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Hybrid Rydberg quantum gate for quantum network
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The high-fidelity storage, distribution, and processing of quantum information prefers qubits with different
physical properties. Thus hybrid quantum gates interfacing different types of qubits are essential for the
realization of complex quantum network structures. A Rydberg-atom-based physical quantum controlled-Z (CZ)
gate is proposed to hybridly process the polarization-encoded single-photon optical qubit and the “Schrödinger
cat” microwave qubit. The degradation of the fidelity under the influence of various noise channels, such as
microwave cavity loss, spontaneous emission of atom states, and nonadiabaticity effect, etc., has been analyzed
through detailed theoretical analysis by deriving the input-output relation of qubit fields. The feasibility and the
challenges of the protocol within current technology are also discussed by analyzing the possible experimental
parameter settings. Our work opens prospects for future large-scale quantum architecture based on hybrid
quantum modules.
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I. INTRODUCTION

A robust and functional quantum network [1,2] requires
the simultaneous achievement of both high-fidelity local
quantum operation and efficient distribution of quantum
information between remote quantum nodes [3,4]. The combi-
nation of these two capabilities would enable many important
applications, such as long distance quantum communica-
tion [5–9], distributed quantum computation [10–14], and
quantum metrology [15–20]. These two capabilities have been
separately demonstrated in various experiments [21,22], but
it remains challenging to combine them into a single physi-
cal system. For example, microwave (MW) superconducting
qubits feature high fidelity [23,24] but suffer severe losses and
decoherence during propagation [25]. On the other hand, op-
tical photons are ideal qubits for long-distance quantum state
distribution [22], but fault-tolerant quantum gates with optical
photons remain elusive [26,27]. Naturally, a practical quantum
network would largely benefit from a hybrid platform [28–39]
which bridges the gap between optical and MW qubits.

However, achieving such a hybrid optical-MW quantum
gate remains an unmet challenge, since it demands a coherent
interaction between optical and MW photons. The frequencies
of optical and MW photonic qubits differ by more than four
orders of magnitudes, making photonic-interference-based
protocols inapplicable. Alternatively, it is possible to employ a
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quantum-nonlinear medium [40] with efficient matter-photon
coupling to facilitate the photon-photon interaction [41–48],
while the difficulty lies in designing a physical system that can
interacts strongly and coherently with both MW and optical
qubits at the single quanta level.

To tackle this longstanding problem, we propose a proto-
col for the realization of high-fidelity quantum controlled-Z
(CZ) gate between optical and MW photons mediated by
Rydberg atoms [49–51] in a MW cavity. Two Rydberg levels
resonant with the cavity are employed to interface with the
MW qubit [52–55], while the optical qubit interacts with the
atoms via a polarization-dependent electromagnetic induced
transparency (EIT) photon storage scheme [42,56–60]. The
system dynamics and the gate fidelity are carefully analyzed
with realistic experimental parameters. The result shows that
a high-fidelity hybrid quantum logic gate can be achieved
with our protocol [42,61]. Our work opens avenues for future
quantum network architectures connecting distant quantum
nodes.

II. PROTOCOL

As illustrated in Fig. 1, our quantum medium is an en-
semble of Rubidium (Rb) atoms in a MW cavity resonant
with the transition between Rydberg states |r1〉 and |r2〉. The
optical qubit employs right/left circular polarization encoding
(|1〉R/L

o ), while the MW qubit is encoded in the even/odd par-
ity of the Schrödinger’s cat state |even/odd〉m ∝ |α〉 ± | − α〉.
The gate protocol starts with the EIT storage of the optical
qubit, in which the |1〉R

o (|1〉L
o ) qubit state is stored in the

Rydberg state |r1〉 (ground state |g′〉) using ladder (�) level
schemes, respectively. Next, a MW qubit resonant with the
|r1〉 − |r2〉 transition is reflected off the atom cavity system
in the strong-coupling regime, such that the population in
Rydberg state |r1〉 blocks the cavity transmission. As a result,
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FIG. 1. Schematic setup: (a) an ensemble of Rb atoms trapped
in a microwave (MW) cavity and (b) the atomic levels used in the
hybrid quantum CZ gate. The atoms are initially populated on |g〉.

when the optical qubit is in state |1〉R
o (stored in |r1〉), the MW

qubit reflects from the input mirror and acquires no additional
phase. With the optical qubit in state |1〉L

o (stored in |g′〉), the
MW qubit enters the empty cavity so the |odd〉m state acquires
a π phase shift while the |even〉m state remains unaffected.
The above controlled phase shift mechanism establishes our
CZ gate, with the truth table shown in Table I and Fig. 2.

