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Quantum framework for describing retarded and nonretarded molecular interactions
in external electric fields
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We employ various quantum-mechanical approaches for studying the impact of electric fields on both non-
retarded and retarded noncovalent interactions between atoms or molecules. To this end, we apply perturbative
and nonperturbative methods within the frameworks of quantum mechanics as well as quantum electrodynamics.
In addition, to provide a transparent physical picture of the different types of resulting interactions, we employ
a stochastic electrodynamic approach based on the zero-point fluctuating field. Atomic response properties are
described via harmonic Drude oscillators—an efficient model system that permits an analytical solution and
has been convincingly shown to yield accurate results when modeling nonretarded intermolecular interactions.
The obtained intermolecular energy contributions are classified as field-induced electrostatics, field-induced
polarization, and dispersion interactions. The interplay between these three types of interactions enables the
manipulation of molecular dimer conformations by applying transversal or longitudinal electric fields along the
intermolecular axis. Our framework based on the combination of four different theoretical approaches paves
the way toward a systematic description and improved understanding of molecular interactions when molecules
are subject to both external and vacuum fields.
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I. INTRODUCTION

Molecular forces, stemming from noncovalent interactions
between closed-shell atoms or molecules, govern various
physical properties of different states of matter. These ubiqui-
tous forces are widely present in systems throughout biology,
chemistry, and physics, with an extension to practical fields
such as nanotechnology and pharmaceuticals. For exam-
ple, molecular forces play a major role in determining the
structure, stability, and function for molecules and materials
including proteins, nanostructures, molecular solids, and crys-
talline surfaces [1–3]. In general, atoms in a given molecule
or material are subject to internal and external fields. These
fields can be of static and/or dynamic origins and can arise ei-
ther from neighboring atoms carrying effective partial charges
within the same molecule or from external environments, such
as cell membranes, ionic channels, liquids, among other possi-
bilities. From an atomwise perspective, the forces arising from
the surrounding environment can be effectively modeled by
external fields acting on an atom from all other components
of the system. Hence, a complete theoretical description of
interatomic interactions necessitates the modeling of arbitrary
internal and external fields that atoms can experience.
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The effect of static and dynamic external fields on nonco-
valent interactions has been studied using various theoretical
frameworks for atomic and molecular systems. It was shown
that by applying electromagnetic and thermal fields, one can
influence noncovalent interactions in several ways [4–12].
Random and nonuniform fields can affect the strength and
distance scaling laws of the van der Waals (vdW) disper-
sion interaction or even change its sign [8–13]. Application
of weak static (in)homogeneous fields to molecular dimers
[4–6] modifies the dispersion interactions in second and third
orders of perturbation theory in the nonretarded regime, while
the retarded regime was not addressed in these studies. The
dispersion interactions under weak static fields in the re-
tarded regime were recently studied by Fiscelli et al. [7]
using quantum electrodynamics (QED). They proposed a
novel contribution to the retarded dispersion energy between
two interacting two-level hydrogen atoms, scaling as ∝R−4

with respect to the interatomic distance. Despite the relatively
large number of studies on molecular interactions in electric
fields, a comprehensive understanding of this topic is still
missing, and some results remain controversial. For instance,
there is still an ongoing debate on the interpretation of vdW
interactions in spatially confined systems as having either an
electrostatic or a quantum-mechanical origin [14–16]. The un-
usual R−4 scaling of dispersion interactions in QED induced
by an external field and recently presented in Ref. [7] has also
been debated as arising either from quantum effects or simply
classical electrostatics [17,18]. To resolve existing contro-
versies and clarify discrepancies present in the literature, in
this paper we aim to develop a comprehensive framework
for modeling and understanding molecular interactions in the
presence of electric fields. Our approach is firmly based on
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first principles of quantum mechanics (QM) and quantum
electrodynamics and employs an exactly solvable model for
the atomic polarization.

The QM theory of intermolecular forces is a well estab-
lished field, with several seminal monographs covering this
topic rather comprehensively [1,2]. Interactions between sys-
tems ranging from single atoms and small molecules to large
macromolecules and nanostructures have been studied exten-
sively in the nonretarded regime within the QM framework
[19–26]. Typically, second-order intermolecular perturbation
theory is employed to distinguish three types of noncova-
lent molecular interactions: electrostatic interactions between
permanent multipoles, polarization (or induction) interactions
between permanent and induced multipoles, and vdW dis-
persion interactions between induced fluctuating multipoles.
When using higher orders of perturbation theory, the situation
is somewhat obscured because the distinction between differ-
ent types of multipoles (permanent, induced, and fluctuating)
becomes less obvious. The presence of electric fields, exci-
tations, or specific boundary conditions introduces additional
complications. Many of such field-induced phenomena are not
yet part of textbook knowledge, even from the point of view
of standard QM. For example, the qualitative change of vdW
dispersion interactions induced by confinement of molecules
in nanostructures or under inhomogeneous electric fields is a
recent proposition [4,13,16].

QED provides a well-established general framework to
study the interaction between atoms (or small molecules)
and the electromagnetic radiation field [27–31]. There is a
diversity of effects in QED that transcend standard QM in-
terpretation and stem from the zero-point fluctuations of the
electromagnetic radiation field. Such examples include vac-
uum polarization, self-energy terms, Lamb shift, and even
particle creation and annihilation in strong fields [29,30].
QED has also been widely used for studying vdW dispersion
and Casimir interactions between atoms and materials [28,32–
34]. Due to the relative complexity of the QED terms com-
pared to their QM counterparts, one is often constrained to
using effective models for the atomic response and its cou-
pling to the quantum radiation field. Due to these reasons, the
QED theory of molecular forces requires further development
to reach the sophisticated level achieved by its QM analog.
This fact is illustrated, for example, by the recent work of
Fiscelli et al. [7], which proposed the existence of a new QED
dispersion energy term for two hydrogen atoms subjected to
an external electric field.

With the aim to bridge the QM and QED treatments
of molecular forces, in this work we develop a compre-
hensive framework and apply it to study the effect of a
static electric field on noncovalent interactions between two
atoms or molecules. To achieve a comprehensive under-
standing, we found it necessary to employ three different
theories, given by molecular quantum mechanics, microscopic
quantum electrodynamics, and stochastic electrodynamics.
The three frameworks have been widely used in differ-
ent communities in order to explore various aspects of
intermolecular interactions. In contrast to QM and QED,
the approach of stochastic electrodynamics [35–44], as a
classical stochastic approximation to QED, provides clear
interpretations of different interaction terms for nonrelativistic

quantum-mechanical problems. It has been already shown that
stochastic electrodynamics can successfully reproduce results
of QED when studying vdW and Casimir-Polder interactions
in the absence of external fields for atomic and molecular
systems [45–50].

When studying the effect of external electric fields on in-
teratomic interactions, the two-level “hydrogen atom” is often
employed as a model system for atomic response. Unfortu-
nately, this model system (two hydrogenlike atoms plus the
external field) does not allow an analytical solution, and this
can lead to artifacts, especially when applying QED. To avoid
this problem and to enrich our conceptual understanding of
the effect of external fields on intermolecular interactions, in
this work we employ the quantum Drude oscillator (QDO)
[51–54] model for describing atomic and molecular responses
in closed-shell systems. The usage of QDOs to accurately
and efficiently model the response of valence electrons in
atoms and molecules is a critical aspect because coupled
QDOs enable analytical solutions, with and without electric
field. In the next section, we briefly describe the well-known
QDO model and its applications in studies of intermolecular
interactions. Then, the problem of intermolecular interactions
in a uniform static electric field is tackled by using four dif-
ferent approaches. Section III presents a detailed description
of the exact diagonalization method to derive an exact for-
mula for the interaction energy, which then is approximated
by compact expressions obtained using Taylor expansions. In
addition to the leading contributions to the interaction energy
discussed throughout the paper, we consider (in Secs. III and
VI) the full infinite-order series of interactions. In Sec. IV,
we show how the approximated results of Sec. III can be re-
produced using perturbation theory in the framework of QM.
To take into account the effect of retardation, we also employ
QED and stochastic electrodynamics. The corresponding ex-
haustive derivation provides one with a guidance for practical
uses of QED and stochastic electrodynamics as applied to
coupled QDOs. Namely, Sec. V contains a derivation of the
interaction energy for both retarded and nonretarded regimes
from a perturbative approach within the QED framework.
To identify and interpret all dominant contributions to the
interaction energy, in Sec. VI we rationalize the results of
the other three approaches by means of stochastic electro-
dynamics. To illustrate possible practical applications of the
developed framework, in Sec. VII we consider argon-argon
and benzene-benzene dimers as two representative examples
for atomic and molecular systems. Finally, we discuss the
obtained results and make conclusions in Sec. VIII.

II. QUANTUM DRUDE OSCILLATOR MODEL FOR
ATOMIC POLARIZATION RESPONSE

The harmonic oscillator [55] is one of the exactly solv-
able systems in quantum mechanics. This fundamental model
has been used in many branches of physics and chemistry,
including quantum field theory and quantum electrodynam-
ics, quantum optics, statistical mechanics, solid-state physics,
spectroscopy, and high-energy physics. The success of this
model stems from the fact that the energy of physical sys-
tems near equilibrium can be well approximated by quadratic
functions of variables representing displacements from the
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equilibrium state. In particular, quantum harmonic oscillators
are widely employed to describe the response of quantum-
mechanical systems to weak external perturbations.

As a representative of the class of models based on the
quantum harmonic oscillator, the quantum Drude oscilla-
tor (QDO) [51–54] is a coarse-grained quantum-mechanical
approach for describing the electronic response of valence
electrons in atoms and molecules. Within the QDO model,
each atom or molecule is represented by a Drude quasiparticle
characterized by its mass m and charge (−q) bound to a
nucleus of an opposite charge and an infinite mass through
a harmonic potential with a characteristic frequency ω. The
three adjustable parameters of the QDO model can exactly
reproduce a set of three atomic/molecular response proper-
ties. To properly capture the response of valence electrons, a
reasonably accurate parametrization is [53]

q =
√

mω2α, m = 5h̄ C6

ωC8
, ω = 4C6

3h̄α2
, (1)

obtained by reproducing the dipole polarizability α as well
as the C6 and C8 dispersion coefficients of homospecies
dimers taken from experimental or calculated ab initio refer-
ence data for atoms or molecules. When adjusting the QDO
parameters to accurate reference data, this coarse-grained
model constitutes a simple yet efficient tool to describe
response properties and noncovalent interactions of atoms,
small and large (bio)molecules, solids, nanostructures, and
hybrid organic/inorganic interfaces [23–26,51–54,56–59].
Specifically, the QDO model can quantitatively—within a few
percent compared to explicit treatment of electrons—describe
polarization and dispersion interactions [23,53,54] as well as
accurately capture electron density redistribution induced by
these interactions [60]. In addition, QDOs have been shown to
provide a robust tool to describe vdW interactions under the
influence of external charges as well as spatial confinement
4,13,16]. Finally, even though the QDO model describes dis-
tinguishable Drude particles bound to their own nuclei, it is
possible to generalize this model to quantum bosonic statis-
tics. Introducing Pauli-like exchange interactions to the QDO
model enabled a generalized quantum-mechanical relation to
be derived between atomic polarizabilities and van der Waals
radii, demonstrating its validity for many atoms in the Periodic
Table [57–59].

The present work benefits from the quadratic form of
the QDO Hamiltonian, which allows diagonalization of the
Hamiltonian of a system of interacting QDOs with or without
an external field being applied. Using the dipole approxima-
tion for the atom-atom and atom-field couplings, such an exact
diagonalization procedure yields a new system of decoupled
QDOs, whose ground state contains all the dipolar interaction
terms. The importance of this self-consistent solution grows
with size and complexity of the system containing many inter-
acting species [24–26,56]. On the other hand, the complete set
of eigenstates of a QDO in a uniform electric field enables us
to expand perturbed states of the coupled QDO-field system
under the influence of linear perturbations, e.g., describing
interactions with nearby QDOs as well as with macroscopic
bodies and boundary conditions. In turn, such an expansion
allows one to study retarded and nonretarded field-mediated

intermolecular interactions by means of the perturbation the-
ory within QED.

