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Deterministic three-photon down-conversion by a passive ultrastrong cavity-QED system
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In ultra- and deep-strong cavity quantum electrodynamics (QED) systems, many intriguing phenomena that
do not conserve the excitation number are expected to occur. In this paper, we theoretically analyze the optical
response of an ultrastrong cavity-QED system in which an atom is coupled to the first and third harmonic modes
of a cavity, and report the possibility of deterministic three-photon down-conversion of itinerant photons upon
reflection at the cavity. In the conventional parametric down-conversion, a strong input field is needed because of
the smallness of the transition matrix elements of the higher-order processes. However, if we use an atom-cavity
system in an unprecedentedly strong-coupling region, even a weak field in the linear-response regime is sufficient
to cause this rare event involving the fourth-order transitions.
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I. INTRODUCTION

The history of cavity quantum electrodynamics (QED) par-
allels with the enhancement of the atom-cavity coupling g.
From the observations of the suppressed or enhanced atomic
decay rate in the weak coupling regime (g < κ, γ , where
κ and γ are the loss rates of the cavity and the atom, re-
spectively) [1–5], more than a decade was required to reach
the strong coupling regime (g > κ, γ ), where the Rabi split-
ting or oscillation becomes observable [6–11]. Recently, the
ultrastrong coupling regime (g � ωa/10, ωc/10, where ωa

and ωc are the resonance frequencies of the atom and cav-
ity, respectively) and even the deep-strong coupling regime
(g � ωa, ωc) have been realized in various physical platforms
such as polaritons, superconducting qubits, and molecules
[12–18]. In the ultra- and deep-strong coupling regimes,
various novel phenomena originating in the counter-rotating
terms of the atom-cavity coupling are expected to become
observable.

One of such phenomena is the deterministic nonlinear op-
tics [19–23]. The generation efficiency of entangled photons,
which is typically of the order of 10−6 for spontaneous para-
metric down-conversion with a bulk nonlinear crystal [24–26],
might be drastically improved by this scheme. However, the
proposed deterministic nonlinear-optical processes are for in-
tracavity photons. In order to apply this scheme for itinerant
photons, deterministic capturing of propagating photons into
a cavity is indispensable. This is in principle possible but
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requires a precise dynamic control of the external cavity loss
rate in accordance with the incoming photon shape [27,28]. In
contrast, deterministic down-conversion of itinerant photons
is possible and has been demonstrated in a passive waveguide
QED setup [29–31]. The physical origin of the deterministic
conversion is the destructive interference between incoming
field and radiation from the atom. Accordingly, the efficiency
is sensitive to the external loss rates of the relevant transitions
of the atom.

In this paper, we investigate an ultrastrong cavity-QED
system in which an atom is placed at the center of the cavity
and is thus coupled to the first and third-harmonic modes
of the cavity (Fig. 1) [32]. We show that, if the atom-cavity
and cavity-waveguide couplings are adequately chosen, an
input photon (resonant to the third mode) is down-converted
nearly deterministically to three daughter photons (resonant
to the first mode) upon reflection at the cavity. The dras-
tic enhancement of the conversion efficiency in comparison
with the prior demonstrations of triplet-photon generation
[33–40] originates in the waveguide QED effect, in other
words, the engineered dissipation rates of the optical sys-
tem. Such deterministic conversion is possible even in the
conventional strong-coupling cavity QED. However, consid-
ering the required intrinsic loss rates of the cavity modes,
this phenomenon is characteristic to the ultrastrong cavity
QED.

The rest of this paper is organized as follows. We present
the theoretical model of the atom-cavity-waveguide coupled
system in Sec. II. We observe the internal dynamics of
the atom-cavity system and evaluate the effective coupling
between the two levels relevant to three-photon down-
conversion in Sec. III. We develop the input-output formalism
applicable to the ultrastrong coupling regime in Sec. IV, and
apply to the investigated setup in Sec. V. We numerically
show that the deterministic three-photon down-conversion
is possible in Sec. VI and clarify the required conditions.
Section VII is devoted to a summary.
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FIG. 1. Schematic of the considered setup. A qubit (resonance
frequency ωq) interacts with the first (ω1) and third (ω3) cavity modes
with coupling constants g1 and g3, respectively. Dissipation channels
are as follows: qubit radiative decay (rate γ ), external and internal
losses of the first cavity mode (κ1e, κ1i) and those for the third one
(κ3e, κ3i). A weak monochromatic field (frequency ωin ∼ ω3) is input
through the waveguide.

II. SYSTEM

In this paper, we investigate an optical response of a cavity-
QED system schematically illustrated in Fig. 1. A two-level
system (qubit) is placed at the center of a cavity and interacts
with the first- and third-harmonic cavity modes. These cavity
modes are coupled to an external waveguide field through the
right mirror (capacitor, in circuit QED implementation), and a
monochromatic field close to the resonance of the third cavity
mode is applied through the waveguide.