Different from the previous optical photon-photon gate,
which has stringent requirements on the interactions between
two Rydberg polaritons, our protocol is built on the robust
Rydberg cavity–quantum electrodynamics (cQED) and fea-
tures innate error resilience, which does not require a Rydberg
blockade and has modest demands on experimental parame-
ters. Our protocol has the following features: (1) benefiting
from the rich Rydberg level structures, our protocol is ap-
plicable to MW qubit at various frequency bands; (2) by
employing collective atomic encoding for optical qubit stor-
age, the quantum information is stored redundantly in the
atomic spin wave, offering robustness against particle loss;
and (3) Rydberg states with low quantum principal number
can be used to make the gate less sensitive to stray electric
fields.

III. THEORETICAL MODEL AND PHYSICAL
REALIZATIONS

We now set up a theoretical model for our scheme. The
Hamiltonian for the free-propagating electromagnetic (EM)
field (e.g., along +z direction) is given by

ĤEM = ich̄

2La

∫ +∞

−∞
dz

[
∂ ê†

∂z
ê − ∂ ê

∂z
ê†

]
, (1)

TABLE I. Truth table of the proposed hybrid quantum CZ gate.
The loss in the EIT storage process contributes to the inefficiency,
and the fidelity here is calculated considering the postselection of the
output optical single-photon qubit.

Input state Output state Efficiency Fidelity

|1〉L
o ⊗ |even〉m +|1〉L

o ⊗ |even〉m 0.74 0.923
|1〉L

o ⊗ |odd〉m −|1〉L
o ⊗ |odd〉m 0.74 0.923

|1〉R
o ⊗ |even〉m +|1〉R

o ⊗ |even〉m 0.45 0.969
|1〉R

o ⊗ |odd〉m +|1〉R
o ⊗ |odd〉m 0.45 0.967

FIG. 2. Physical processes correspond to different qubit inputs of
the quantum hybrid CZ gate, with the truth table in Table I.

where the ê(†) is the annihilation (creation) operator of the EM
slowly varying amplitude fields, and c and La are the vacuum
light speed and the length of atomic medium, respectively. In
the following, ê is written as ε̂/b̂ for the optical/MW qubit,
respectively.

The atomic ensemble and the atom-light interaction are
described by the following Hamiltonian [57–59]:

Ĥatom = −h̄
N∑

j=1

(
ωaσ̂

j
aa + ωcσ̂

j
cc

)
,

Ĥint = −h̄
N∑

j=1

[
	(z j, t )e−iυ	t+ik	z j σ̂ j

ac + gε̂σ̂ j
bc

]+ H.c.,

(2)

where Ĥatom describes an atom with energy levels |b〉 −
|aL/R〉 − |c〉, Ĥint describes the interactions in the two EIT sys-
tems (|g〉 − |eL〉 − |g′〉 and |g〉 − |eR〉 − |r1〉), 	R/L(z j, t ) are
the control fields, g is the single-photon Rabi frequency, and
ε̂ is the annihilation operator of the slowly varying amplitude
fields for the optical qubit.

The interaction between the MW qubit and the cQED sys-
tem is [62,63]

ĤCQED = h̄gmâcσ̂r2r1 + h̄
√

κ âcb̂†(0) + H.c., (3)

where the first term describes the interaction between the
MW cavity mode âc and the two Rydberg states |r1〉, |r2〉
with single-photon Rabi frequency gm, and the second term
represents the MW qubit operator b̂ interacting with the MW
cavity mode with strength

√
κ [64].

The system will be affected by the noisy environment, such
as the vacuum field, which induces spontaneous emission, the
collision of atoms, and cavity loss, etc. We denote these effects
by γμν , which is the decoherence rate from |ν〉 to |μ〉 (μ, ν are
among |g′〉, |g〉, |eR〉, |eL〉), γs as the decay rate of the Rydberg
state, and κs the MW cavity loss rate. These factors will bring
decoherence to the quantum state and affect the gate fidelity.

For later analysis, we consider the following example
physical realization (Table II). The initial Rb atomic state
is prepared in |g〉 = |5S1/2, F = mF = 2〉, with its neighbor-
ing ground state |g′〉 = |5S1/2, F = mF = 1〉, and the inter-
mediate quantum states |eL〉 = |5P3/2, F = 2, mF = 1〉, and
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TABLE II. Sample parameters for our hybrid quantum gate
protocol.