Despite all the compelling analytical and computational
features offered by the QDO model and its extensive ap-
plications in QM theory of intermolecular interactions, this
model has not been widely used in molecular QED. A certain
connection has been established in the work of Ciccarello
et al. [61], who have shown, by means of a nonperturbative
approach, that describing two identical atoms by charged
harmonic oscillators can reproduce the well-known Casimir-
Polder energy for the retarded dispersion interaction. In the
present work, we substantially advance the use of QDOs
within the QED framework for studying interactions of atomic
and molecular systems with electromagnetic fields and/or
other atoms and molecules.

The exact results for two dipole-coupled QDOs in static
electric fields, which we present in the next section, can
be straightforwardly generalized to an arbitrary number of
interacting species. This feature of the QDO model allows
one to easily extend the existing many-body approaches for
description of vdW interactions [24,25] to include external
fields. Moreover, such an approach enables numerically exact
descriptions of the effect of intramolecular fields on molec-
ular polarizabilities: considering atomic charge redistribution
in a molecule due to local electric fields caused by interac-
tions with other atoms, one can accurately obtain molecular
polarizabilities based on hybridized (atom-in-a-molecule) po-
larizabilities of constituting atoms.

III. MOLECULAR QUANTUM MECHANICS:
EXACT DIAGONALIZATION

In this section, we present a nonperturbative approach
for describing the interaction between two species (atoms or
molecules) in the presence of a uniform static electric field.
We make use of the exact solution of the QDO model in both
cases where the QDO is either coupled via its electric dipole
moment to another QDO or is subject to an external static
electric field. Using a two-step normal-mode transformation,
this allows us to diagonalize the total Hamiltonian for a system
of two interacting QDOs which are initially coupled to an
external field.

In the nonretarded regime, when the interspecies distance
R is much smaller than the characteristic wavelength λe of
electron transitions to excited states, λe �R, the interaction
reduces to the instantaneous Coulomb coupling. Thus the
Hamiltonian of a system of two interacting QDOs reads

H =
∑
i=1,2

[
− h̄2

2mi
∇2

ri
+ 1

2
miω

2
i r2

i

]
+ V (r1, r2). (2)

Here, mi and ωi are masses and characteristic frequencies of
the two Drude particles [53], respectively. If the interacting
QDOs are located along the z axis and separated by the dis-
tance R (see Fig. 1), then the coupling Coulomb potential in
its dipole approximation is

V (r1, r2) ≈ Vdip(r1, r2) = q1q2

(4πε0)R3
(r1 · r2 − 3z1z2), (3)

where −qi is the charge of the ith Drude particle bound to its
nucleus with the charge qi. Then, the x-dependent part of the
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FIG. 1. Two interacting atoms or molecules represented as quan-
tum Drude oscillators (QDOs), separated by a distance R = |�R|
along the z axis, under the influence of both the fluctuating vacuum
electromagnetic field �Erad and an applied uniform static electric field
�E = (Ex, Ey, Ez ).

Hamiltonian in Eq. (2) is given by

Hx =
∑
i=1,2

[
− h̄2

2mi

d2

dx2
i

+ 1

2
miω

2
i x2

i

]
+ q1q2

(4πε0)R3
x1x2. (4)

Introducing new coordinates x′
1 = √

m1x1 and x′
2 = √

m2x2 ,
Eq. (4) transforms to

Hx =
∑
i=1,2

[
− h̄2

2

d2

dx′
i
2 + aix

′
i
2
]

+ γx x′
1x′

2, (5)

with γx = q1q2

(4πε0 )
√

m1m2R3 and ai = ω2
i /2. To diagonalize this

Hamiltonian, we rewrite the potential energy in a matrix form

a1x′
1

2 + a2x′
2

2 + γxx′
1x′

2 = (x′
1 x′

2)M̂
(

x′
1

x′
2

)
, (6)

where M̂ii = ai and M̂12 = M̂21 = γx/2. The eigenvalues and
orthonormal eigenvectors of matrix M̂ are

λ± = 1
2 [(a2 + a1) ± √

Dx] (7)

and

c± = 1

A±

(
γx

(a2 − a1) ± √
Dx

)
, (8)

respectively. Here, we have employed the notations

Dx = (a2 − a1)2 + γ 2
x , A± =

√
γ 2

x + [(a2 − a1) ± √
Dx]2.

(9)

Introducing the normal-mode coordinates

x± = 1

A±
(γxx′

1 + [(a2 − a1) ± √
Dx]x′

2) (10)

and making use of the coordinate transformation

x′
1 = γx

A+
x+ + γx

A−
x−,

x′
2 = (a2 − a1) + √

Dx

A+
x+ + (a2 − a1) − √

Dx

A−
x−, (11)

one can diagonalize the Hamiltonian of Eq. (5) by express-
ing it in terms of the normal-mode coordinates x± and

corresponding frequencies ω± = [(a1 + a2) ± √
Dx]1/2 as

Hx =
∑
i=±

− h̄2

2

d2

dx2
i

+ 1

2
ω2

i x2
i . (12)

Equation (12) is the Hamiltonian of a system of two uncou-
pled QDOs with frequencies ω± and unit masses.

Now we apply an external uniform static electric field,
E = (Ex, Ey, Ez ), to this system by introducing the field-QDOs
coupling Hamiltonian in the dipole approximation

Hf = −(q1r1 + q2r2) · E . (13)

For its x-dependent part, we have

Hf,x = −(q1x1 + q2x2)Ex = −
(

q1x′
1√

m1
+ q2x′

2√
m2

)
Ex. (14)

On making use of the transformations of Eq. (11), the above
Hamiltonian becomes

Hf,x = −
∑
i=±

fixiEx, (15)

where the prefactors f+ and f− are defined as

f± = 1

A±

(
q1√
m1

γx + q2√
m2

[(a2 − a1) ± √
Dx]

)
. (16)

Therefore, the x-component of the total Hamiltonian, H ′ =
H + Hf , for the two interacting QDOs in the presence of an
external uniform static electric field reads

H ′
x =

∑
i=±

[
− h̄2

2

d2

dx2
i

+ 1

2
ω2

i x2
i − Ex fixi

]
. (17)

Completing the squares for x± yields the quadratic form

H ′
x =

∑
i=±

[
− h̄2

2

d2

dx2
i

+ ω2
i

2

(
xi − fiEx

ω2
i

)2

− f 2
i E2

x

2 ω2
i

]
, (18)

which can be considered as the Hamiltonian of two noninter-
acting one-dimensional (1D) oscillators with the characteristic
frequencies ω± and shifted centers of oscillations by the
field-dependent factors f±Ex/ω

2
± . Therefore, the ground-state

energy corresponding to the Hamiltonian of Eq. (18) can be
easily obtained as

Ex =
∑
i=±

[
h̄ωi

2
− f 2

i E2
x

2 ω2
i

]
. (19)

On the other hand, the ground-state energy of the two nonin-
teracting QDOs in the external field is the sum

E (ni)
x =

∑
i=1,2

[
h̄ωi

2
− αiE2

x

2

]
, (20)

with αi = q2
i /miω

2
i as the isotropic static dipole polarizability

of the ith isolated QDO. Comparing Eqs. (19) and (20), we see
that f± play the role of the ratio q/

√
m renormalized for the

use of the collective (normal-mode) coordinates x± introduced
in Eq. (10).

In our next step, we derive the interaction energy of the two
1D oscillators under the external electric field as the difference
between the total energy of the coupled QDOs and the sum
of the total energies of two isolated QDOs in the same field.
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Based on Eqs. (19) and (20), this interaction energy can be obtained as

�Ex = Ex − E (ni)
x = E2

x

1 − α1α2/([4πε0]2R6)

(
α1α2

[4πε0]R3
− α2

1α2

2[4πε0]2R6
− α1α

2
2

2[4πε0]2R6

)
− h̄

2
(ω1 + ω2) + h̄

√
2

4

×

⎧⎪⎨
⎪⎩

√√√√√(
ω2

1 + ω2
2

)+(
ω2

2 − ω2
1

)√√√√1 + 4 α1α2 ω2
1 ω2

2

[4πε0]2
(
ω2

2 − ω2
1

)2
R6

+

√√√√√(
ω2

1 + ω2
2

) − (
ω2

2 − ω2
1

)√√√√1 + 4 α1α2 ω2
1 ω2

2

[4πε0]2
(
ω2

2 − ω2
1

)2
R6

⎫⎪⎬
⎪⎭.

(21)

Due to the symmetry of the considered system, �Ey can be obtained in the same way as �Ex just by replacing the subscript
x with y. To derive �Ez , one needs to diagonalize the z-dependent part of the total Hamiltonian, Hz, using similar transfor-
mations as given in Eq. (11) but replacing x by z and γx by γz = −2γx. For this case, we obtain z± = (γzz′

1 + [(a2 − a1) ±
√

Dz]z′
2)/

√
γ 2

z + [(a2 − a1) ± √
Dz]2 and ω± = [(a1 + a2) ∓ √

Dz]
1/2, where Dz = (a2 − a1)2 + γ 2

z . Altogether, this leads to

�Ez = Ez − E (ni)
z = − 2 E2

z

1 − 4 α1α2/([4πε0]2R6)

(
α1α2

[4πε0]R3
+ α2

1α2

[4πε0]2R6
+ α1α

2
2

[4πε0]2R6

)
− h̄

2
(ω1 + ω2) + h̄

√
2

4

×

⎧⎪⎨
⎪⎩

√√√√√(
ω2

1 + ω2
2

)+(
ω2

2 − ω2
1

)√√√√1+ 16 α1α2 ω2
1 ω2

2

[4πε0]2
(
ω2

2 − ω2
1

)2
R6

+

√√√√√(
ω2

1 + ω2
2

) − (
ω2

2 − ω2
1

)√√√√1 + 16 α1α2 ω2
1 ω2

2

[4πε0]2
(
ω2

2 − ω2
1

)2
R6

⎫⎪⎬
⎪⎭.

(22)

Despite their intricate form, the formulas given by Eqs. (21) and (22) allow us to clearly distinguish between electrostatic,
polarization, and dispersion interactions. Indeed, the dispersion interaction energy results from the difference between the first
terms of Eqs. (19) and (20). Therefore, its contribution is proportional to the (reduced) Planck constant. Although the exact
expressions for the dispersion energy in Eqs. (21) and (22) do not allow us to explicitly eliminate the distance-independent
terms corresponding to the self-energies, all such terms cancel each other when we perform a Taylor expansion to obtain
Eqs. (23) and (24). In contrast to the dispersion energy depending on the characteristic frequencies of the interacting species,
the electrostatic and polarization contributions to �Ex, �Ey, and �Ez are fully determined by the two dipole polarizabilities, α1

and α2. The corresponding three terms in the large parentheses within the first line of Eqs. (21) and (22) are the field-induced
dipole-dipole electrostatic energy and two (symmetric) contributions to the field-induced polarization energy. The fraction in
front of these parentheses encodes a mutual self-consistent polarization of two polarizable species under the external static field.
By performing a Taylor expansion for this fraction, as we do below, one obtains an infinite series. As shown in Sec. VI, this
series can be interpreted as a sum of interaction energies of an infinite number of dipole moments induced at the two QDOs,
starting with the two initial dipoles, μ1 = α1E and μ2 = α2E , induced by the applied electric field. The physical mechanism of
the electrostatic/polarization infinite series is similar to the one known for the dispersion interaction [62]. The only difference is
that the dispersion/polarization coupling originates from the fluctuating electric dipoles instead of the static dipoles relevant for
the electrostatic/polarization series.