The Hamiltonian of the qubit-cavity system is given, set-
ting h̄ = 1, by

Ĥs = ωqσ̂
†σ̂ + ω1â†

1â1 + ω3â†
3â3 + g1X̂1X̂q + g3X̂3X̂q, (1)

where σ̂ , â1, and â3 respectively denote the annihilation oper-
ators of the qubit, the first and third cavity modes, and X̂1 =
â†

1 + â1, X̂3 = â†
3 + â3, and X̂q = σ̂ † + σ̂ . ωq, ω1, and ω3 de-

note their bare resonance frequencies, and g1 and g3 denote
the qubit-cavity coupling strengths. Note that the counter-
rotating terms are retained in order to treat the ultrastrong
coupling regime.

We consider five dissipation channels of this system: the
external/internal decay of the first/third cavity mode and the
longitudinal decay of the qubit. We label these dissipation
channels as 1e, 1i, 3e, 3i, and q, respectively, and denote their
rates as κ1e, κ1i, κ3e, κ3i, and γ , respectively. As we observe
later (Fig. 6), the investigated phenomenon is robust against
the qubit dissipation, since the qubit excited state is used only
virtually. We therefore neglect the qubit pure dephasing for
simplicity, which plays essentially the same role as the longi-
tudinal decay in the present phenomenon. The Hamiltonians
describing the 1e and 3e channels are given by

Ĥ1e =
∫ ∞

0
dk

[
ωk ĉ†

k ĉk + ξ
(1e)
k X̂1(ĉ†

k + ĉk )
]
, (2)

Ĥ3e =
∫ ∞

0
dk

[
ωkd̂†

k d̂k + ξ
(3e)
k X̂3(d̂†

k + d̂k )
]
, (3)

where ĉk (d̂k) is the annihilation operator of a waveguide
mode with wavenumber k coupled to the first (third) cavity
mode and ωk is its frequency. The commutators for ĉk and d̂k

are given by [ĉk, ĉ†
k′ ] = [d̂k, d̂†

k′ ] = δ(k − k′). Although these
modes can be treated as a single continuum in principle, we
may safely treat them as independent continua because of

g01
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g30input output

FIG. 2. Transition paths between |g01〉 and |g30〉. Solid (dotted)
arrows indicate the transitions conserving (nonconserving) the exci-
tation number.

large separation between the relevant frequencies. The dis-
persion relation in the waveguide is linear, ωk = k, where the
velocity of waveguide photons is set to unity for simplicity. A
real quantity ξ

( je)
k ( j = 1, 3) represents the cavity-waveguide

coupling. By naively applying the Fermi golden rule, the
coupling and the decay rate are related by

κ je = 2πξ ( je)2
ω j

. (4)

The other loss channels are modeled similarly. For example,
the longitudinal relaxation of the qubit is modeled by

Ĥq =
∫ ∞

0
dk

[
ωk ê†

k êk + ξ
(q)
k X̂q(ê†

k + êk )
]
. (5)

The relation to the qubit decay rate is γ = 2πξ
(q)2
ωq .

III. COUPLING BETWEEN |g01〉 AND |g30〉
In this section, we investigate the properties of the qubit-

cavity system, neglecting dissipation for the moment. We
denote the state vector of the system by |qmn〉, where q(=
g, e) specifies the qubit state and m, n (= 0, 1, · · · ) specify
the photon numbers of the first and third cavity modes, re-
spectively. In particular, we focus on the coupling between
|g01〉 and |g30〉, which is essential for the three-photon down-
conversion. Figure 2 shows the transition paths between |g01〉
and |g30〉. We observe that |g01〉 and |g30〉 are coupled
through the fourth-order process in the qubit-cavity coupling
g1,3, and that transitions nonconserving the excitation number
(dotted arrows in Fig. 2) are indispensable for their coupling.

For a strong coupling between these two states, degeneracy
of these two states is required. The eigenenergies of |g01〉 and
|g30〉 measured from |g00〉, which we denote by εg01 and εg30,
are renormalized by the dispersive qubit-cavity coupling and
depend on g1,3 and ωq. In Fig. 3(a), by numerically diagonaliz-
ing Ĥs [taking into account up to the 6 (2) photon states for â1

(â3) mode], εg01 and εg30 are plotted as functions of the qubit
frequency ωq. We observe an anticrossing between them, and
from this plot we can identify the following quantities. (i)
The optimal qubit frequency ω

opt
q , at which the level spacing

is minimized. (ii) The effective coupling geff between |g01〉
and |g30〉, which is half of the level spacing at ω

opt
q . (iii) The

optimal input photon frequency ω
opt
in , which is the average

of the two transition frequencies at ω
opt
q . In Figs. 3(b) and

3(c), assuming 3ω1 = ω3 = 2π × 9 GHz and g1 = g3(= g),
we plot ω

opt
q , ω

opt
in and geff as functions of g.