Rydberg state 1 |r1〉 |69S1/2, F = mF = 2〉
Rydberg state 2 |r2〉 |69P3/2, F = mF = 3〉
cQED coupling strength gm 2π × 2.723 MHz
Decay rate of Rydberg state 1 γr1g 2π × 3.50 kHz
Decay rate between γr2r1 2π × 4.78 kHz

Rydberg states
MW cavity bandwidth κ 2π × 2 MHz
Optical pulse duration time T0 0.5μs
EIT storage time TEIT 16μs
Decay rate of excited state γeg 2π × 3 MHz
Optical cross-sectional diameter w 8 μm
Superconducting circuit wc 25 μm

electrode distance
Atom number density � 8 × 1011 cm−3

Length of atom ensemble La 0.4 mm
Vacuum Rabi frequency gL 2π × 0.012 MHz

for left-polarized optical field
Vacuum Rabi frequency gR 2π × 0.029 MHz

for right-polarized optical field

|eR〉 = |5P3/2, F = mF = 3〉. Besides, the Rydberg states
are chosen to be |r1〉 = |69S1/2, F = mF = 2〉 and |r2〉 =
|69P3/2, F = 3, mF = 3〉.

For the EIT storage of optical qubits: (1) The
atomic ensemble has length La = 0.4 mm with density
ρ ∼ 8 × 1011 cm−3 and interaction cross-sectional diameter
w = 8 μm. The single-photon Rabi frequencies for the
|eR〉 − |g〉 and |eL〉 − |g〉 transitions are gR = 2π × 29 kHz
and gL = 2π × 12 kHz, respectively. (2) The two control
field Rabi frequencies for the EIT processes are 	R/L(t ) =
	0(2 + tanh[20(t − 18μs] − tanh[20(t − 2μs)])/2, where
	0 = 2π × 30 MHz, and the storage time is 16 μs. (3)
The decay rates of atom states are γeg = 2π × 3 MHz,
γr1g = 2π × 3.5 kHz [65], and γg′g = 2π × 16 Hz [66]. This
small γr1g requires the temperature of the atomic ensemble
below ∼0.2 μK.

For the MW cQED system: the cavity has a quality fac-
tor ∼104, the Rydberg state |r2〉 has decay rate γs ∼ 2π ×
4.78 kHz [67], and the single-photon Rabi frequency is gm =
2π × 2.72 MHz [68]. Such a strong gm demands a large dipole
moment and a small interaction volume, which indicates a
possible realization by combining Rydberg atoms with a su-
perconducting circuit [34,39].

IV. FIELD OPERATOR EVOLUTION

The above Hamiltonians can be solved under the adiabatic
conditions (we leave a detailed derivation in Appendix A).
Namely, the switching of the control field is slow enough to
avoid the transition to bright states. The resultant Heisenberg
equations of motion for describing the optical qubit evolution
is given by(

∂

∂t
+ v

∂

∂z

)
ε̂(z, t ) = Aε̂(z, t ) + c2(1 − η)2C

∂2

∂z2
ε̂(z, t )

+ c3(1 − η)3D
∂3

∂z3
ε̂(z, t ), (4)

where the A > 0/ < 0 represents the gain/attenuation of ε̂,
corresponds to the retrieving/writing of the optical qubit,
respectively. Coefficients C and D describe the qubit pulse
spreading due to the limited EIT window and the higher-order
distortion of the qubit wave form. These coefficients can be
written as

A = η

[
1

	

∂	

∂t
− γbc

]
, D = η

|	|2 ,

C = η

|	|2
[

(2γbc + γba) − 2

(
1

	∗
∂	∗

∂t
+ 2

	

∂	

∂t

)]
,

(5)

in which η = g2N/(g2N + |	|2) with N the total number of
atoms and 	 is the Rabi frequency of the control fields. The
v = c(1 − η) is the qubit propagation velocity in the EIT
medium, which corresponds to the slow light effect.

Solving the above equation leads to the input-output rela-
tion of the optical qubit field in the k domain:

ε̂(k, T ) = Coi
1 (k, T )ε̂(k, 0) + Coi

2 (k, T )n̂(k),

with Coi
1 (k) = exp

{
−i
∫ T

0
dt[kv − k3c3D(1 − η)3]

}

× exp

{∫ T

0
dt
[
A − k2c2(1 − η)2C

]}
, (6)

where n̂ is the environmental noise operator, and the co-
efficients satisfy |Coi

1 |2 + |Coi
2 |2 = 1 according to Caves’s

phenomenological theory of the quantum amplifier [69]. The
optical qubit takes time T to finish its full writing and retriev-
ing process, and i represents left/right (L/R) polarizations.
The second exponential factor describes gain/attenuation of
ε̂. The above formula also captures various loss channels, for
example, the loss due to nonadiabaticity (nonzero d	/	dt)
and the dissipation of various energy levels (γbc, γba).