Taking into account that �Ey = �Ex, Eqs. (21) and (22) provide one with the complete description of the total interaction en-
ergy between two QDOs in the presence of the external field. Due to the use of the QDO model, both the electrostatic/polarization
and dispersion/polarization contributions are given by analytical formulas. However, to obtain more transparent expressions, we
perform Taylor expansions of the first fraction within the first line as well as the square roots within the second line in Eqs. (21)
and (22). These series expansions, performed below with respect to small terms proportional to α1α2/(4πε0)2R6, are related
to the following physical picture. The employed dipole approximation for the Coulomb potential implies that the separation
distance is much larger than the electronic clouds of two interacting species modeled by the QDOs. The effective radius of these
clouds can be roughly described by [α/(4πε0)]1/3. This gives us the small parameter for the expansions, α1α2/(4πε0)2R6 	 1,
and we obtain

�Ex = α1α2 E2
x

[4πε0]R3
− α1α2(α1 + α2)E2

x

2[4πε0]2R6
+ α2

1α
2
2 E2

x

[4πε0]3R9
− α2

1α
2
2 (α1 + α2)E2

x

2[4πε0]4R12

− α1α2 h̄ ω1 ω2

4[4πε0]2(ω1 + ω2)R6
− α2

1α
2
2 h̄ ω1 ω2

(
ω2

1 + 3ω1ω2 + ω2
2

)
16[4πε0]4(ω1 + ω2)3R12

+ O(1/R15) (23)

and

�Ez = − 2 α1α2 E2
z

[4πε0]R3
− 2 α1α2(α1 + α2)E2

z

[4πε0]2R6
− 8 α2

1α
2
2 E2

z

[4πε0]3R9
− 8 α2

1α
2
2 (α1 + α2)E2

z

[4πε0]4R12

− α1α2 h̄ ω1 ω2

[4πε0]2(ω1 + ω2)R6
− α2

1α
2
2 h̄ ω1 ω2

(
ω2

1 + 3ω1ω2 + ω2
2

)
[4πε0]4(ω1 + ω2)3R12

+ O(1/R15), (24)
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where we have explicitly written the terms up to R−12.
The frequency-dependent terms, within the second line of
Eqs. (23) and (24), correspond to the expansion of the disper-
sion energy which is already well known [62]. The first term
in these equations describes the electrostatic interaction of two
dipoles which are initially induced by the applied static field.
Each of these initial field-induced dipoles produces its own
electric field experienced by another QDO. In its turn, this
additional electric field from one field-induced dipole induces
a concomitant dipole on the other QDO. The energy of such
dipoles in the fields inducing them is given by the second term
of Eqs. (23) and (24) describing the field-induced polarization
interaction. The interpretation of higher-order terms in this
infinite series becomes more transparent within a semiclas-
sical approach, as we show in Sec. VI by using stochastic
electrodynamics.

The higher-order electrostatic/polarization terms shown in
Eqs. (23) and (24) will have an important role for many-body
interactions in large molecular systems [63]. However, for
the two-species system considered here, we are mainly inter-
ested in leading contributions up to ∝R−6. Therefore, for now
we neglect terms ∝R−9 and higher-order contributions. This
yields the total interaction energy between two QDOs under a
static field as

�E =α1α2
(
E2

x + E2
y − 2E2

z

)
[4πε0]R3

− α1α2(α1 + α2)
(
E2

x + E2
y + 4E2

z

)
2[4πε0]2R6

− 3 α1α2 h̄ ω1 ω2

2[4πε0]2(ω1 + ω2)R6
. (25)

An extension of this result to the case of anisotropic molecules
(see Appendix A) is straightforward following the derivation
presented in the current section. The last term in Eq. (25)
corresponds to the well-known nonretarded vdW dispersion
interaction, which is not affected by the uniform static field.
The first and second terms of Eq. (25) are field-induced elec-
trostatic and polarization interaction energies, respectively.
According to Eq. (25), the field-induced electrostatic interac-
tion can be attractive or repulsive depending on the orientation
of the external static electric field with respect to the inter-
species distance. By contrast, the field-induced polarization
and dispersion interactions are always attractive. The different
contributions to the interaction energy as well as the interplay
between them will be discussed in more detail after consider-
ation of the case of large interspecies distances in comparison
to the characteristic wavelengths of electron transitions to
excited states, R � λe.

As shown in the next section, the interaction energy given
by Eq. (25), which is an approximation to the exact result
of Eqs. (21) and (22), can be derived from the Rayleigh-
Schrödinger perturbation theory. However, before moving to
this alternative approach, let us point out a noteworthy as-
pect of the considered exact diagonalization method which
is not present for other approaches employed in our work.
The opportunity to diagonalize the Hamiltonian of Eq. (17),
as achieved in Eq. (18), implies that by using the QDO model
one can also easily capture the effect of intramolecular fields

acting on atoms in a molecule. Indeed, covalent interactions
cause charge transfer between atoms, which leads to a distri-
bution of local centers of positive and negative charge over the
molecular system. The ensuing electric fields can be regarded
as local external fields acting on atoms (see Appendixes B
and C for dissimilar local fields applied to anisotropic QDOs).
Using our exact diagonalization method, one can take into
account the effect of such fields via spatial shifts of the center
of QDOs describing atoms together with Stark shifts in atomic
energies in order to properly describe molecular polarizabili-
ties. Such a self-consistent procedure applied to an arbitrary
number of QDOs in an inhomogeneous electric field should
allow us to develop quantum-mechanical force fields that can
efficiently describe all types of intermolecular interactions in
atomic and molecular systems.

IV. PERTURBATION THEORY IN QUANTUM MECHANICS

Perturbation theory is a powerful and insightful tool in
quantum mechanics and quantum electrodynamics, in par-
ticular for the calculation of molecular interaction energies.
Within this approach, the quantum states of a system of in-
teracting atoms or molecules can be expanded on the basis
of noninteracting states, and the interaction potentials are
obtained as corrections to the total energy of noninteract-
ing species. The application of perturbation theory requires
the states of the unperturbed system to form a complete
basis set. Since a QDO in a static electric field is an ex-
actly solvable quantum-mechanical problem, we apply the
Rayleigh-Schrödinger perturbation theory considering a sys-
tem of two noninteracting QDOs in an external field as the
unperturbed system. Then, the Coulomb interaction between
the two QDOs plays the role of a perturbing potential. As-
suming that the two QDOs are placed along the z axis and
separated by a distance R, the total Hamiltonian can be written
as H = H0 + Vint , where Vint in the dipole approximation is
given by Eq. (3), and the Hamiltonian of the unperturbed
system reads

H0 =
2∑

i=1

H (0)
i =

2∑
i=1

(
p2

i

2mi
+ 1

2
miω

2
i r2

i − qiri · E
)

. (26)

To obtain the eigenstates and eigenvalues of H (0)
i , we di-

agonalize it by means of the auxiliary transformation r =
r′ + qE/mω2 giving us the auxiliary Hamiltonian

H ′(0)
i = p′2

i

2mi
+ 1

2
miω

2
i r′2

i − 1

2
αE2, (27)

where we have pi
′ = pi. This Hamiltonian corresponds to a

quantum harmonic oscillator with energy levels shifted by
−αE2/2 due to the Stark effect and the well-known wave
functions [64], which we denote here by φn(r′). Thus, one can
straightforwardly see that the eigenstates and eigenvalues of
each unperturbed Hamiltonian H (0)

i in the actual coordinates
ri are given by

ψ{nx,ny,nz}(ri ) = φ{nx,ny,nz}

(
ri − qE

mω2

)
, (28a)

E{nx,ny,nz} = h̄ω

(
nx + ny + nz + 3

2

)
− 1

2
αE2. (28b)
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Throughout our discussion below, we refer to the two
QDOs with Hamiltonians H (0)

1 and H (0)
2 and the shifted wave

functions and energy eigenvalues as unperturbed QDOs. Us-
ing the wave functions of Eq. (28), one can calculate matrix
elements of the electric dipole operator, μ = q r . For the x
component of the dipole moment, we have

〈 j|μx|i〉 = q〈 j (0)|x|i(0)〉 + 〈 j (0)|q2Ex

mω2
|i(0)〉

= q

√
h̄

2mω

[√
j δ j,i+1 +

√
j + 1 δ j,i−1

] + α Ex δi, j,

(29)

where 〈x|i〉 = ψi(x) and 〈x|i(0)〉 = φi(x), with ψ and φ in-
troduced in Eq. (28). The y and z components of the dipole
moment can be obtained similarly.

Having the eigenstates and eigenvalues of H (0)
i , the wave

functions of H0 in Eq. (26) can be written as product states
�(r1, r2) = ψ (r1)ψ (r2). In what follows, we calculate the
energy shifts due to the Coulomb coupling between the two
QDOs up to the second-order correction using the matrix
elements of the atomic dipole moments given by Eq. (29).

From the first-order perturbation, the energy shift is

�E (1) = 2〈0, 0, 0| 1〈0, 0, 0|Vint |0, 0, 0〉1 |0, 0, 0〉2

= q2
1q2

2

(
E2

x + E2
y − 2E2

z

)
[4πε0]m1m2ω

2
1ω

2
2R3

= α1α2
(
E2

x + E2
y − 2E2

z

)
[4πε0]R3

,

(30)

where 〈r|nx, ny, nz〉 = ψ{nx,ny,nz}(r) and 〈nx, ny, nz|r〉 is its
complex conjugate. Equation (30) is the same expression as
the first term of Eq. (25). To calculate the energy shift from
the second-order perturbation,

�E (2) =
∑
I �=0

〈0|Vint|I〉〈I|Vint|0〉
E0 − EI

, (31)

we consider two cases regarding the states of unperturbed
QDOs in the intermediate ket state |I〉:

Case (i): one of the QDOs is in its excited state, whereas
the other one is in its ground state.

Case (ii): both QDOs are in their excited states.
In the first case, at any instant of time, the field-induced

static dipole moment of just one of the atoms is involved in
the interaction process between them, which yields the energy
shift

�E (2)
1 = −

∑
n �=0

[2〈0| 1〈0| q1q2(r1 · r2 − 3z1z2) |n〉1 |0〉2]2

[4πε0]2R6 h̄ω1(nx + ny + nz )

−
∑
m �=0

[2〈0| 1〈0| q1q2(r1 · r2 − 3z1z2) |0〉1 |m〉2]2

[4πε0]2R6 h̄ω2(mx + my + mz )

= − α1α2(α1 + α2)
(
E2

x + E2
y + 4E2

z

)
2[4πε0]2R6

, (32)

where |n〉 = |nx, ny, nz〉, and n �= 0 means {nx, ny, nz} �=
{0, 0, 0}. The interaction energy obtained in Eq. (32) is the
same as the second term of Eq. (25). In the second case,
where for each transition of the total system both QDOs are
excited, the field-induced dipole moments do not contribute

to the interaction. Therefore, Eq. (31) yields the well-known
dispersion energy

�E (2)
disp = −

∑
n,m �=0

[2〈0| 1〈0| q1q2(r1 · r2 − 3z1z2) |n〉1 |m〉2]2

[4πε0]2R6 (En0 + Em0)

= − 3h̄ω1ω2α1α2

2[4πε0]2(ω1 + ω2)R6
, (33)

where we used the relations En0 = h̄ω1(nx + ny + nz ) and
Em0 = h̄ω2(mx + my + mz ). The energy shift of Eq. (33) is the
same as the third term of the nonretarded interaction energy
given by Eq. (25).

Although the results obtained from the perturbation theory
are approximate, they deliver all the leading contributions
to the interaction energy. Moreover, this approach is more
intuitive compared with the exact solution of the Schrödinger
equation in terms of distinguishing the dipole moments in-
volved in each contribution to the interaction energy between
atoms/molecules. On the other hand, the diagonalization of
the Hamiltonian in Eq. (18) provides one with a more com-
plete description of the effects of self-consistent electric fields.

In summary, the Rayleigh-Schrödinger perturbation theory
considered in this section allowed us to confirm the leading-
order results obtained from exact diagonalization as coming
from the first two orders of perturbation theory for two dipole-
coupled QDOs. So far, all the derived energy terms correspond
to the nonretarded regime of the interaction. However, for
large interatomic separations in comparison to characteristic
wavelengths of atomic transitions, the effect of retardation has
to be taken into account. This implies that interactions are
no longer instantaneous. This task can be accomplished by
making use of a field-theoretical formalism, where the inter-
action between atoms occurs via exchanging photons. In the
next section, we employ perturbation theory in the framework
of microscopic QED to investigate the effect of retardation
on the interactions that were obtained so far in Secs. III
and VI.