We can confirm in Fig. 3(c) that geff is proportional to g4,
which is consistent with the fact that |g01〉 and |g30〉 are cou-
pled through the fourth-order process. The analytic expression
of geff is derived perturbatively in Appendix A.
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FIG. 3. Effective coupling between |g01〉 and |g30〉. 3ω1 = ω3 = 2π × 9 GHz and g1 = g3(= g) are assumed. (a) Anticrossing between
|g01〉 and |g30〉 varying the qubit frequency ωq. g = 2π × 0.3 GHz. [(b), (c)] Dependences of ωopt

q , ω
opt
in , and geff on the qubit-cavity coupling

g. Specific values at g = 2π × 0.3 and 1 GHz are indicated. (d) Vacuum Rabi oscillation between |g01〉 and |g30〉, starting from |g01〉.
g= 2π × 0.3 GHz and ωq = ωopt

q = 2π × 10.72 GHz.

We also observe in Fig. 3(b) that, in the weak-
coupling limit of g → 0, ω

opt
in → ω3 = 3ω1 = 2π × 9 GHz

and ω
opt
q →

√
(3ω2

3 − ω2
1 )/2 = 2π × 10.82 GHz. This opti-

mal qubit frequency in the weak-coupling limit is derived as
follows. Within the second-order perturbation in g1 and g3,

εg01 and εg30 are renormalized as εg01 = ω3 − g2
3

ωq−ω3
− g2

3
ωq+ω3

and εg30 = 3(ω1 − g2
1

ωq−ω1
− g2

1
ωq+ω1

), respectively. The degen-
eracy condition, εg01 = εg30, reduces to ωq =

√
(3ω2

3 − ω2
1 )/2

for the present case of ω3 = 3ω1 and g1 = g3.
In Fig. 3(d), coherent time evolution of the system starting

from |g01〉 is shown. We observe the vacuum Rabi oscillation
between |g01〉 and |g30〉. The oscillation is not pure sinu-
soidal, since other states than |g01〉 and |g30〉 (such as |e00〉)
are involved in forming the eigenstates. The Rabi oscillation
period measured in Fig. 3(d) is T = 2.247 μs. This is com-
patible with geff = 2π × 222.5 kHz evaluated from Fig. 3(a),
because geffT/π ≈ 1.

IV. INPUT-OUTPUT FORMALISM FOR
ULTRASTRONG CAVITY QED

In the following part of this paper, we analyze the re-
sponse of the qubit-cavity system to a waveguide field. For
this purpose, the input-output formalism is useful. However,
although highly useful in the weak- and (usual) strong-
coupling regimes of cavity QED, the conventional formalism
based on the white reservoir approximation has several diffi-
culties in treating the ultrastrong cavity QED [17]. The input-
output formalism applicable to the ultrastrong cavity QED has

been discussed first in linear systems [41] and later extended
to nonlinear systems [42,43]. However, assuming weak dissi-
pation, the counter-rotating terms in the system-environment
coupling have been neglected in prior works. In this sec-
tion, in order to extend the formalism applicable to highly
dissipative cases, we develop an input-output formalism incor-
porating the counter-rotating terms in the system-environment
coupling.

A. Heisenberg equations

In this section, for simplicity, we consider a case in which
the cavity-QED system is coupled only to the 1e dissipa-
tion channel. Namely, the overall Hamiltonian is given by
Ĥ = Ĥs + Ĥ1e. We also introduce the following abbreviations
throughout this section: ξ

(1e)
k → ξk and X̂1 → X̂ .

The Heisenberg equation of ĉk is given by dĉk/dt =
i[Ĥ, ĉk] = −ikĉk − iξkX̂ , which is formally integrated as

ĉk (t ) = ĉk (0)e−ikt − iξk

∫ t

0
dτ e−ikτ X̂ (t − τ ). (6)

The Heisenberg equation of an arbitrary system operator
Ŝ is given by dŜ/dt = i[Ĥs, Ŝ] + i

∫ ∞
0 dk ξk[X̂ , Ŝ](ĉ†

k + ĉk ).
Using Eq. (6), this becomes a delay differential equation,

d

dt
Ŝ = i[Ĥs, Ŝ] +

∫ ∞

0
dk

∫ t

0
dτ ξ 2

k (e−ikτ [X̂ , Ŝ]X̂ (t − τ )

− eikτ X̂ (t − τ )[X̂ , Ŝ]) + i[X̂ , Ŝ]�̂(t ) + i�̂†(t )[X̂ , Ŝ],

(7)
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where �̂(t ) is a noise operator defined by

�̂(t ) =
∫ ∞

0
dk ξke−ikt ĉk (0). (8)

In Eq. (7) and hereafter, we omit explicit time-dependence for
the operators at time t in the Heisenberg picture. Note that the
noise operator �̂(t ) is not in the Heisenberg picture.