For the cQED process, the equations of motion in the
frequency domain are

(−iω + γs)σ̂r1r2 (ω) = −igmâc(ω) +
√

2γsn̂en(ω),(
−iω + κ + κs

2

)
âc(ω) = −igmσ̂r1r2 (ω) − √

κ âin(ω)

− √
κsn̂(ω), (7)

in deriving which we have used the linear approximation
〈σ̂z〉 ≈ −1/2. Solving these equations leads to the evolution
of the MW qubit field:

b̂out (ω) = C1(ω)b̂in(ω) + C2(ω)n̂in(ω), (8)

where n̂in represents all possible noise contributions (includes
the cavity loss and Rydberg state decay) and

C1(ω) = iω + g2
m/(iω − γs) − (κs − κ )/2

iω + g2
m/(iω − γs) − (κs + κ )/2

,

C2(ω) = iω − γeff

iω − γs

√
κκs

iω + g2
m/(iω − γs) − (κs + κ )/2

,

|C1(ω)|2 + |C2(ω)|2 = 1, (9)

with γeff = √γ 2
s + 2g2

mγs/κs. In the strong-coupling region
g2

m � γ κ , the output field has a zero phase shift compared
to the input field. However, in case the Rydberg state is
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FIG. 3. Optical qubit wave-form evolution. Upper panel de-
scribes (a) the writing of optical qubit into the atom ensemble and
(b) the retrieval process after the 15-μs storage time. Lower panel
(c) shows the un-normalized retrieved qubit wave form (|1〉L

o as blue
dotted and |1〉R

o as red dashed), compared with the input pulse (black
solid). These wave forms need to be normalized for the postselection
scheme.

empty when the optical qubit is |1〉R, we have gm = 0 and
the input-output relation reduces to the form of a simple
cavity, with the phase shift ≈ π . It is important to note that
the linear approximation 〈σz〉 ≈ −1/2 is important because a
Gaussian qubit wave form can only preserve its mode shape
under a linear cQED dynamics. This approximation is valid in
the strong-coupling region with large cooperativity g2

m/κγs,
which creates a stronger Purcell effect, and the intracavity
quanta is small, which means a weak excitation of the atomic
transition. This approximation is thoroughly discussed in Ap-
pendix D, and the deviation from the linear approximation
would degrade the fidelity of the quantum gate, which will
be simulated in Sec. VI.

V. LOSS AND MODE SHAPE DISTORTION

The field operator evolution formulas allow the analysis on
the qubit wave form. A single-photon quantum state can be
described as

|�(t )〉o =
∫

dz f (z, t )ε̂†(z)|vac〉 =
∫

dkf(k, t)ε̂†(k)|vac〉,

(10)

where f (z, t ) is the normalized state wave form, with its
Fourier conjugate f (k, t ), which can be determined by
Eq. (B15). The wave-form evolution of the optical qubit dur-
ing the writing and retrieving process is simulated using the
parameters listed in the previous sections with the results
shown in Fig. 3.

In our protocol the two EIT channels can have different
control and single-photon Rabi frequencies. Therefore, the
wave form of optical qubits with different polarizations could
have different phase delays and distortions, which are care-
fully discussed in the Appendix B. The result shows that for
|1〉R

o qubit, the main distortion is contributed by the spin wave
loss, which is an amplitude reduction of the wave form, while
for |1〉L

o the distortion is mainly contributed by the dispersive
broadening (as shown in Fig. 3). The impact of different wave-
form distortion mechanisms can be summarized as follows.

(1) The phase delay differences between qubits with two
different polarizations can be compensated by inserting a
phase plate or adjusting the two control field strengths so that
the amplitude of control Rabi frequencies satisfies 	L

0/	R
0 =

gL/gR. (2) The A term on the right-hand side of Eq. (4)
contributes a global amplitude reduction ∼e−ηγr1/g′gT over the
outgoing wave form. For the |1〉L/R

o states stored in the spin
waves |g′〉 − |g〉 and |g〉 − |r1〉, we have γg′g  γgr1 . This
means that the decreasing gate efficiency affects the |1〉R

o state
more than the |1〉L

o state, which is shown in Fig. 3. (3) The
C/D terms of Eq. (4) lead to a k-dependent loss or dispersion.
Using our sampling parameters, for an input Gaussian wave
form with width σ in the spatial domain, the C term would
create wave form broadened by a factor of 1.38 and 1.09 for
|1〉L and |1〉R, respectively. On the contrary, the 10−4 relative
distortion due to the D-term effect is negligible.

