons ρT = |even〉〈even| + |odd〉〈odd|. Here, the state |ph〉
represents the photon state by solving the master equation.
As shown in Fig. 8, the fidelity of the photon state (blue) is
always close to its maximum (i.e., Fph > 0.95). To show the

FIG. 8. The fidelity of the photon state (blue) and the concur-
rence of the system (red), representing the entanglement of the qubit
and photons, are plotted as a function of the ratio g/G with G = 0.1.
The inset plots demonstrate the real part of the density matrix of
the system with g = 5G and 35G, respectively. Here, |E〉 ≡ |even〉
(|O〉 ≡ |odd〉) represent the even (odd) photon number state.

entanglement between qubit and cavity photons quantitatively,
we can define two artificial qubits, where the first qubit has
two states |e〉 and |g〉, while the second qubit has two states
|even〉 and |odd〉. Thus, the density matrix of the system can
be reconstructed by using |g〉|even〉, |g〉|odd〉, |e〉|even〉, and
|e〉|odd〉 as a set of new basis. Using the reconstructed density
matrix ρ ′, the concurrence of the system (red) C(ρ ′) [48],
characterizing the entanglement of the qubit and photons is
larger than 0.93. We have also verified that the fidelity and
concurrence do not change much in the neighborhood of
the crossing point (see Fig. 9). As the qubit-cavity coupling
strength increases, both the fidelity of photon state and the
concurrence between qubit and photons will be significantly
improved. For weak qubit-cavity coupling strength, although
the photon state can be well produced the entanglement is not

FIG. 9. The (a) fidelity and (b) concurrence versus the detuning
for driving strength G = 0.15 (solid curves) and 0.2 (dashed curves),
respectively. Here, the evolution time is chosen near the quiet spot of
the crossing point.
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very large since the energy transfer between qubit and cavity
cannot be sufficiently established. To show this point, we take
g = 5G and plot the real part of the density matrix Re(ρ) in
Fig. 8 (see inset figures). It is clear to see that the population
in state |e, E〉 is slightly larger than that in state |g, O〉. For
g = 35G, however, populations in state |e, E〉 and |g, O〉 have
the same weights, corresponding to a maximum entanglement
between qubit and cavity photons.

V. CONCLUSIONS

In conclusion, we have brought out many important conse-
quences of the JC model when the cavity is incorporated by a
parametric nonlinearity. The parametric nonlinearity produces
avoided crossings between the dressed states of the JC model
which otherwise cross at certain values of the detuning and
the coupling of the qubit to the cavity field. At the avoided
crossing one has well-defined coherence between the sym-
metric and the antisymmetric combinations of the dressed
states which leads to quantum beats in physical parameters
such as the excitation of the qubit. Another important feature
arising from avoided crossing is the preparation of the equally
weighted superpositions of the Fock states. More specifically
we have shown the generation of superpositions of even (or
odd) states. The fidelity of such a generation is more than

95%. The challenging task of preparing equally weighted
superpositions is achieved via the physics of the avoided
crossings in the context of the cavity QED. We also demon-
strate a very high degree of entanglement (concurrence more
than 90%) between the cavity field and the qubit. Our results
use the dressed states of the JC model under conditions when
the qubit is on resonance with the cavity frequency and the
possible avoided crossings that can occur due to the switching
on of a quantum drive. The case when the qubit frequency is
detuned from the cavity frequency is a very different problem
as the dressed-state structure is totally different and thus a
subject of a new investigation. From the point of view of
experiments, equality of the cavity and the qubit frequencies
is not a limitation as cavities can be tuned very accurately.
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