V. PERTURBATION THEORY IN MICROSCOPIC
QUANTUM ELECTRODYNAMICS

Within the multipolar-coupling formalism of QED, in-
teractions between atoms occur through their coupling to
the fluctuating vacuum radiation field via their electric
dipole/multipole moments, whereas any direct instantaneous
coupling between atoms is eliminated. Therefore, for a sys-
tem of two QDOs in the presence of the vacuum radiation
field as well as the external static electric field E , the total
Hamiltonian consists of the Hamiltonians of noninteracting
QDOs and fields plus field-QDO coupling terms. Similar to
the derivation performed in the previous section, we consider
the total unperturbed system as the system of two noninter-
acting QDOs that are already coupled to the external field
via their electric dipole moments. However, in contrast to the
QM framework, here the perturbation occurs solely due to the
coupling of the QDOs to the vacuum radiation field. Thus,
in the total Hamiltonian, H = H (0) + Hint , the Hamiltonian of
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the unperturbed system reads

H (0) = Hrad + H (0)
1 + H (0)

2

= Hrad +
∑
i=1,2

[
p2

i

2m
+ 1

2
mω2r2

i − μi · E
]
, (34)

where μi = qiri is the electric dipole moment operator of the
ith QDO, and H (0)

i is the Hamiltonian of an unperturbed QDO,
i.e., a QDO in the external field, with the eigenfunctions and
energy eigenvalues given by Eqs. (28). The perturbation is
given by

Hint = − 1

ε0
μ1 · D⊥(r1) − 1

ε0
μ2 · D⊥(r2), (35)

where D⊥ is the transverse component of the vacuum dis-
placement radiation field

D⊥(r) = i
∑
k,λ

√
h̄ckε0

2V
(êkλakλeik·r − ¯̂ekλa†

kλ
e−ik·r). (36)

Here, akλ and a†
kλ

are annihilation and creation operators of
a vacuum-field mode with the wave vector k and electric
polarization vectors êkλ and ¯̂ekλ, respectively. They obey the
bosonic commutation relations

[akλ, a†
k′λ′] = δkk′δλλ′ , [akλ, ak′λ′] = [a†

kλ
, a†

k′λ′] = 0. (37)

The ground-state ket vector of the total unperturbed system
is given by the product state

|0〉 = |0, 0, 0〉1 |0, 0, 0〉2 |{0}〉, (38)

where |{0}〉 is the ground state of the vacuum radiation field
and 〈ri|0, 0, 0〉i = ψ{0,0,0}(ri ) with ψ (r) given by Eq. (28a).
The excited states of the total unperturbed system can be
defined similarly. Then, making use of these states and
the matrix elements of dipole moments, we perform QED
perturbation-theory derivation, in order to obtain the interac-
tion energy for the two QDOs, as consisting of contributions
from different orders of corrections to the total energy of the
unperturbed system.

The first and the third orders of perturbation provide van-
ishing contributions because of the creation and annihilation
operators of the radiation field sandwiched between two iden-
tical states of the vacuum, |{0}〉.

The nonvanishing terms from the second order,

E (2) =
∑
I �=0

〈0|Hint|I〉〈I|Hint|0〉
E0 − EI

, (39)

arise when the radiation field is excited with a single photon
in the intermediate state |I〉. For the atomic part of |I〉, there
are two possibilities that result in nonvanishing energy shifts
which we consider separately: (i) both unperturbed QDOs are
in their ground states, or (ii) one of them is excited, whereas
the other one is in its ground state. In the former case, where
the intermediate state |I〉 is defined as |0, 0, 0〉1|0, 0, 0〉2|1kλ〉,
the interaction between the atoms happens in two steps. First,
one of the atoms interacts with the radiation field via its
static field-induced dipole and emits a photon. Hence, the total
system, which was initially in its ground state, is promoted
to the excited state |I〉. At the second step, the other atom

FIG. 2. Two Feynman diagrams correspond to the coupling be-
tween static field-induced dipole moments of atoms and the vacuum
field. The vertical solid lines are universal time lines.

similarly interacts with the radiation field via its static field-
induced dipole and absorbs the photon that was emitted at
the first step. The second transition brings the total system
back to the ground state. This procedure is equivalent to a
sum over two distinct Feynman diagrams illustrated in Fig. 2.
They look similar to the diagrams corresponding to the in-
teraction between molecules with permanent electric dipole
moments [28]. The similarity suggests that the interaction
energy stemming from the described mechanism corresponds
to electrostatic interactions. This point as well as the origin
of other contributions to the total interaction energy will be
discussed in more detail within the next section, based on a
transparent physical picture of the interactions provided by
stochastic electrodynamics.

The sum in Eq. (39) after removing self-energies, �E (2) =
E (2)(R) − E (2)(∞), reduces to

�E (2) = −
∑
kλ

EiE je
(i)
kλ

e( j)
kλ

2V ε0
[2α1α2 cos(kzR)], (40)

where the repeated indices i and j imply summation over
Cartesian components, {i, j} = {x, y, z}. Replacing the sum
over k with a 3D integral,

∑ → V
8π3

∫
, and summing over

polarization of the radiation field yields the interaction energy

�E (2) = − α1α2

8π3ε0
EiE j

∫
d3k cos(kzR)(δi j − k̂ik̂ j ), (41)

with k̂i = ki/k. Transforming this integral to the spherical
coordinate system and performing angular integration using
the relation∫∫

(δi j − k̂ik̂ j )e
±ik·R sin θdθ dϕ = 4π Im[Fi j (kR)], (42)

with

Fi j (kR) =
[

(δi j − R̂iR̂ j )
1

kR

+ (δi j − 3R̂iR̂ j )

(
i

k2R2
− 1

k3R3

)]
eikR, (43)

we arrive at

�E (2) = − α1α2

8π3ε0
EiE j

∫ ∞

0
k2

[
(δi j − R̂iR̂ j )

sin(kR)

kR

+ (δi j − 3R̂iR̂ j )

(
cos(kR)

k2R2
− sin(kR)

k3R3

)]
dk. (44)
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Carrying out the remaining integral, and keeping in mind that
R = Rẑ, we obtain the interaction energy

�E (2) = α1α2
(
E2

x + E2
y − 2E2

z

)
4πε0 R3

, (45)

as valid for any range of interatomic separation, R. The above
expression reproduces the first term in Eq. (25) and hence
is not affected by retardation. Since in this case both atoms
are coupled to the vacuum field via their static field-induced
dipoles, with the R−3 distance dependence of the interaction
energy given by Eq. (45), we call this contribution a field-
induced electrostatic interaction.

For the second case, the intermediate state |I〉 corresponds
to the situation when one of the QDOs is excited and the
other one is in its ground state. For each transition of the total
system to its excited state, one of the atoms emits a photon
and then absorbs it by itself in the next downward transition,
when the total system goes back to its ground state. Thus, for
such a series of transitions, there is no exchange of photons

and hence no interaction between the atoms. Equation (45)
confirms our conclusion from the diagrams of Fig. 2. Since,
in the absence of the external field, there are no field-induced
dipoles, the interaction energy, �E (2), vanishes similar to the
case when the interaction occurs between molecules with no
permanent electric dipoles. The power of the QDO model
is that the effect of a static electric field clearly manifests
as a shift in the center of oscillations of the Drude particle,
which can be understood as a static polarization of the atom
or molecule.

The third case, corresponding to the intermediate state
|I〉 where both QDOs are excited, delivers only vanishing
contributions due to the form of the interaction Hamiltonian
given by Eq. (35), which does not contain any direct coupling
between the two oscillators. If both QDOs are simultaneously
excited within the intermediate state |I〉, the resulting matrix
element vanishes due to the orthogonality of the eigenstates
of the oscillators,

〈0|Hint|I〉 = −ε−1
0 〈{0}|2〈0|1〈0|[μ1 · D⊥(r1) + μ2 · D⊥(r2)]|n〉1|m〉2|1kλ〉

= −ε−1
0 [1〈0|μ1|n〉1 2〈0|m〉2] · 〈{0}|D⊥(r1)|1kλ〉 − ε−1

0 [1〈0|n〉1 2〈0|μ2|m〉2] · 〈{0}|D⊥(r2)|1kλ〉 = 0 , (46)

which gives no contributions to the interaction energy.
The next nonvanishing contribution to the interaction energy arises from the fourth-order perturbation theory [28],

E (4) = −
∑

I,II,III �=0

〈0|Hint|III〉〈III|Hint|II〉〈II|Hint|I〉〈I|Hint|0〉
(EI − E0)(EII − E0)(EIII − E0)

+
∑

I,II �=0

〈0|Hint|II〉〈II|Hint|0〉〈0|Hint|I〉〈I|Hint|0〉
(EI − E0)2(EII − E0)

. (47)

In the absence of the external field, similar to nonpolar
molecules possessing no permanent dipole moments, the sec-
ond term of Eq. (47) does not contribute to the interaction
energy. The first term contributes to �E (4) only from sum-
ming over those combinations of intermediate states |I〉, |II〉,
and |III〉 that satisfy certain conditions, which are explained
in the following. In the intermediate states |I〉 and |III〉, the
field must be in a single-photon excited state, while one of
the atoms is excited and the other is in its ground state. Then
for |II〉 there are three possibilities that may result in finite
contributions to the interaction energy: (i) the vacuum field is
in a two-photon excitation state and both atoms are excited;
(ii) the field is in a two-photon excitation state while both
atoms are in their ground states; or (iii) the field is in its ground
state while both atoms are excited. Among all the possible
combinations of such intermediate states, those that involve
exchange of two virtual photons between the atoms lead to the
dispersion interaction [28,32,33]. Within this picture, the in-
teraction between the two atoms occurs through the coupling
of their fluctuating electric dipole moments to the vacuum
field.

In the presence of the external electric field, E , atoms
become polarized possessing static field-induced dipole mo-
ments, μ = αE . Therefore, the coupling of atoms to the
vacuum field may also happen through their static dipole
moments, in addition to their fluctuating dipole moments. This
additional possibility results in further contributions to the
interaction energy. In what follows, we discuss such contribu-
tions by evaluating them from the first and the second terms

of Eq. (47). This task is performed for three separate cases,
listed in Table I, depending on the atomic behavior in the
intermediate states |I〉, |II〉, and |III〉.

Case (c1) is similar to the situation of nonpolar species, as
was already discussed above. Therefore, the resulting interac-
tion energy in this case should be the same as the dispersion
energy of two coupled nonpolar atoms in the absence of any
external field. The calculation of this energy shift follows the
standard procedure presented in Refs. [28,32]. As explained
there, the dispersion interaction between two atoms arises due
to the exchange of a pair of virtual photons. For instance, such
an exchange may happen through the following steps:

(i) Atom A goes to an excited state |a〉 and emits a vir-
tual photon 1kλ, while atom B remains in its ground state:
|0A, 0B, {0} f 〉 −→ |aA, 0B, {1kλ} f 〉.

(ii) Atom A gets deexcited and emits another photon, 1k′λ′ ,
but atom B is still in its ground state:

|aA, 0B, {1kλ} f 〉 −→ |0A, 0B, {1kλ, 1k′λ′ } f 〉.

TABLE I. Atomic behavior in the intermediate states, which
appear within the fourth-order perturbation theory, Eq. (47).

Case Atomic transitions in virtual states

(c1) Both atoms do transitions
(c2) One of the atoms remains in the ground

state, the other atom does transitions
(c3) Neither of the two atoms does transitions
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FIG. 3. An example of exchange of two virtual photons between
two atoms A and B.

(iii) Atom B absorbs one of the photons and tran-
sits to an excited state |b〉, while A remains unchanged:
|0A, 0B, {1kλ, 1k′λ′ } f 〉 −→ |0A, bB, {1k′λ′ } f 〉.

(iv) Atom B absorbs the other photon and goes back to its
ground state, while A remains unchanged:

|0A, bB, {1k′λ′ } f 〉 −→ |0A, 0B, {0} f 〉.
This four-step procedure is illustrated in Fig. 3. In total,

there are 12 distinct diagrams representing all possible com-
binations of atomic and field states. They correspond to the
exchange of a pair of virtual photons between the two atoms,
as shown in Fig. 4. All 12 diagrams give the same numerators
in the first term of Eq. (47) but different denominators (see
Table II).