The effect of the spin wave loss to the optical qubit state
comes from the entanglement between the qubit state and the
environmental noise state, which can be phenomenologically
written as

|�〉i
out = Coi

1 |1〉i
qout ⊗ |0〉i

n + Coi
2 |0〉i

qout ⊗ |1〉i
n, (11)

where the i = L/R represents the left/right polarizations, and
the Coi

1,2 are given by integrating Eq. (6),

∣∣Coi
1

∣∣2 =
∫

dk
∣∣ fin(k, T )Coi

1 (k)
∣∣2, (12)

and satisfy |Coi
1 |2 + |Coi

2 |2 = 1, which is the normalization
condition. Such a qubit-noise entanglement leads to deco-
herence. Since the photonic qubit is a single-photon state,
therefore a postselection scheme can be implemented. Gener-
ally speaking, qubits with different polarizations could suffer
different losses, that is, CoL

1 �= CoR
1 . For an input state |�〉 =

(|1〉L
in + |1〉R

in )/
√

2, the output state after the postselection with
CoL

1 �= CoR
1 is apparently deviated from the ideal case. There-

fore, to obtain a high gate fidelity after the postselection one
can balance the loss of the two different polarizations [2]
(using two ladder EIT systems, for example), at the cost of
decreasing the postselection probability [70].

For a MW cat-state qubit |αin/out〉 ± | − αin/out〉 with

|αin/out〉 = e−α2
0/1/2exp

[
α0/1

∫
dx fin/out (x)b̂†

in/out (x)

]
|0〉, (13)

where α0/1 is the input/output coherent amplitude and
fin/out (x, t ) is the corresponding mode shape. The MW cavity
response, loss, and the lifetime of the Rydberg states affect
the qubit mode shape, of which the latter two factors also in-
troduce qubit decoherence. Using Eqs. (8) and (9), the output
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FIG. 4. (a) Mode shape of output MW qubits when κ/gm = 0.2
and the cavity is lossless. (b) The effect of coupling rate κ to the
phase variation and mode shape error between input and output of a
lossless cavity. The values of gm, γs are set to be 2π × 2.72 MHz,
2π × 4.78 kHz.

MW qubit-noise joint state can be written as

|�〉MW
out = |�+α〉MW

out ⊗ |Eα〉 + |�−α〉MW
out ⊗ |E−α〉, (14)

where the qubit state |�±α〉MW
out and the environmental state

|E±α〉 are given as

|�±α〉MW
out = exp

[
±α

∫
dω fin(ω, t )[C1(ω)b̂†

in(ω)

]
|0〉q,

(15)

|E±α〉 = exp

[
±α

∫
dω fin(ω, t )C2(ω)n†

in(ω)

]
|0〉n,

and the output mode shape in the spatial domain is

fout (x, t ) =
∫

dω fin(ω, t )C1(ω)eiωx/c. (16)

We define the MW mode shape distortion as 1 − � =
1 − ∫ dx f ∗

in(x) fout (x). For an occupied Rydberg state and
in the strong-coupling region, we have b̂out ≈ −b̂in; thereby
the mode shape suffers negligible distortion, i.e., 1 − � ≈ 0.
However, for an unoccupied Rydberg state, an empty cavity
with a smaller bandwidth has a stronger response to the input
qubit. This is why 1 − � decreases with the increase of κ in
Fig. 4.

VI. FIDELITY

Gate fidelity considering the environmental noise is ob-
tained by F = 〈�ideal|TrE [ρ̂out]|�ideal〉 [71], in which we

R̂π
x |ψFD

R̂π/2
x |ψFD

R̂−π/2
x |ψFD

R̂−π/2
y |ψFD

R̂π/2
y |ψFD

z

x y

|ψFD = |1 R
o /|even

α = 2

0.947 0.945 0.962 0.962 0.946 0.946

0.947 0.945 0.962 0.962 0.946 0.946

0.947 0.945 0.962 0.962 0.946 0.946

0.947 0.945 0.962 0.962 0.946 0.946

0.923 0.923 0.932 0.932 0.924 0.924

0.969 0.967 0.995 0.995 0.968 0.968

FIG. 5. The fidelity of the hybrid quantum gate with input
product states when κs/κ = 10−3. The horizontal and vertical axis
represent optical and MW qubit states, respectively. The color repre-
sents the fidelity values. For illustrative purposes, we define a fiducial
state |ψ〉FD = |1〉R

o /|even〉, and other states are represented rotations
R̂θ

j on the Bloch sphere, where j, θ are the axis index and the rotation
angle.

trace out the noise channel in the output density matrix. Fig-
ure 5 shows the fidelities (considering postselection scheme
for optical qubits) for those processes with separable input
MW and optical states. To demonstrate the quantum nature of
our CZ gate, we represent the input product states by rotations
in the MW/optical Bloch sphere |ψ〉in = |ψ〉o

q ⊗ |ψ〉MW
q =

R̂θ
i |1〉R

o ⊗ R̂θ ′
j |even〉 (see Fig. 5) and the gate operations create

entanglement between optical and the MW state. In comput-
ing the fidelity, we choose the MW cavity loss to be κs/κ =
0.001 [72] and α = √

2, and we leave the mathematical details
of fidelity calculation to Appendix E.