In order to convert a delay differential equation (7) into an
instantaneous one, we employ a free-evolution approximation
for the time evolution of the system operator during the delay
time τ [44–46]. We denote the eigenstates and eigenenergies
of Ĥs by | j〉 and ε j ( j = 0, 1, · · · ) in the energy-increasing
order, and define the transition operator by ŝi j = |i〉〈 j|. We
then approximate X̂ (t − τ ) as

X̂ (t − τ ) =
∑
i, j

xi j ŝi j (t − τ ) ≈
∑
i, j

xi je
iε jiτ ŝi j (t ), (9)

where xi j = 〈i|X̂ | j〉 and ε ji = ε j − εi. In this approximation,
we assume free time evolution of the system operators during
the delay time, neglecting the higher-order system-waveguide
interactions that are implicitly included in X̂ (t − τ ). This
is essentially the same as the Markov approximation in the
derivation of master equation in the interaction picture. Then,
Eq. (7) is rewritten as

d

dt
Ŝ = i[Ĥs, Ŝ] + [X̂ , Ŝ]Â − Â†[X̂ , Ŝ]

+ i[X̂ , Ŝ]�̂(t ) + i�̂†(t )[X̂ , Ŝ], (10)

where

Â =
∑
i, j

xi jh jiŝi j, (11)

and h ji = ∫ t
0 dτ

∫ ∞
0 dk ξ 2

k ei(ε ji−k)τ . Strictly speaking, this
quantity depends on t . However, since

∫ ∞
0 dk ξ 2

k e−ikτ is
nonzero only for short τ (∼ inversed bandwidth of ξ 2

k ),
we can safely treat hji as a t-independent quantity, h ji ≈∫ ∞

0 dτ
∫ ∞

0 dk ξ 2
k ei(ε ji−k)τ . Then we have

h ji = −i
∫ ∞

0
dk

ξ 2
k

k − ε ji − i0

= πθ (ε ji )ξ
2
ε ji

− iP
∫ ∞

0
dk

ξ 2
k

k − ε ji
, (12)

where θ is the Heaviside step function and P represents the
principal value. This is a self-energy correction to the transi-
tion frequency: the real part corresponds to half of the decay
rate and the imaginary part corresponds the Lamb shift [47].
Note that the real part vanishes for negative ε ji, reflecting the
prohibited decay from a lower level to an upper level.

B. Waveguide-field operator

For a semi-infinite waveguide (Fig. 1), the waveguide
eigenmodes are the standing wave extending in the r > 0
region. Assuming an open boundary condition at r = 0,
the eigenmode function fk with wavenumber k is given
by fk (r) = √

2/π cos(kr)θ (r), which is orthonormalized as∫ ∞
0 dr fk (r) fk′ (r) = δ(k − k′). Accordingly, the waveguide

mode operator ĉr in the real-space representation is defined in

the r > 0 region by ĉr (t ) = √
2/π

∫ ∞
0 dk cos(kr)ĉk (t ), which

satisfies the commutation relation [ĉr, ĉ†
r′ ] = δ(r − r′). The

incoming field propagates in the r > 0 region into the negative
direction (k < 0).

However, it is convenient to treat the incoming field as if
it propagates in the r < 0 region into the positive direction
(k > 0). We therefore introduce the real-space representation
by

c̃r (t ) = 1√
2π

∫ ∞

0
dk eikr ĉk (t ), (13)

where r runs over the full one-dimensional space (−∞ <

r < ∞) [48]. From Eq. (6), we have

c̃r (t ) = c̃r−t (0) − i√
2π

∫ ∞

0
dk

∫ t

0
dτ ξkeik(r−τ )X̂ (t − τ ).

(14)

This equation represents the waveguide-field operator in terms
of the input-field operator and the system operator, and en-
ables, for example, evaluation of the output-field amplitude
and flux.

C. Input-output relation

We can further simplify Eq. (14) under some
approximations. Introducing τ ′ = τ − r and employing
the free-evolution approximation, X̂ (t − r − τ ′) = ∑

i, j xi j ŝi j

(t − r)eiωi jτ
′
, Eq. (14) is rewritten as

c̃r (t ) = c̃r−t (0) +
∑
i, j

xi j f (ε ji, r, t )ŝi j (t − r), (15)

f (ε, r, t ) = 1√
2π

∫ ∞

0
dk

ξk

k − ε
[ei(k−ε)(r−t ) − ei(k−ε)r]. (16)

Note that the integrand in the right-hand side of Eq. (16) is not
singular at k = ε. We can approximately evaluate f (ε, r, t ) as
follows. Since the main contribution of this integral comes
from the k ≈ ε region, we set ξk ≈ ξεθ (ε) and remove the
lower limit of k integral as

∫ ∞
0 ≈ ∫ ∞

−∞. Then we have

fapp(ε, r, t ) = −i
√

2πξεθ (ε)θ (r)θ (t − r). (17)

In Appendix B, we observe fairly good agreement between
f (ε, r, t ) and fapp(ε, r, t ), assuming a concrete form of ξk

[Eq. (28)]. Thus we have

c̃r (t ) = c̃r−t (0) − i
√

2πθ (r)θ (t − r)
∑
i< j

ξε ji xi j ŝi j (t − r).