Summing over all these terms, as well as performing sum-
mations and integrals over all atomic states and modes of the
vacuum field, yields the well-known London and Casimir-
Polder dispersion energy [28,32],

�E (4)
1 = �EL = − 3α1α2 ω1ω2h̄

2[4πε0]2(ω1 + ω2)R6
, (48a)

�E (4)
1 = �ECP = − 23h̄c α1α2

[4πε0]24πR7
, (48b)

for nonretarded and retarded regimes, respectively. As men-
tioned above, the second term in Eq. (47) does not contribute
to the interaction energy in case (c1).

In case (c2) of Table I, one of the atoms is coupled to
the vacuum field via its static field-induced dipole, while the
other atom may couple to the vacuum field via its fluctuating
dipole moment. However, for the interaction between two
atoms, they should exchange a pair of virtual photons. Hence,
the interactions should be described by the same diagrams as
shown in Fig. 4. The denominators of the first term in Eq. (47)
corresponding to the 12 diagrams are almost the same as
those given in Table II. The only difference is that the atomic
transition energy must be replaced with zero for the atom

FIG. 4. The 12 diagrams contributing to the first term of the
fourth-order energy correction given by Eq. (47). This figure follows
Fig. 7.5 of Ref. [28].

TABLE II. Denominators of the first term in Eq. (47) related to
the diagrams of Fig. 4. Our table follows Table 7.1 of Ref. [28]. Ea0 =
Ea − E0 and Eb0 = Eb − E0 denote excitation energies of atoms A
and B to their excited states |a〉 and |b〉, respectively.

Diagram Denominator

(i) (Eb0 + h̄ck)(h̄ck + h̄ck′)(Ea0 + h̄ck′)
(ii) (Eb0 + h̄ck′)(h̄ck + h̄ck′)(Ea0 + h̄ck′)
(iii) (Eb0 + h̄ck)(Ea0 + Eb0 )(Ea0 + h̄ck′)
(iv) (Eb0 + h̄ck)(Ea0 + Eb0 )(Eb0 + h̄ck′)
(v) (Eb0 + h̄ck′)(Ea0 + Eb0 + h̄ck + h̄ck′)(Ea0 + h̄ck′)
(vi) (Eb0 + h̄ck′)(Ea0 + Eb0 + h̄ck + h̄ck′)(Eb0 + h̄ck)
(vii) (Ea0 + h̄ck)(h̄ck + h̄ck′)(Eb0 + h̄ck′)
(viii) (Ea0 + h̄ck)(h̄ck + h̄ck′)(Eb0 + h̄ck)
(ix) (Ea0 + h̄ck)(Ea0 + Eb0)(Eb0 + h̄ck′)
(x) (Ea0 + h̄ck)(Ea0 + Eb0 )(Ea0 + h̄ck′)
(xi) (Ea0 + h̄ck)(Ea0 + Eb0 + h̄ck + h̄ck′)(Eb0 + h̄ck)
(xii) (Ea0 + h̄ck)(Ea0 + Eb0 + h̄ck + h̄ck′)(Ea0 + h̄ck′)
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that is coupled to the vacuum field via its field-induced dipole
moment and does not undergo any transition (h̄cka0 = 0 or
h̄ckb0 = 0). Therefore, in case (c2) the fourth-order interac-
tion energy is given by the sum of two energy shifts, �E (4)

2 =

∑2
n=1[�E (4)

2 ]n, where n denotes the atom that remains in its
ground state during the interaction. Evaluating the numerator
and denominator of the first term in Eq. (47) for each diagram
and summing over all 12 diagrams yields

[
�E (4)

2

]
1 = − α2

1EiE j

V 2ε2
0 h̄c

∑
k,k′

∑
λ,λ′

∑
b

ê(i)
kλ

¯̂e(i′ )
kλ

ê( j)
k′λ′ ¯̂e( j′ )

k′λ′
μ0b

i′ μb0
j′

kb0

(
1

k + k′ − 1

k − k′

)
k′ei(k+k′ )·R

= − α2
1EiE j

64π6ε2
0 h̄c

∑
b

μ0b
i′ μb0

j′

kb0

∫∫
k′(δii′ − kiki′ )(δ j j′ − k′

jk
′
j′ )e

i(k+k′ )·R
(

1

k + k′ − 1

k − k′

)
d3k d3k′, (49)

where {i, j, i′, j′} = {x, y, z}, and sums over repeated indices are implied. The sum
∑

b runs over all atomic states of the second
atom with h̄ckb0 = Eb − E0. Here, to move from the right-hand side (r.h.s.) of the first equality to the r.h.s. of the second
equality, we performed summations over the vacuum-field polarization and replaced sums over k and k′ with the related integrals.
By transforming the latter to spherical coordinates, performing angular integration, and evaluating the integral over k′, as in
Refs. [28,32], the energy shift [�E (4)

2 ]1 becomes

[
�E (4)

2

]
1 = − 1

4π3ε2
0

α2
1EiE j

(∑
b

μ0b
i′ μb0

j′

h̄ckb0

) ∫ ∞

0
k5Re[Fj j′ (kR)]Im[Fii′ (kR)] dk. (50)

Considering Eq. (29), one can show that only the first three excited states (|100〉, |010〉, and |001〉) of the second QDO
contribute to the sum over atomic states. Then, using the result of Eq. (29), we have

[
�E (4)

2

]
1 = −1

4π3ε2
0

⎧⎨
⎩α2

1

(
E2

x + E2
y

)
h̄ω2

(
q2

√
h̄

2m2ω2

)2 ∫ ∞

0
k5

[
sin(2kR)

2k2R2
+ cos(2kR)

k3R3
− 3 sin(2kR)

2k4R4
− cos(2kR)

k5R5
+ sin(2kR)

2k6R6

]
dk

+α2
1E2

z

h̄ω2

(
q2

√
h̄

2m2ω2

)2 ∫ ∞

0
k5

[
−2 sin(2kR)

k4R4
− 4 cos(2kR)

k5R5
+ 2 sin(2kR)

k6R6

]
dk

⎫⎬
⎭ = −α2

1α2
(
E2

x + E2
y + 4E2

z

)
2[4πε0]2R6

.

(51)

Here, the QDOs are assumed to be isotropic, and the integrals
are taken using standard integration techniques without any
specific assumption about R, which makes Eq. (51) valid
for any range of interatomic separation. The term [�E (4)

2 ]2

can be similarly obtained. In case (c2), the second term of
Eq. (47) does not contribute to the interaction energy between
the QDOs since the resulting energy shift has no distance-
dependent part. Therefore, the total energy shift from case
(c2) is given by

�E (4)
2 = −α1α2(α1 + α2)

(
E2

x + E2
y + 4E2

z

)
2[4πε0]2R6

, (52)

which is the same as the second term of Eq. (25). Since this
interaction results from the coupling of the two atoms to the
vacuum field, one by its static field-induced dipole moment
and the other one by its fluctuating dipole moment, it is ap-
parent that this term corresponds to polarization (induction)
interactions. However, here the static dipoles are initially in-
duced by the applied static electric field. Hence, we relate
the energy given by Eq. (52) to a field-induced polarization
interaction.

In case (c3) of Table I, each of the two terms of Eq. (47)
provides contributions to the interaction energy. Among the 12
diagrams of Fig. 4, four of them (iii, iv, ix, and x) contribute
to the second term. The other eight diagrams contribute to

the first term of Eq. (47). They correspond to expressions
with similar numerators but different denominators. Denoting
the latter by Dn, there are three distinct cases for the eight
diagrams:

Di = Dvi = Dvii = Dxii = h̄3c3kk′(k + k′),

Dii = Dv = h̄3c3k′2(k + k′), Dviii = Dxi = h̄3c3k2(k + k′).
(53)

Summing over the inverse of these denominators yields

∑
n

1

Dn
= 2(k + k′)

h̄3c3k2k′2 . (54)

Therefore, for the first term of the fourth-order energy cor-
rection, after carrying out the sum over the radiation field
polarization and replacing the sums over the wave vectors
with integrals, we have

[
�E (4)

3

]
1 = − α2

1α
2
2 EiE jEi′E j′

(2π )6 2ε2
0 h̄c

∫∫
d3k d3k′

[
k + k′

k k′

× (δii′ − k̂ik̂i′ )e
ik·R (δ j j′ − k̂′

j k̂
′
j′ )e

ik′ ·R
]
. (55)

Similar to the previous cases, transforming the integrals to the
spherical coordinate system and taking the angular integrals
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using Eqs. (42) and (43) gives us

[
�E (4)

3

]
1 = − α2

1α
2
2 EiE jEi′E j′

8π4 ε2
0 h̄c

∫∫
kk′(k + k′)

× Im[Fii′ (kR)]Im[Fj j′ (k
′R)] dkdk′. (56)

Then, the integration over k′ results in

[
�E (4)

3

]
1 = − α2

1α
2
2 EiE jEi′E j′

8π4 ε2
0 h̄c

∫ ∞

0

{
k Im[Fii′ (kR)]

×
(

2R̂ j R̂ j′
k

R2
− (δ j j′ − 3R̂ j R̂ j′ )

π

2R3

)}
dk.

(57)

In addition, the k-integral can be taken on making use of ele-
mentary integration techniques with no need for any specific
assumption about the range of R. When replacing R by Rz ẑ,
we obtain

[
�E (4)

3

]
1 = +4α2

1α
2
2 E2

z

(
E2

x + E2
y − 2E2

z

)
[4πε0]2 (h̄cπ ) R5

. (58)

The remaining four diagrams (iii, iv, ix, and x) contribute
equally to the energy shift [�E (4)

3 ]2 resulting from the second
term of Eq. (47). Performing steps similar to our derivation
of [�E (4)

3 ]1, one can obtain [�E (4)
3 ]2. The two terms turn out

to be [�E (4)
3 ]2 = −[�E (4)

3 ]1, which consequently give no net
contribution to the total interaction energy between the atoms
when both are coupled to the radiation field via their static
field-induced dipole moments. Thus, the interaction energies
given by Eqs. (48) and (52) are the leading terms from the
fourth-order perturbation theory.

The fact that the interaction energies of Eqs. (45) and (52)
are not affected by the retardation might seem to be surprising
at first glance. However, once the origin of these interactions
is identified, their static behavior becomes understandable.
Within the next section, we perform a derivation in the
framework of stochastic electrodynamics, and we identify the
origin of each contribution to the interaction energy obtained
thus far.

VI. STOCHASTIC ELECTRODYNAMICS

Finally, we employ a semiclassical approach, mainly devel-
oped by Boyer [45–48], to derive the interaction energy from
classical electrodynamics with a classical random electro-
magnetic zero-point radiation field. Within this approach, the
random radiation field, which is a classical equivalent of the
vacuum fluctuating radiation field in QED, polarizes atoms.
Then the induced random polarizations of nearby atoms inter-
act through their electromagnetic fields obeying principles of
classical electrodynamics. Here, we restrict our consideration
to the retarded regime, where for large interatomic distances
only low frequencies (large wavelengths) significantly con-
tribute to the retarded interactions. The nonretarded case can
be similarly considered following Ref. [47]. The stochastic
electrodynamics approach permits a straightforward identifi-
cation of the different interaction terms with the electric fields
that cause them, providing a minimal model to understand the
origin of molecular interactions.

Let us consider a classical dipole oscillator with charge q,
mass m, and characteristic frequency ω. These parameters are
again to be determined by the conditions of Eq. (1). In an
electric field E(r, t ), the equation of motion of such a classical
counterpart of the QDO is given by [46]

m
d2r
dt2

= −mω2r + qE(r, t ) + τ
d3r
dt3

, (59)

where the last term corresponds to the radiation reaction. For
each mode of the electric field E with frequency �, the above
equation reduces to

−m�2r = −mω2r2 + qE�(r, t ) + iτ�3r. (60)

Here, being interested in the retarded regime (large separation
distances), we can assume that only modes with low fre-
quencies contribute to the coupling between the two species.
As discussed in Refs. [46,48], this assumption is valid since
electromagnetic waves with large � (short wavelengths) have
destructive interference with the waves of adjacent frequen-
cies due to slight phase shifts acquired at large distances. This
effect of mutual cancellations for high-frequency modes leads
to a situation when only waves with large wavelengths (com-
pared to the separation distance) contribute to the interaction
between the two species. Therefore, one can assume that the
terms ∝ ω2 and ω3 are much smaller than the two other terms
in Eq. (60). By neglecting such small terms for all modes of
the field E(r, t ), Eq. (59) reduces to

mω2r = qE(r, t ). (61)

Now replacing q2/mω2 with the static polarizability, α, we ob-
tain the oscillator dipole as μ ≡ q r = αE(r, t ), where E(r, t )
is the total electric field at its position.