The fidelity after the postselection is degraded by the fol-
lowing factors: (1) the normalized wave-form distortion of
output optical qubits; (2) the decoherence introduced by MW
cavity loss and the MW mode shape distortion introduced
by the cavity dispersive response (see Fig. 4); and (3) the
MW mode shape distortion due to the cQED nonlinearity. The
effect of the latter two factors is plotted in Fig. 6, where the

FIG. 6. The averaged fidelity of the hybrid quantum CZ gate
shown as a function of cavity loss κs and cavity bandwidth κ ,
when gm = 2π × 2.72 MHz, κ = 2π × 2.0 MHz, and γs = 2π ×
4.78 kHz. The solid line and the dashed line are the result obtained
by the full cQED simulation and linear approximation 〈σ̂z〉 = −1/2.
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average fidelity F̄ is obtained by averaging over those input
states shown in Fig. 5. Moreover, in the Appendixes we show
the fidelity for Schrödinger cat state with different coherent
amplitudes α.

VII. CONCLUSION AND OUTLOOK

In summary, we have proposed and analyzed a protocol
for the realization of an optical-microwave hybrid quantum
CZ gate utilizing a Rydberg-based atomic medium. The gate
performance under various noises is studied, and we con-
clude that high gate fidelity in principle can be achieved
with current state-of-the-art parameters. From our analysis
on the parameter settings (for details, see the Appendixes),
the main experimental challenges for this scheme are (i) the
low decoherence rate of Rydberg states requires either spatial
confinement of Rydberg atoms or employ ultracold atoms, and
(ii) a high-Q microwave resonator compatible with Rydberg
atoms to reach the strong cavity-atom coupling.

Our result indicates that with the development of quan-
tum science and technology, such a hybrid quantum gate
could find important applications in future distributed quan-
tum networks. For example, as discussed in the Appendixes,
one can use a photon as an ancilla qubit and combine our
hybrid gate for the realization of a remote quantum logic
gate between MW qubits in distant quantum modules. Such a
remote quantum connectivity is indispensable for distributed
quantum computing with superconducting circuits. Beyond
these specific applications, our work also adds a component
to the Rydberg quantum optics toolbox by demonstrating the
possibility to use Rydberg atoms for the coherent quantum
control between photons at completely different frequency
bands.
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APPENDIX A: HAMILTONIAN FOR 1D
FREE-PROPAGATING EM FIELDS

The Hamiltonian describes a one-dimensional, freely prop-
agating quantum electromagnetic (EM) field derived as
follows. In the frequency domain, the general form of the free
EM Hamiltonian is

Hf = h̄c
∫ ∞

0
dk|k|â†

k âk . (A1)

For a unidirectional field pulse with center spatial frequency
k0, it can be written as

Hf = h̄c
∫ ∞

−k0

dk(k0 + k)â†
k0+kâk0+k . (A2)

Since we are interested in the case k  k0, we can approxi-
mate the above formula as

Hf = h̄c
∫ +∞

−∞
dk(k0 + k)â†

k0+kâk0+k . (A3)

Now we define the Fourier transform of the field operator in z
space:

âz =
∫ +∞

−∞
âk0+ke−ikzdk, âk0+k =

∫ +∞

−∞
âze

ikzdz. (A4)

Substituting them into Eq. (A3) and choosing rotating frame
e−ik0z we obtain

Hf = ih̄c

2

∫ +∞

−∞
dz

[
∂ â†

z

∂z
âz − ∂ âz

∂z
â†

z

]
. (A5)

If the quantization volume has length L, the quantum optical
field operator can be redefined as ε̂ = √

Lâz, which leads to

Hf = ih̄c

2L

∫ +∞

−∞
dz

[
∂ε̂†

∂z
ε̂ − ∂ε̂

∂z
ε̂†

]
, (A6)

which is the Hamiltonian we used in the main text.

APPENDIX B: DERIVATION OF THE OPTICAL QUBIT
EVOLUTION

In the model discussed in the main text, the weak probe
field ε̂ resonantly couples to |b〉 − |a〉, a coherent control field
with Rabi frequency 	(z, t ) couples to the excited level |a〉 −
|c〉, and the Hamiltonian in the interaction picture is [73]

H = ih̄c

2L

∫ +∞

−∞
dz

[
∂ε̂†

∂z
ε̂ − ∂ε̂

∂z
ε̂†

]

− h̄
N∑

j=1

[	(z j, t )σ̂ j
ac + gε̂σ̂ j

bc + H.c.], (B1)

where g is the atom-field coupling constant, and σ̂μυ = |μ〉〈υ|
is the transition operator of the atom from |υ〉 to |μ〉.