(18)

Note that the summation over i and j is conditioned by i < j
in Eq. (18), which is due to the following reasons. (i) For
i > j, ε ji is negative and accordingly θ (ε ji ) = 0. (ii) For
i = j, xi j = 0 due to the parity selection rule. Defining the
input and output field operators by ĉin(t ) = c̃−0(t ) = c̃−t (0)
and ĉout (t ) = c̃+0(t ), Eq. (18) is rewritten into a more familiar
form,

ĉout (t ) = ĉin(t ) − i
√

2π
∑
i< j

ξε ji xi j ŝi j (t ). (19)
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V. OPTICAL RESPONSE THEORY

A. Initial state vector

In this paper, instead of a single photon pulse, we apply a
weak classical monochromatic field close to the resonance of
the third cavity mode [Ein(t ) = Eine−iωint with ωin ∼ ω3] to the
cavity (Fig. 1). Assuming that, at the initial moment (t = 0),
the overall system is in the vacuum state except the applied
field, the initial state vector is written as

|ψi〉 = exp
(√

2πEind̂†
ωin

−
√

2πE∗
ind̂ωin

)|vac〉, (20)

where |vac〉 is the overall vacuum state. Note that this is
an eigenstate of the noise operators: �̂(3e)(t )|ψi〉 = √

2πξ (3e)
ωin

Ein(t )|ψi〉 and �̂( j)(t )|ψi〉 = 0 for j = 1e, 1i, 3i, and q.

B. Density matrix elements

The Heisenberg equation for a system operator is given by
Eq. (10) with the dissipators and the noise operators corre-
sponding to the five decay channels (1e, 1i, 3e, 3i, and q).
The equation of motion for si j (t ) = 〈ψi|ŝi j (t )|ψi〉, which is
identical to the density matrix element ρ ji(t ) = 〈 j|ρ̂(t )|i〉 in
the Schrödinger picture, is then given by

d

dt
si j =

∑
m,n

η
(a)
i jmnsmn + E∗

in(t )
∑
m,n

η
(b)
i jmnsmn

+ Ein(t )
∑
m,n

η
(c)
i jmnsmn, (21)

where the coefficients η
(a,b,c)
i jmn are given by

η
(a)
i jmn = i(εi − ε j )δimδ jn + x(1)

mi x(1)
jn

(
h(1)

n j + h(1)∗
mi

) − δim

(∑
l

x(1)
jl x(1)

ln h(1)
nl

)
− δ jn

(∑
l

x(1)
il x(1)

lm h(1)∗
ml

)

+ x(3)
mi x(3)

jn

(
h(3)

n j + h(3)∗
mi

) − δim

(∑
l

x(3)
jl x(3)

ln h(3)
nl

)
− δ jn

(∑
l

x(3)
il x(3)

lm h(3)∗
ml

)

+ x(q)
mi x(q)

jn

(
h(q)

n j + h(q)∗
mi

) − δim

(∑
l

x(q)
jl x(q)

ln h(q)
nl

)
− δ jn

(∑
l

x(q)
il x(q)

lm h(q)∗
ml

)
, (22)

η
(b)
i jmn = i

√
2πξ (3e)

ωd

(
x(3)

mi δ jn − x(3)
jn δim

)
, (23)

η
(c)
i jmn = (

η
(2)
i jmn

)∗
, (24)

where x(s)
mn = 〈m|X̂s|n〉 for s = 1, 3, q, and h(s)

mn = h(se)
mn + h(si)

mn
for s = 1, 3. In this paper, we apply a continuous field and
observe the stationary response of the system. Therefore,
we numerically determine the stationary solution of these
simultaneous equations by perturbation with respect to Ein(t ).
Further details on analysis are presented in Appendix C.

C. Photon flux

Since we treat a stationary input/output field, we quantify
the amount of photons by the photon flux, namely, the rate of
incoming/outgoing photons per unit time. The input photon
flux is evaluated by Fin = 〈ψi|d̂†

in(t )d̂in(t )|ψi〉. From Eq. (20),
this quantity reduces to

Fin = |Ein(t )|2 = |Ein|2. (25)

In the output port, the fluxes of down-converted and un-
converted photons are respectively evaluated by F 1

out =
〈ψi|ĉ†

out (t )ĉout (t )|ψi〉 and F 3
out = 〈ψi|d̂†

out (t )d̂out (t )|ψi〉. From
Eq. (19) and its counterpart for d̂out, these quantities are given
by

F 1
out = 2π

∑
i, j

(∑
m

x(1)
mi x(1)

m j ξ
(1e)
εim

ξ (1e)
ε jm

)
si j (t ), (26)

F 3
out = |Ein(t )|2 + 2π

∑
i, j

(∑
m

x(3)
mi x(3)

m j ξ
(3e)
εim

ξ (3e)
ε jm

)
si j (t )