The energy of an electric dipole moment induced by an
electric field in the same field is known from classical elec-
trodynamics as given by E = − 1

2α〈E2〉, where the brackets
indicate time-averaging. Here, we apply a static uniform elec-
tric field on top of the random zero-point radiation field.
Consequently, the induced polarization of an oscillator has
two parts each corresponding to one of the fields. We assume
that the first oscillator is located at the origin, r1 = (0, 0, 0),
and we bring the second oscillator to the point r2 = (0, 0, R)
on the z axis from its initial position (0, 0,+∞). The energy
difference of the total system in these two configurations,
�E (R) = E (R) − E (∞), is the interaction energy that we are
looking for. The total electric field at the position of the second
oscillator is a vector sum of the four fields,

E(r2, t ) = E0(r2, t ) + Eμ1 (r2, t ) + Eμ1 (r2) + E . (62)

Here, the letters E and E denote the electrostatic and radiation
fields, respectively, where E0(r2, t ) is the random zero-point
radiation field defined by [37]

E0(r, t ) = Re
2∑

λ=1

∫
d3k

ε(k, λ)h(k, λ)√
4πε0

ei[k·r−�t+θ (k,λ)]. (63)

For each mode of the field, h2 is the energy associated with
that mode [h2(k, λ) = h̄ �/2π2], θ (k, λ) is a random phase
ranging from 0 to 2π , ε(k, λ) are orthogonal polarization
unit vectors with ε(k, λ) · ε(k′, λ′) = δλλ′ , and the sum runs
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over two possible polarizations. Then, Eμ1 (r2, t ) is a time-
dependent field radiated from the oscillating dipole of the
first oscillator induced by the zero-point radiation field. By
analogy, Eμ1 (r2) is the electric field of the static dipole of
the first oscillator induced by the uniform electric field E .
The electric fields of static and oscillating dipole moments are
given by [65]

Eμ(r) = 1

4πε0

3n(μ · n) − μ

r3
(64)

and

Eμ(r, t ) = Re

[(
k2(n × μ) × n

4πε0 r
+ Eμ(r)(1 − ikr)

)
eikr

]
,

(65)
respectively. Thus, the electromagnetic energy of the second
oscillator, located at r2 = (0, 0, R) and possessing a static po-
larizability α2, in the presence of the total electric field given
by Eq. (62), can be obtained in the lowest order of coupling as

E2(R) = −1

2
α2〈E2(R, t )〉

= −α2

2

〈[
E0(R, t ) + Eμ1 (R, t ) + Eμ1 (R) + E

]2〉
.

(66)

After subtracting the oscillator self-energy at R → +∞ from
Eq. (66), we arrive at

�E2 = − α2
[〈
E · Eμ1 (R)

〉 + 1
2

〈
Eμ1 (R) · Eμ1 (R)

〉
+ 〈

E0(R, t ) · Eμ1 (R, t )
〉 + 〈

E · Eμ1 (R, t )
〉

+ 〈
E · E0(R, t )

〉 + 〈
Eμ1 (R) · Eμ1 (R, t )

〉
+ 〈

Eμ1 (R) · E0(R, t )
〉]
. (67)

First, we perform averaging over time and random phase
by making use of the following relations:

〈cos[−� t + θkλ]〉 = 〈sin[−� t + θkλ]〉 = 0,

〈sin[−� t + θkλ] cos[−�′t + θk′λ′]〉 = 0,

〈cos[−� t + θkλ] cos[−�′t + θk′λ′]〉 = 1
2 δλλ′ δkk′ ,

〈sin[−� t + θkλ] sin[−�′t + θk′λ′]〉 = 1
2 δλλ′ δkk′ , (68)

where θkλ is the shorthand for θ (k, λ). Considering the rela-
tions of Eq. (68), one can see that only the first three terms
of Eq. (67) contribute to the interaction energy, and the four
other terms are vanishing. Hence, we have

�E2 = −α2
[〈
E · Eμ1 (R)

〉 + 1
2

〈
Eμ1 (R) · Eμ1 (R)

〉
+ 〈

E0(R, t ) · Eμ1 (R, t )
〉]
. (69)

The first term of Eq. (69) corresponds to the coupling of an
electric dipole of the second oscillator induced by the uniform
electric field with the static field of the first oscillator, as given
by Eq. (64). The time and phase averaging for this term yields

�E (1)
2 = −α2E ·

[
3ẑ(α1E · ẑ) − α1E

[4πε0]R3

]

= α1α2
(
E2

x + E2
y − 2E2

z

)
[4πε0]R3

. (70)

For the second term of Eq. (69), where the static dipole
moment of one atom, induced by the electric field of the static
dipole moment of the other atom, interacts with the same field,
we have

�E (2)
2 = −1

2

[
α2

3ẑ(α1E · ẑ) − α1E
[4πε0]R3

]
·
[

3ẑ(α1E · ẑ) − α1E
[4πε0]R3

]

= −α2
1α2

(
E2

x + E2
y + 4E2

z

)
2[4πε0]2R6

. (71)

The third term of Eq. (69) describes the interaction en-
ergy of two randomly oscillating electric dipoles, which
are induced at the corresponding two species by the ran-
dom zero-point radiation field. Using Eqs. (63) and (65) for
E0(R, t ) and Eμ1 (R, t ), respectively, we obtain

�E3 = − α1α2

[4πε0]2

〈
2∑

λ=1

2∑
λ′=1

∫∫
d3k d3k′ h(k, λ)h(k′, λ′) cos[k′

zR − �′t + θ (k′, λ′)]

×
[
ε(k′, λ′) · ε(k, λ)

(
k2

R
cos[kR − � t + θ (k, λ)] − k

R2
sin[kR − � t + θ (k, λ)] − 1

R3
cos[kR − � t + θ (k, λ)]

)

−εz(k′, λ′) · εz(k, λ)

(
k2

R
cos[kR − � t + θ (k, λ)] − 3k

R2
sin[kR − � t + θ (k, λ)] − 3

R3
cos[kR − � t + θ (k, λ)]

)]〉
,

(72)

which is the same as Eq. (27) of Ref. [46]. Taking the same mathematical steps as those of Refs. [45,46], we arrive at

�E (3)
2 = − 23h̄c

[4πε0]2

α1α2

4πR7
, (73)

which is the well-known retarded dispersion interaction. Altogether, this gives us the total interaction energy

�E (R) = α1α2
(
E2

x + E2
y − 2E2

z

)
[4πε0]R3

−
(
α2

1α2 + α2
2α1

)(
E2

x + E2
y + 4E2

z

)
2[4πε0]2R6

− 23h̄c

[4πε0]2

α1α2

4πR7
, (74)
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FIG. 5. The hierarchy of dipole moments induced by different
electric fields is shown for each species: μ(0)

i are the initial dipoles
induced by the external field; μ

(1)
i are the dipoles induced by the

electric fields of the dipoles μ(0)
i ; μ(2)

i are the dipoles induced by the
fields of the dipoles μ(1)

i ; and so on.

where the counterpart of Eq. (71), obtained by exchanging α1

and α2, is already added as well.
A remarkable advantage of stochastic electrodynamics is

that the origins of all contributions to the total interaction
energy can be easily understood from a (semi)classical point
of view. Let us interpret our results based on Eqs. (69) and
(74). The first term of Eq. (74) is identical to its counterpart
in Eq. (25) as well as to Eqs. (30) and (45), and it is the inter-
action energy of the two static electric dipoles induced by the
external field. Therefore, we call it field-induced electrostatic
interaction. The second term of Eq. (74) is identical to its
counterpart in Eq. (25) as well as to Eqs. (32) and (52), and it
corresponds to the energy of an oscillator dipole, induced by
the electric field of the static field-induced dipole of the other
oscillator, interacting with the same field. The nature of this
interaction is very similar to the polarization (or induction)
interaction between atoms with permanent dipole moments.
Hence, we call this term field-induced polarization interac-
tion. The third term of Eq. (74) describes the well-known
Casimir-Polder dispersion interaction between two atoms cor-
responding to the QED result for the retarded case of large
interatomic separations. Its nonretarded counterpart is given
by the third term of Eqs. (25) and (33).

All the above interaction terms are obtained in the lowest
order of coupling, as was assumed in Eq. (66). However,
it is straightforward to consider higher orders of couplings
between the oscillators within the framework of stochastic
electrodynamics. To this end, one has to take into account
the effect of the electric dipoles of the oscillators on the
fields that they are interacting with and consider the resulting
interactions in a self-consistent approach. For instance, when
an external static electric field is applied to a system of two
interacting atoms or molecules, the external field polarizes
them and induces static dipoles, μ

(0)
i , in each ith center of

charge, as depicted in Fig. 5. Thus the zeroth order of cou-
pling, with an interaction energy U (00), occurs between the
two externally induced dipole moments, μ(0)

1 and μ
(0)
2 . In their

turn, each of these dipole moments induces another static
dipole moment, μ

(1)
i , on the other atom. Therefore, the next

level of coupling, with an interaction energy U (10) + U (01),
occurs between a secondly induced dipole moment of an atom
with the dipole moment of the other atom induced by the
external field: μ

(1)
1 ↔ μ

(0)
2 and μ

(0)
1 ↔ μ

(1)
2 . Higher orders of

coupling can be described similarly. The total field-induced
interaction energy can be obtained from summing up all these
different contributions which form an infinite series,

U =
∑

k=0,1,2,...

∑
l=0,1,2,...

U (kl ). (75)

Here, U (kl ) denotes the dipole-dipole interaction energy

U (kl ) = R2
(
μ

(k)
1 · μ

(l )
2

) − 3
(
μ

(k)
1 · R

)(
μ

(l )
2 · R

)
ηkl (4πε0) R5

, (76)

where ηkl is a constant prefactor related to the order of induced
dipoles. The leading contribution in the series of Eq. (75),
which is U (00) with η00 = 1, corresponds to the first term of
Eq. (74). All further contributions to Eq. (75), with k > 0
and/or l > 0, involve dipoles induced by electric fields of
other induced dipoles. Such a dipole moment of one oscillator
is induced each time by an electric field of an induced dipole
of another oscillator, where the field is given by Eq. (64).
The sum of the corresponding first two contributions, U (10)

and U (01) with η10 = η01 = 1/2, describes the field-induced
polarization energy related to the second term of Eq. (74).
Going further, the sums U (11) + U (20) + U (02) and U (21) +
U (12) + U (30) + U (03) correspond, respectively, to the third
and fourth terms in Eqs. (23) and (24). This analysis shows
that the infinite series of Eq. (75) is equivalent to the one
obtained in Sec. III from the exact QM solutions, Eqs. (21)
and (22).

A similar consideration of higher-order couplings be-
tween fluctuating dipoles is well-known from the literature
for the dispersion interactions [62]. The lowest order of
coupling occurs between fluctuating dipole moments in-
duced by the random zero-point radiation field and results
in the London/Casimir-Polder dispersion interaction for the
nonretarded/retarded regime. Due to the employment of the
QDO model, our exact diagonalization approach successfully
captures all such higher-order coupling terms on an equal
footing for both the field-induced electrostatic/polarization
and the dispersion interactions.