To write it in a continuous form, we can introduce the
following operator:

σ̂μυ (z, t ) = 1

n(z)

n(z)∑
j=1

σ̂ j
μυ (z, t ), (B2)

where n(z) � 1 is the sum number of atoms at position z, and∑N
j=1 can be replaced with

∫
dzn(z) in the continuum limit.

Using these continuous atom-field operators, the Hamiltonian
can be written as

Ĥ = ih̄c

2L

∫ +∞

−∞
dz

[
∂ε̂†

∂z
ε̂ − ∂ε̂

∂z
ε̂†

]
−
∫ L

0
dzn(z)

· [h̄gσ̂ab(z, t )ε̂(z, t ) + h̄	(z, t )σ̂ac(z, t ) + H.c.], (B3)

where we assume that the atom’s ensemble has the same
length as L, N is the total number of atoms, and n(z) is
the linear atom number density in propagation direction. The
communication relations of the atomic and field operators are

[σ̂μυ (z, t ), σ̂αβ (z′, t )]

= 1

n(z)
[σ̂μβ (z, t )δυα − σ̂υα (z, t )δμβ]δ(z − z′),

× [ε̂(z, t ), ε̂†(z′, t )] = Lδ(z − z′). (B4)
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The corresponding Heisenberg-Langevin equations are

˙̂σba = −γbaσ̂ba + igε̂(σ̂bb − σ̂aa) + i	σ̂bc + F̂ba,
(B5)

˙̂σbc = −γbcσ̂bc + i	∗σ̂ba − igε̂σ̂ac + F̂ac,

where γμυ is the atom decay rate from level υ to μ, and F̂μυ

is corresponding Langevin noise operators.
The optical qubit propagation equation is as [where we as-

sume the atomic medium is homogeneous, i.e., n(z) = const.
and n(z)L = N](

∂

∂t
+ c

∂

∂z

)
ε̂(z, t ) = igN σ̂ba(z, t ). (B6)

For the proposal discussed in the main text, the initial state
of the first-order perturbation of the equations of motion is

˙̂σba = −γbaσ̂ba + igε̂ + i	σ̂bc + F̂ba,

˙̂σbc = −γbcσ̂bc + i	∗σ̂ba + F̂ac. (B7)

Since the Raman process effectively only involve the two
hyperfine structure levels, we eliminate the excited level and
obtain(

∂

∂t
+ c

∂

∂z

)
ε̃(z, t ) = gN

	∗

(
∂

∂t
+ γbc

)
σ̃bc − gN

	∗ F̂ac,

σ̃bc = −gε̃

	
− i

	

(
∂

∂t
+ γba

)
[
− i

	∗

(
∂

∂t
+ γbc

)
σ̃bc

]

+ 1

	

(
∂

∂t
+ γba

)
Fbc

	∗ + iFba

	
. (B8)

Now we perform the adiabatic approximation to these
equations. Basically, the coherent control field is switch on
and off slowly enough to avoid the transition from a dark to
bright state. This means the terms related to time evolution of
Eq. (B8) can be ignored, and the adiabatic condition can be
expressed as∣∣∣∣ 1

	

∂	

∂t

∣∣∣∣ |	|2
γba

,

∣∣∣∣ 1

	

∂	

∂t

∣∣∣∣ |	|,
∣∣∣∣ 1

	

∂2	

∂t2

∣∣∣∣ |	|2, (B9)

which leads to(
∂

∂t
+ c

∂

∂z

)
ε̂(z, t ) = gN

	∗
∂σ̂bc

∂t
, σ̂bc = −gε̂

	
. (B10)

Further eliminating the σ̂bc gives(
∂

∂t
+ c

∂

∂z

)
ε̂(z, t ) = g2N

|	|2	
∂	

∂t
ε̂ − g2N

|	|2
∂ε̂

∂t
, (B11)

which can be written as(
∂

∂t
+ v

∂

∂z

)
ε̃(z, t ) = βε̃(z, t ). (B12)

Here we define refractive index ng = 1/(1 − η) with η =
g2N/(g2N + |	|2), where the group velocity v and the decay
rate β are

v = c/ng, β = η

	

∂	

∂t
. (B13)

These equations describe an ideal EIT storage. When we re-
duce the control light, the speed of ε̃ is slowed down, which is
the EIT slow-light effect. The writing and retrieving processes
correspond to β < 0 and β > 0, where the control field is
switched off and on adiabatically, respectively.