+ i
√

2π
∑
i, j

ξ (3e)
ε ji

x(3)
i j [s ji(t )Ein(t ) − c.c.]. (27)

VI. NUMERICAL RESULTS

In this section, we present the numerical results on the
optical response, fixing the bare cavity frequencies at 3ω1 =
ω3 = 2π × 9 GHz. For reduction of parameters, we restrict
ourselves to the case of g1 = g3, κ1e = κ3e and κ1i = κ3i and
denote them by g, κe, and κi, respectively. Furthermore, re-
garding the coupling for the 1e decay channel for example,
we assume the following form:

ξ
(1e)
k = θ (k)θ (kx − k)

√
κ1e/2π, (28)

where kx is the cutoff wavenumber. Note that this coupling
satisfies Eq. (4). We fix kx at 2π × 20 GHz and confirmed
that numerical results are mostly insensitive to kx. The other
system-environment couplings are defined similarly and with
the same cutoff wavenumber. From Eq. (12), h(1e)

ji is analyti-
cally given by

h(1e)
ji = κ1e

2
θ (ε ji )θ (kx − ε ji ) − iκ1e

2π
log

( |kx − ε ji|
|ε ji|

)
. (29)

Regarding the input field power, we assume the weak-field
limit in Secs. VI A–VI C, and discuss the input power depen-
dence in Sec. VI D.

A. Optimal condition for κe

First, we search the optimal value of κe assuming no in-
trinsic losses (κi = γ = 0). Figures 4(a) and 4(b) show the
dependence of the down-converted flux F 1

out on κe and ωin,
fixing g and ωq. It is observed that F 1

out has two peaks for small
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FIG. 4. Optimization of κe assuming no intrinsic losses (κi = γ = 0). The output photon fluxes, F 1,3
out , are normalized by the input

flux, Fin. (a) Dependence of the down-converted flux F 1
out on κe and ωin, for (g, ωq ) = 2π × (0.3, 10.72) GHz. The optimal point is

(κopt
e , ω

opt
in ) = 2π × (255.0 kHz, 8.9456 GHz). (b) Same plot as (a) for (g, ωq ) = 2π × (1.0, 9.735) GHz. The optimal point is (κopt

e , ω
opt
in ) =

2π × (35.4 MHz, 8.378 GHz). (c) Cross section of (a) at κopt
e : down-converted flux F 1

out (solid), unconverted flux F 3
out (dotted), and F 1

out/3 + F 3
out

(thin dashed). (d) Cross section of (b) at κopt
e .

κe. This is due to the Rabi splitting of |g30〉 and |g01〉, and
the frequency difference of the two peaks agrees with 2geff

in Fig. 3(c). F 1
out is maximized for a larger κe, at which the

two peaks become spectrally indistinguishable. Therefore, the
optimal condition for the external loss rate of the cavity is
given by κ

opt
e ∼ geff . We confirm in Appendix D that this con-

dition is identical to the impedance-matching condition of a
linear optical system composed of oscillators and waveguides.
Actually, we can confirm in Figs. 4(a) and 4(b) that κ

opt
e is

2π × 255 kHz (35.4 MHz) for g = 2π × 0.3 GHz (1.0 GHz).
This is almost identical to geff = 2π × 223 kHz (29.2 MHz)
in Fig. 3(c).

Figures 4(c) and 4(d) are the cross section of Figs. 4(a)
and 4(b) at κ

opt
e . It is observed that the deterministic down-

conversion (F 1
out ≈ 3Fin and F 3

out ≈ 0) is attained regardless of
the value of g, when the input photon frequency ωin is opti-
mally chosen. Furthermore, reflecting the absence of intrinsic
loss channels, we can also confirm the energy conservation,
F 1

out/3 + F 3
out ≈ Fin, for any input photon frequency. However,

by carefully examining the numerical results, this conser-
vation law is slightly broken at the order of 10−5 [10−3]
in Fig. 4(c) [Fig. 4(d)]. We attribute the main reason for
this slight discrepancy to the free-evolution approximation
[Eq. (9)], whose validity is gradually lost for larger dissipation
rates.

B. Qubit detuning

Here, assuming again the absence of intrinsic losses, we
observe the effects of the qubit detuning from its optimal
value. Figure 5 shows the dependence of the down-converted
flux F 1

out on ωq and ωin, fixing κe at its optimal value [255 kHz
in (a) and 35.4 MHz in (b)]. It is observed that, as the
qubit-cavity coupling g increases, the deterministic down-
conversion becomes more robust against the qubit detuning.
This is because of the increase of the optimal qubit linewidth
for larger g. The allowed qubit detuning (the full width in ωq

at the half maximum of the cross-sectional plot at the opti-
mal ωin) is about 20 MHz (240 MHz) for g = 2π × 0.3 GHz
(1.0 GHz).