VII. APPLICATION TO ATOMIC AND
MOLECULAR SYSTEMS

In this section, we apply the derived formulas to nucleo-
electronic systems, considering argon-argon and benzene-
benzene as two representative examples for atomic and
molecular dimers, respectively. The chosen systems allow us
to study field-induced effects on intermolecular interactions in
systems of varying polarizability for different configurations
of the considered dimers and the applied electric field. With
these examples, we illustrate the possibility to switch between
molecular conformations and dissociate molecular dimers
with an external electric field. In what follows, we discuss
the three contributions to the total force, F = −∇R[�E (R)],
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FIG. 6. Nonretarded interatomic forces for two interacting argon
atoms separated by R = 5 Å. The symbols || and ⊥ indicate the two
cases when the field is either parallel or perpendicular to the line
connecting the centers of the atoms. For a field of strength ≈1.8 V/Å
perpendicularly applied to the dimer, the repulsive field-induced
(FI) electrostatic force compensates for the attractive field-induced
polarization and dispersion forces.

stemming from field-induced electrostatics, field-induced po-
larization, and dispersion contributions to the interaction
energy, �E (R). The latter is given by Eqs. (25) and (74) for
the nonretarded and retarded cases, respectively. The obtained
either negative or positive forces correspond to the attrac-
tive and repulsive interactions, respectively. Among the three
forces, the field-induced polarization and dispersion forces al-
ways remain attractive, whereas the field-induced electrostatic
force can change its sign depending on the direction of the
applied electric field with respect to the line connecting the
two species. This force is attractive when the field is applied
along the interspecies separation, and is repulsive when the
field is perpendicularly applied to the dimer. The obtained
three forces scale as ∝α2E2/R4, ∝α3E2/R7, and ∝α2h̄ω/R7

(∝α2h̄c/R8) for the field-induced electrostatic, field-induced
polarization, and nonretarded (retarded) dispersion interac-
tions, respectively. From these scaling laws, it follows that
the field-induced polarization force can become comparable
to the field-induced electrostatic force only for systems with
high polarizabilities. In addition, the two field-induced forces
similarly depend on the strength of the applied electric field,
whereas the dispersion force does not depend on it.

First, we consider the argon dimer. The atomic dipole
polarizability of argon, α = 11.1 a.u. [53], is quite small.
Consequently, the field-induced forces (in particular, the field-
induced polarization force) are weak for this system. To obtain
reasonable force values, we restrict our consideration to the
nonretarded case corresponding to smaller interatomic sep-
arations. Since, for argon, ωe = 0.7272 a.u. [53], one has
λe = 2πc/ωe = 1183.7 a.u. ≈626 Å. For our analysis, we
have chosen the interatomic distance R = 5 Å, which corre-
sponds to the nonretarded regime, R 	 600 Å. Figure 6 shows
that, for two argon atoms separated by the chosen distance,
the field-induced polarization force becomes negligible in

FIG. 7. Two configurations of benzene dimers. Left: T-shaped
structure, T(C2v ); right: sandwich structure, SW(D6h ).

comparison to the dispersion and field-induced electrostatic
forces.

Therefore, it is enough to take into account the latter two
forces only. Their strength is governed by an interplay be-
tween how large the interatomic distance is and how strong
is the static electric field. In addition, the external field can
be applied in two qualitatively different directions, parallel
and perpendicular to the line connecting the two argon atoms.
For the static electric field applied along the interatomic dis-
tance, the field-induced electrostatic interaction is attractive
and it can only enhance the dispersion attraction. By contrast,
for the electric field applied perpendicular to the interatomic
distance, the field-induced electrostatics becomes repulsive,
which makes it competitive with the dispersion attraction. For
this case, at the field strength of about 1.8 V/Å, the net force
vanishes.

Let us now consider the interaction of two molecules. The
benzene dimers have often been used as one of the simplest
systems to study vdW interactions involving two aromatic
molecules of π -π type, which play a key role in chemistry
and biology. Here, we apply a uniform static electric field to
two different configurations of the benzene dimer, namely the
T-shaped structure with C2v symmetry [T(C2v )] and the sand-
wich structure with D6h symmetry [SW(D6h)], as illustrated
in Fig. 7.

The in-plane, out-of-plane, and average (isotropic) dipole
polarizabilities of a benzene molecule are well-known [25]
as (in atomic units) αin = 82.00, αout = 45.10, and αavg =
1
3 (αxx + αyy + αzz ) = 69.70, respectively. Then, the QDO
characteristic frequency of benzene can be computed accord-
ing to Eq. (1) as

ωe = 4C6/
(
3 h̄ α2

avg

) = 0.4729 a.u.,

where the dispersion coefficient of the benzene-benzene vdW
interaction, C6 = 1723 a.u., is taken from Ref. [66]. Similarly,
the corresponding wavelength is obtained as

λe = 2πc/ωe = 1820 a.u. ≈ 963 Å.

Consequently, for the intermolecular distances in the benzene
dimer such that R 	 103 Å or R � 103 Å, we have the non-
retarded or retarded interactions, respectively.

For a varying strength of a uniform static electric field
applied to the benzene dimers, in Figs. 8 and 9 we show
the intermolecular forces for the nonretarded (R = 5 Å) and
retarded (R = 2000 Å) regimes, respectively. The magnitude
of the intermolecular forces (as well as of the strength of the
applied static electric fields) in the retarded regime is dras-
tically smaller compared to that in the nonretarded regime.
Nevertheless, by comparing Figs. 8 and 9, one can see the
same qualitative behavior for both regimes. Although they

013011-15



KARIMPOUR, FEDOROV, AND TKATCHENKO PHYSICAL REVIEW RESEARCH 4, 013011 (2022)

FIG. 8. Nonretarded intermolecular forces for two interacting
benzene molecules separated by a distance of R = 5 Å and possess-
ing (a) a T-shape or (b) a sandwich structure. The symbols || and
⊥ indicate the field applied either parallel or perpendicular to the
line connecting the centers of the molecules. For an external field
of the strength E ≈ 2 V/Å perpendicularly applied to a T-shaped
benzene dimer, the repulsive field-induced (FI) electrostatic force
compensates for the attractive field-induced polarization and disper-
sion forces, while such compensation in a sandwich structure of a
benzene dimer occurs at E ≈ 1.5 V/Å.

are negligible for the considered benzene dimers in practice
(see Fig. 9), the intermolecular forces corresponding to the
retarded regime can become measurable for the case of ex-
tended (bio)molecules possessing large polarizabilities. The
presented results show that in both the nonretarded and the re-
tarded case, the total field-induced force can overtake the dis-
persion force for certain strengths of the static field, if the
latter is applied perpendicular to the intermolecular distance.
The field strength at which the field-induced forces and the
dispersion force cancel out depends on the intermolecular
distance and the structure of the dimer. At any separation
distance, the needed field strength for such a compensation
is always smaller for the SW structure in comparison to the
T-shaped structure.

FIG. 9. Retarded intermolecular forces for two interacting ben-
zene molecules separated by a distance of R = 2000 Å and
possessing (a) a T-shape or (b) a sandwich structure. The symbols
|| and ⊥ indicate the field applied either parallel or perpendicular
to the line connecting the centers of the molecules. For an external
field of strength E ≈ 2 × 10−5 V/Å perpendicularly applied to a
T-shaped benzene dimer, the repulsive field-induced (FI) electrostatic
force compensates for the attractive field-induced polarization and
dispersion forces, while such compensation in a sandwich structure
of a benzene dimer occurs at E ≈ 1.5 × 10−5 V/Å.

Figure 10 shows the strength of the static field at which
the net force vanishes versus the interspecies distance for the
case when the field is perpendicularly applied to the benzene
and argon dimers. As R increases (starting from values close
to equilibrium distances in the dimers), the strength of the
compensating field (E0) becomes smaller. For a range of R
which is more probable in stable dimers (slightly larger than
the equilibrium distance of the dimers in the absence of the
external field), E0 is always larger for the Ar-Ar system com-
pared to both the T-shaped and the sandwich structure of a
benzene dimer. This difference indicates that electric fields
from external sources and nearby molecules should have a
stronger influence on larger molecules.
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FIG. 10. The strength of a static electric field, perpendicularly
applied to benzene and argon dimers, at which the field-induced and
dispersion forces cancel out, is shown vs intermolecular/interatomic
distance (represented in logarithmic scale). The nonretarded regime
of the molecular interactions is considered, which corresponds to the
results of Figs. 6 and 8.

VIII. DISCUSSION AND CONCLUSION

We have employed the QDO model, as an efficient tool
for describing atomic/molecular polarization response, to de-
rive different forces acting on two separated species (atoms
or molecules) under the combined action of static-electric
and vacuum-radiation fields. The obtained three lowest-order
(with respect to the inverse separation distance, R−1) contribu-
tions to these forces stem from the field-induced electrostatics
(∝R−3), field-induced polarization (∝R−6), and dispersion
(∝R−6/R−7) interactions. All three contributions to the inter-
action energy form an infinite series due to the self-consistent
mutual polarization of the interacting species (see Secs. III
and VI). The field-induced interactions are not influenced
by the retardation effects, whereas the dispersion interaction
shows a conventional behavior for nonretarded and retarded
regimes, both of which are not affected by static electric fields.
For the considered unconfined atoms in isotropic and homoge-
neous vacuum, the field-induced polarization and dispersion
forces remain attractive. In contrast, the field-induced elec-
trostatic force becomes attractive or repulsive for the electric
field applied either along the separation distance or perpen-
dicular to it, respectively. Therefore, it is possible to tune
the intermolecular interactions by a variation of the strength
and the direction of the applied electric field. To resolve
many existing discrepancies and strengthen partial results
available in the literature, our comprehensive framework is
based on four complementary approaches rooted in quantum
mechanics, quantum electrodynamics, and stochastic electro-
dynamics. The employment of these four approaches leads to
a systematic and robust characterization of intermolecular in-
teractions under the combined action of an externally applied
field and the ever-present vacuum field. A generalization of
the presented framework to many QDOs, higher multipole
contributions, as well as to the case of spatially confined
systems can be performed in a straightforward manner.

To assess the potential of our framework for practical ap-
plications, we have considered and compared argon-argon and
benzene-benzene dimers as representative models for atomic
and molecular systems. We showed that the field-induced
polarization plays a minor role for the considered dimers.
However, the polarization contribution can become important
for highly polarizable systems (especially systems excited by
optical modes with frequencies close to the molecular char-
acteristic frequencies) since field-induced polarization scales
with the cube of the dipole polarizability, whereas the other
two forces scale with the square of the dipole polarizability.
Generally, the effect of a static electric field can be assumed
negligible for small atomic systems since the field-induced
electrostatic force can compete with the dispersion one only
at large separations for reasonable electric fields much weaker
than the internal atomic one. However, the situation be-
comes more intricate for large molecular systems, especially
at the nanoscale. Here, the effective normal-mode polariz-
abilities become highly anisotropic and can easily reach two
to three orders of magnitude higher values than those of
small molecules [67]. This may lead to a nontrivial interplay
between field-induced forces with the dispersion one. In ad-
dition, when increasing the size of the system, the effective
separation distance between its components becomes larger.
In turn, the increased separation enhances the field-induced
electrostatic force with respect to the other forces, which
can either amplify or weaken the intermolecular interactions
depending on the direction of an applied field. Consequently,
we suggest that the action of external electric fields should
become relevant for macromolecules and nanoscale objects.

It is important to embed our derivations and results into
the state of the art in the literature. As was mentioned above,
for the field-induced forces to become comparable to the
dispersion force at short separation distances, one needs to
apply quite strong electric fields in the case of atomic sys-
tems. Indeed, the effective electric field acting from the argon
nucleus on its valence shell is ∝ 10 V/Å. On the other hand,
the field-induced electrostatic force in the Ar-Ar dimer with
R = 5 Å becomes comparable to the dispersion force at an
external field of ∝1 V/Å. Thus, for reasonable strengths of ex-
ternal electric fields, the field-induced forces are not relevant
in the case of vdW-bonded atomic systems. This statement
is in agreement with the conclusion of Ref. [10], where the
leading contribution to the field-induced electrostatic interac-
tion was derived based on classical electromagnetic theory.
Nevertheless, the field strength required to make the field-
induced electrostatic force comparable to the dispersion one
rapidly decreases with increasing R, as illustrated by Fig. 10.
Consequently, at large interatomic distances, particularly in
the retarded regime, the field-induced interactions can be-
come dominant even for weak applied fields. In addition,
increased field effects are expected for large molecular sys-
tems. As was already mentioned above, in such systems the
many-body effects can drastically influence the strength of
the interaction, and therefore much weaker applied fields can
cause strong effects. A specifically interesting case is when
an external electric field is due to a single optical mode. As
discussed in Ref. [10], the difference present for the field-
induced electrostatic interaction in that case can be effectively
described by replacing the static polarizability α ≡ α(0) by
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its frequency-dependent counterpart α(ωopt ), where ωopt is the
frequency of the optical mode. Thus, by choosing a proper
optical frequency, one can drastically enhance the polariz-
ability α(ωopt ) ∝ (ω − ωopt )−1. Taking this into account, we
expect that for large molecules such a setup can significantly
increase the role of the field-induced polarization force, as not
considered in Ref. [10] but revealed within our work.