C. Intrinsic losses

Here, we investigate the effects of intrinsic losses of the
qubit and cavity. Figures 6(a) and 6(b) show the dependence
of the down-converted flux F 1

out on γ and κi, fixing the other
parameters at their optimal values. When g = 2π × 0.3 GHz,
the deterministic down-conversion is highly vulnerable to the
intrinsic losses. The condition for achieving 50% conversion
(F 1

out > 1.5) is κi � 2π × 92.9 kHz (intrinsic quality factor
Qi � 3.23 × 104 for the first cavity mode) and γ �
2π × 5.55 MHz (lifetime T1 � 28.7 ns). These conditions are
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255 kHz. κi = γ = 0 is assumed. (b) The same plot as (a) for g = 2π × 1.0 GHz and κe = 2π × 35.4 MHz.

drastically relaxed for g = 2π × 1.0 GHz: κi � 2π ×
12.7 MHz (Qi � 236) and γ � 2π × 70.5 MHz (T1 �
2.26 ns). We observe that the condition for the cavity is
tighter than that for the qubit. This is because, in the present
phenomenon, the qubit excited state is used only virtually
to realize the effective coupling between |g01〉 and |g30〉
states. In Fig. 6(c), F 1

out is plotted as a function of geff and
κi, employing the nearly optimal parameters (ωq = ω

opt
q ,

ωin = ω
opt
in , κe = 1.25geff ) for each geff . This figure serves as

a phase diagram that visualizes the strong (weak) coupling
regime to achieve efficient conversion, quantified by geff � κi

(geff � κi). However, it is of note that this definition of
strong/weak coupling regimes is slightly different from the
usual one, since geff ∼ κe in the present case.

D. Dependence on input photon rate

In the previous subsections, we discussed the down-
conversion efficiency assuming a low input photon rate, in
other words, the linear-response limit. Here, we observe the
conversion efficiency for a higher input photon rate. In Fig. 7,
we plot the dependence of the conversion efficiency on the
input photon rate for various detuning of the input field. We
observe that the efficiency decreases gradually for higher in-
put photon rate. This is due to saturation of the atom-cavity

system, which originates from the nonlinearity of the qubit.
The star symbols in Fig. 7 represent the onset of saturation,
which is given by

Fin ∼ (κe/2)2 + (�ω)2

10κe
, (30)

where �ω is the detuning of the input field frequency from its
optimal value. This is derived as follows. When one applies a
monochromatic field E (t ) = Eine−iωint to an empty one-sided
cavity with an external decay rate κe, the mean intracavity
photon number n is proportional to the drive photon rate
Fin = |Ein|2 and is given by n = κeFin/|κe/2 + i�ω|2. In the
present system, the saturation effect due to nonlinearity would
appear when the cavity is populated substantially. If we set
this criterion at n ∼ 0.1 for example, the onset of saturation
is estimated by Eq. (30). This explains the fact that the onset
of saturation occurs at a higher input photon rate for a larger
detuning.

VII. SUMMARY

We theoretically proved the possibility of the deterministic
three-photon down-conversion of itinerant photons using a
passive ultrastrong cavity-QED system, in which an atom is
coupled to the first and third-harmonic cavity modes. For this
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purpose, we developed an input-output formalism applicable
to highly dissipative cavity-QED systems. The conditions for
the deterministic conversion are as follows: (i) the frequencies
of the qubit and the cavity modes are adequately chosen so
that the two relevant levels (|g30〉 and |g01〉) are coupled
effectively, and (ii) the cavity loss rates are adequately chosen
so that they are comparable to the effective coupling. Such
down-conversion is characteristic to the ultrastrong coupling
regime of cavity QED, considering the upper limit of the
intrinsic loss rates of the cavity.
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APPENDIX A: PERTURBATIVE EVALUATION OF geff

In this Appendix, we analytically evaluate the effective
coupling geff between |g01〉 and |g30〉 by the perturbative
method called the generalized James’ effective Hamiltonian
method [49,50]. This method expand the Hamiltonian in se-
ries in the interaction picture so that the total Hamiltonian

gives an accurate time evolution,

Ĥeff (t ) =
∞∑

n=2

Ĥ (n)
eff (t ),

Ĥ (n)
eff (t ) = i1−n

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−2

0
dtn−1

× ĤI (t )ĤI (t1) · · · ĤI (tn−1), (A1)

where ĤI (t ) is the interaction part of the Hamiltonian in the
interaction picture. In the qubit-cavity system considered here
[see Eq. (1)], ĤI (t ) is given by

ĤI (t ) = g1(e−iωqt σ̂ + eiωqt σ̂ †)(e−iω1t â1 + eiω1t â†
1)

+ g3(e−iωqt σ̂ + eiωqt σ̂ †)(e−iω3t â3 + eiω3t â†
3). (A2)

The lowest-order interaction that couples |g01〉 and |g30〉 is of
the 4th order, and the (time-dependent) effective coupling is
given by geff (t ) = 〈g01|Ĥ (4)

eff (t )|g30〉. By averaging out the os-
cillatory component [namely, geff = limT →∞ 1

T

∫ T
0 dt geff (t )],

the effective coupling is given by

geff =
√

6g3
1g3

2ω1

(
1

(ωq − 3ω1)(ωq − ω1)

− 1

(ωq + 3ω1)(ωq + ω1)

)
. (A3)
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20 GHz.
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For the weak-coupling case, (g1 = g3 = 2π × 0.3 GHz and
ωq = 2π × 10.72 GHz), geff amounts to 236.8 kHz from
Eq. (A3), which roughly agrees with the numerically rig-
orous value of 222.5 kHz [Fig. 3(c)]. In contrast, for the
strong-coupling case, (g1 = g3 = 2π × 1.0 GHz and ωq =
2π × 9.735 GHz), geff amounts to 80.76 MHz from Eq. (A3),
whereas the numerically rigorous value is 29.20 MHz. This
discrepancy is due to the perturbative nature of Eq. (A3).

APPENDIX B: VALIDITY OF fapp

Here, we numerically compare f and fapp [Eqs. (16) and
(17)] that appear when deriving the input-output relation.
Their snapshots are shown in Fig. 8, assuming a concrete form
[Eq. (28)] of the system-environment coupling. We confirm
that fapp well approximates f for both the first- and third-
harmonic cavity frequencies.

APPENDIX C: STATIONARY SOLUTION OF EQ. (21)

In this Appendix, we present the method to determine the
stationary solution of Eq. (21) perturbatively. As the stationary
solution, we employ the following form:

si j (t ) =
∞∑

p,q=0

s(p,q)
i j [E∗

in(t )]p[Ein(t )]q, (C1)

where s(p,q)
i j is time independent. Substituting Eq. (C1) into

Eq. (21), we have∑
m,n

(
η

(1)
i jmn − i(p − q)ωinδimδ jn

)
s(p,q)

mn

= −
∑
m,n

(
η

(2)
i jmns(p−1,q)

mn + η
(3)
i jmns(p,q−1)

mn

)
, (C2)

with the understanding that s(p,q)
i j = 0 if p or q is negative.

This is a matrix equation, which determines s(p,q)
i j from the

lower-order quantities, s(p−1,q)
i j and s(p,q−1)

i j . Note that this ma-
trix equation is indeterminate for p = q. Then, we add the
normalization condition of the density matrix,

∞∑
j=0

s(p,p)
j j = δp,0. (C3)

APPENDIX D: IMPEDANCE MATCHING CONDITION

We consider a linear system composed of two harmonic
oscillators (oscillator 1 and 2) and two waveguides (waveg-
uide 1 and 2), as depicted in Fig. 9. The two oscillators, which
model the levels |g01〉 and |g30〉 of the main text, have the

waveguide 2

oscillator 2

waveguide 1

oscillator 1

1 2geff

c c

in in

FIG. 9. Schematic of the coupled oscillators-waveguides system.

same resonance frequency ωc and are coupled with a coupling
constant geff . Oscillator j ( j = 1, 2) is coupled to waveguide
j with an external decay rate κ j . We denote the annihilation
operator of oscillator j by â j , and the input and output field-
operators of waveguide j by b̂in, j and b̂out, j , respectively. The
Heisenberg equations for the two oscillators and the input-
output relations are given by

d

dt
â1 = (−iωc − κ1/2)â1 − igeff â2 − i

√
κ1b̂in,1, (D1)

d

dt
â2 = (−iωc − κ2/2)â2 − igeff â1 − i

√
κ2b̂in,2, (D2)

b̂out,1 = b̂in,1 − i
√

κ1â1, (D3)

b̂out,2 = b̂in,2 − i
√

κ2â2. (D4)

We apply a classical monochromatic field at frequency
ωin and amplitude Ein through waveguide 1, and apply no
field through waveguide 2. Namely, 〈b̂in,1〉 = Eine−iωint and
〈b̂in,2〉 = 0. Then, the equations of motion for the cavity and
waveguide amplitudes are given by

d

dt
〈â1〉 = (−iωc − κ1/2)〈â1〉 − igeff〈â2〉 − i

√
κ1〈b̂in,1〉,

(D5)

d

dt
〈â2〉 = (−iωc − κ2/2)〈â2〉 − igeff〈â1〉, (D6)

〈b̂out,1〉 = 〈b̂in,1〉 − i
√

κ1〈â1〉, (D7)

〈b̂out,2〉 = −i
√

κ2〈â2〉. (D8)

The stationary solution is readily obtained by the replacement
of d/dt → −iωin in Eqs. (D5) and (D6). The transmission
coefficient, T = 〈b̂out,2〉/〈b̂in,1〉, is then given by

〈b̂out,2〉
〈b̂in,1〉

= i
√

κ1κ2geff

κ1κ2/4 + g2
eff

. (D9)

The impedance-matching condition, |T | = 1, reduces to√
κ1κ2 = 2geff . This is in agreement with the optimal condi-

tion of the external cavity decay rate, κ
opt
e ∼ geff , derived in

Sec. VI A.
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