The fact that, within the considered lowest order of cou-
pling between matter and the vacuum radiation field, the
dispersion interactions between two atoms or molecules are
not affected by a static electric field stems from their quantum-
mechanical nature. Since an applied uniform static field does
not influence fluctuations of either the vacuum radiation
field or electronic densities, it cannot affect the considered
dispersion interactions. This implies that, neglecting higher-
order contributions from field-induced hyperpolarizabilities of
atoms scaling as R−11 [68,69] under static electric fields, the
leading contributions to the dispersion energy remain ∝R−6

and ∝R−7 for the nonretarded and retarded regimes, respec-
tively. Within the perturbative technique of the QED theory,
these dispersion interactions arise from the fourth order of
the coupling of matter to the vacuum radiation field, and
the two interacting atoms exchange a pair of virtual photons.
However, the above commonly accepted picture was recently
questioned by Fiscelli et al. [7], who obtained, within the
second order of perturbation, the dispersion interaction energy
between two atoms under static electric fields as ∝R−3 and
∝R−4 for nonretarded and retarded regimes, respectively. Our
careful consideration of the approach used by Fiscelli et al.
[7] suggests an inconsistency in their analysis caused by em-
ploying perturbation theory in two steps. Namely, in Ref. [7],
first the wave functions of a two-level “hydrogen” atom in
a static electric field were obtained from perturbation theory
by considering the external field as a perturbation. Then, the
obtained wave functions were used as unperturbed eigenstates
of an atom (under the static field) to be coupled to another “hy-
drogen” atom through the vacuum radiation field. Considering
this coupling as a new perturbation, Fiscelli et al. [7] used per-
turbation theory for the second time. However, as mentioned
above, the “unperturbed” wave functions employed for this
step were obtained in Ref. [7] from the first use of perturbation
theory by the authors. Moreover, for the ground and excited
states, respectively, the second and zeroth order of pertur-
bation theory were used. As a result of this inconsistency,
the “unperturbed” wave functions do not obey the closure
relation. Therefore, their use for expanding the eigenstates
of the system of two interacting “hydrogen” atoms under a
static electric field is questionable. From this consideration,
the incompleteness of the wave functions seems to be the
origin of the unusual scaling law of R−4 obtained in Ref. [7]
for the retarded regime. The same issue was also identified
and discussed in Ref. [69], published after the submission of
our manuscript.

Indeed, we have found that by applying the Gram-Schmidt
orthonormalization procedure to “hydrogen” wave functions
under a static electric field obtained by Fiscelli et al. [7],
their term ∝R−4 transforms to ∝R−3. Hence, there should
be no influence of the retardation on the interaction energy
obtained in Ref. [7], which already suggests that the R−3 term
derived in that work is of electrostatic origin. In addition, we

emphasize the fact that the interaction energy was obtained in
Ref. [7] from the second order of the QED perturbation theory.
Taking into account our detailed derivation performed within
Sec. V, one can finally conclude that the (corrected) results of
Fiscelli et al. [7] correspond to our field-induced electrostatic
interaction.

The above discussion underlines the importance of robust
and comprehensive frameworks such as the one developed
within the presented work. Based on molecular quantum
mechanics and quantum electrodynamics, our framework em-
ploys the QDO model as a well-established coarse-grained
formalism to describe electronic response properties and
dispersion interactions. Unlike the “two-level atom” model,
widely used in quantum optics and quantum electrodynamics,
the QDO model allows exact solutions under the effects of
a variety of external fields and/or boundary conditions. With
the developed extension of this efficient model to the presence
of external static electric fields, our framework paves the
way for a deeper understanding of inter- and intramolecular
interactions under various electromagnetic fields. The work
can be extended to include nontrivial effects of geometric
confinements and boundary conditions on these interactions.
The derived formalism provides a reliable picture of the
field-induced and dispersion interactions going from the non-
retarded to the retarded regime, and it is amenable to various
extensions from the two-body to many-body interactions be-
tween atoms or molecules. Indeed, the analytical solution
given by Eq. (25) can be straightforwardly generalized to any
number of QDOs, each of them under a different static field.
The latter approach would allow us to effectively model inter-
nal atom-dependent electric fields present in large molecules.

As a brief summary, we enumerate several potential impli-
cations and possible extensions of our work:

(i) Employing the QDO model within QM and QED theory
of intermolecular interactions enables studying atomic and
molecular systems under the influence of external sources or
fields. Due to the quadratic form of the QDO Hamiltonian,
the problem of coupling this quantum-mechanical system
to external fields and/or boundary conditions is analytically
solvable within the dipole approximation or the multipole
expansion of the Coulomb potential. Hence, one can perform
perturbative QM and QED calculations of intermolecular in-
teractions between atoms or molecules. This allows us to
investigate retarded and nonretarded interactions in molecular
systems of increasing complexity and unambiguously classify
the different types of field-induced molecular interactions.

(ii) In the nonretarded regime, the effect of external fields
on intermolecular interactions can be straightforwardly gen-
eralized to systems with an arbitrary number of interacting
species by implementing field-induced changes in a system
of many interacting QDOs. As discussed above, an arbitrary
number of QDOs coupled through the dipole-dipole potential
under a static electric field is an exactly solvable problem
in quantum mechanics. Taking into account the field-induced
redistributions of electron densities in many-body systems,
one can investigate the effect of external fields on many-body
interactions.

(iii) Using the QDO model, one can capture the effect of
intramolecular local fields in large molecules. The opportunity
to diagonalize the total Hamiltonian of QDOs under a static
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field, like in Eq. (17), implies that when using the QDO model,
one can also capture the effect of intramolecular fields acting
on atoms in a molecule. Indeed, covalent interactions cause
charge transfers between atoms, which leads to a redistribu-
tion of local centers of positive and negative charges over
the molecular space. This effect can be described via local
effective external fields acting on atoms. Using our exact-
diagonalization method, one can take into account the effect of
such fields via spatial shifts of the QDO centers of oscillation.
Such a generalization would extend our framework to the
study of intramolecular interactions.

(iv) The dispersion interaction between two atoms, as a
result of quantum-mechanical fluctuations of the electronic
density, is not affected by external uniform static fields.
Dispersion interactions originate from quantum-mechanical
fluctuations of electronic structures of matter and the vacuum
field. Consequently, these interactions cannot be influenced
by uniform static fields. However, static fields inducing elec-
trostatic and polarization interactions can qualitatively and
quantitatively change total intermolecular interactions. These
hypotheses were comprehensively investigated and confirmed
in the present work by employing four complementary
approaches.

(v) Employing the QDO model for electronic polarization
response allows one to better understand and classify QED
effects in atoms and molecules. Perturbation theory, as a
powerful mathematical tool, is widely used in QM and QED,
including its various applications in physics and chemistry.
This approach considers the effects of small perturbations on
the properties of a QM system. Within quantum mechanics,
this implies that states of the perturbed system can be ex-
panded in terms of states of the unperturbed system, which
requires the latter to form a complete set. Employing the
QDO model, as an exactly solvable problem under a variety
of physical conditions, enables us to apply straightforward

perturbation theory techniques to coupled QDOs and obtain
robust classification of different types of field-induced molec-
ular interactions. This is an especially interesting approach to
search for nontrivial field-induced interactions in QED and
quantum-field theory.

(vi) Intermolecular interactions can be tailored by applying
static electric fields, which induce field-dependent electro-
static and polarization forces. Attractive/repulsive character
of the obtained field-induced electrostatic force depends on
the orientation of the applied field with respect to the sep-
aration distance, while the field-induced polarization force
is always attractive. When the external field is applied per-
pendicularly, the field-induced electrostatic force becomes
repulsive. In such a case, the interplay between the field-
induced and dispersion forces can be used as a mechanism
for controlling intermolecular interactions.

In summary, we derived and discussed four complemen-
tary formalisms, which constitute a robust framework for
investigating molecular interactions at arbitrary separation
distances under the influence of uniform static electric fields.
We showed that such fields induce static atomic polarization,
offering an opportunity to tune molecular interactions via an
interplay of field-induced electrostatics/polarization as well
as dispersion interactions. To conclude, we remark that our
framework barely scratches the surface of possible develop-
ments and applications in the field of molecular interactions
under the combined action of external and vacuum fields.
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APPENDIX A: THE CASE OF ANISOTROPIC QDOs

To extend our result for the interaction energy given by Eq. (25) to the case of anisotropic molecules, such as benzene, one
has to take into account the anisotropy of the polarizability. This quantity plays the role of a coupling constant of an atom or
molecule to an electric field. Generally, the dipole polarizability is a second-rank tensor, which can be diagonalized using the
principal axes. By choosing the Cartesian coordinate system along such axes, we obtain

�E = 1

[4πε0]R3

{
α(1)

xx α(2)
xx E2

x + α(1)
yy α(2)

yy E2
y − 2α(1)

zz α(2)
zz E2

z

}
− 1

2[4πε0]2R6

{
α(1)

xx α(2)
xx
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α(1)

xx + α(2)
xx
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x + α(1)
yy α(2)

yy
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α(1)

yy + α(2)
yy

]
E2

y + 4α(1)
zz α(2)
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[
α(1)

zz + α(2)
zz

]
E2

z

}
− h̄

4[4πε0]2R6

( ω1ω2

ω1 + ω2

){
α(1)

xx α(2)
xx + α(1)

yy α(2)
yy + 4α(1)

zz α(2)
zz

}
, (A1)

for the nonretarded interaction energy between two molecules. Here, α
(n)
ii denotes the iith Cartesian component of the polar-

izability tensor of the nth molecule. Equation (A1) as well as its retarded counterpart, straightforwardly obtained by a similar
generalization of Eq. (74), were used in Sec. VII to compute dispersion forces for the benzene dimers.
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APPENDIX B: DISSIMILAR LOCAL STATIC ELECTRIC FIELDS APPLIED TO ISOTROPIC QDOs

If the two interacting QDOs undergo locally different static fields, E1 = (E1x, E1y, E1z ) and E2 = (E2x, E2y, E2z ), the field-
induced contributions to the interaction energy of Eqs. (25), (45), (52), and (74) take the following forms:

�EFI = �E el
FI (R−3) + �E pol

FI (R−6) = 1

[4πε0]R3
{(α1E1x ) (α2E2x ) + (α1E1y) (α2E2y) − 2 (α1E1z ) (α2E2z )}

− 1

2 [4πε0]2R6
{α2[(α1E1x )2 + (α1E1y)2 + 4 (α1E1z )2] + α1[(α2E2x )2 + (α2E2y)2 + 4 (α2E2z )2]}, (B1)

where, for simplicity, we assume both QDOs to be isotropic: α1 = α(1)
xx = α(1)

yy = α(1)
zz and α2 = α(2)

xx = α(2)
yy = α(2)

zz . This setup is
similar to that of Ref. [7], where locally different static fields but isotropic polarizabilities were used.

APPENDIX C: DISSIMILAR LOCAL STATIC ELECTRIC FIELDS APPLIED TO ANISOTROPIC QDOs

Finally, the most general case describes two interacting anisotropic QDOs undergoing locally different static fields. For this
situation, the corresponding field-induced interactions present in Eqs. (25), (45), (52), and (74) transform to
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(
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yy

(
α(2)

yy E2y
)2 + 4 α(1)
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(
α(2)

zz E2z
)2]}

, (C1)

which can be simply obtained as a combination of Eqs. (A1) and (B1). Equation (C1), together with the dispersion contribution
of Eq. (A1) or its retarded counterpart, provides one with a practical tool to study intermolecular interactions in various nucleo-
electronic systems mentioned in Sec. VIII.
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