Next we analyze the imperfections of the EIT storage, e.g.,
the nonadiabaticity and finite γbc, γba. We approximate σ̃bc as
gε̂/	, which leads to

σ̃bc = −gε̂

	
− i

	

(
∂

∂t
+ γba

)[
− i

	∗

(
∂

∂t
+ γbc

)
gε̂

	

]

+ 1

	

(
∂

∂t
+ γba

)
F̂bc

	∗ + iF̂ba

	
. (B14)

Replacing σ̂bc in Eq. (B8) by the above formula and keep the
leading terms, we obtain Eqs. (4–5) in the main text. However,
after the optical field thoroughly passed the atom ensemble,
the noise fields which broaden the atom state should be added
to ε̂ for compensating the bosonic commutation relation. The
optical field operator can be written, after passing the atom
ensemble (after time T ),

ε̂(k, T ) = ε̂(k, 0)exp

{
i
∫ T

0
dt[kv − k3c3D(1 − η)3]

}

exp

{∫ T

0
dt
[
A − k2c2(1 − η)2C

]}+ noise terms,

(B15)

with

A = η

[
1

	

∂	

∂t
− γr1/g′g

]
, D = η

|	|2 ,

C = η

|	|2
[

(2γr1/g′g + γeg) − 2

(
1

	∗
∂	∗

∂t
+ 2

	

∂	

∂t

)]
. (B16)

Here the first exponential factor is a phase shift [denoted as
�T (k)], in which the term ∼kv describes the simple propa-
gation of the qubit pulse in the atomic medium with velocity
v = c/ng, while the D term is the pulse shape distortion due
to dispersion. The second exponential factor is an attenuation
factor [defined as χ (k)].

As a bosonic operator, ε̂ should satisfy the bosonic com-
mutation relation, thereby other degrees of freedom should
be added onto the above formula to conserve the phase space
[74]. Therefore one can treat the noise term using the method
that phenomenologically writes down the noise term with the
coefficient determined by the bosonic commutation relation,
which was developed by Caves [69] for general quantum
amplifiers. For example, for the storage process the atom
operators should be added since the optical field and spin
wave superposed to be the polaritons. However, for the output
optical field from the atom ensemble, we should add to ε̂ those
noise fields n̂ which are associated with various loss channels
and we have

ε̂(k, T ) = χ (k)ei�T (k)ε̂(k, 0) +
√

1 − χ (k)2n̂k, (B17)

where n̂ describes the noise corresponding to all possible
losses. In the following, we will give some discussions on the
physical content of this formula.

Relative phase. In our protocol the two EIT channels could
have different control Rabi frequencies denoted as 	R/L, and
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they also have different single-photon Rabi frequencies gR/L.
Therefore the optical qubits with different polarizations could
have different phases and distortions, which leads to differ-
ent wave-form distortions. Now we discuss these effects as
follows.

The relative propagation phase ∼k(vL − vR) between two
polarizations is

�� = kc
∫ T

0

( |	L(t )|2
|	L(t )|2 + g2

LN
− |	R(t )|2

|	R(t )|2 + g2
RN

)
dt,

(B18)

in which the 	R/L is

	R/L(t ) = 	
R/L
0 f	(t ), (B19)

f	(t ) = 1
2 (2 + tanh[20(t − T ] − tanh[20(t − t0)]). (B20)

To eliminate the phase difference, there are two methods: (1)
we can simply set

	L
0/	R

0 = gL/gR (B21)

in Eq. (B18) so that the relative phase of the two polarizations
would be canceled; (2) if the above condition does not satisfy,
we can introduce a compensation phase in the input/output
path of the optical qubit by applying a phase plate. For exam-
ple, if we choose 	L

0 = 	R
0 = 2π × 30 MHz, our calculations

show the compensation phase is 0.936π rad.
Wave-form distortions. In Fig. 3 of the main text, we have

shown the wave-form distortions of the optical quit pulses due
to the dispersive and loss terms in Eq. (B15), in comparison
with the input wave form. For revealing the distortion details,
let us look at Eq. (B16).

Firstly, it is easy to see that the A term in Eq. (B16)
contributes a global amplitude reduction ∼e−ηγr1/g′gT over the
wave form of the outgoing field. For the |1〉L

o and |1〉R
o states

that are stored in the spin waves |g′〉 − |g〉 and |g〉 − |r1〉,
we have γg′g  γgr1 . This means that the amplitude of |1〉R

o
is globally smaller than that of |1〉L

o over the pulse duration.
This reduction will decrease the gate efficiency, which can be
characterized by ζ = ∫∞

−∞ dx| fout (x)|2. Using our sampling
parameters, we have ζ = 0.997 for |1〉L

o and ζ = 0.492 for
|1〉R

o , respectively.
Secondly, the C/D terms in Eq. (B16) contribute a k-

dependent loss/dispersion which will distort the wave-form
shape. For the |1〉R/L

o qubit, the k-dependent loss is mainly
contributed by γeg in the C term since γr1/g′g  γeg. For
example, for an input Gaussian profile with wave function
fin(k) = e−k2/4σ 2

k /
√

2π , the C term could lead to a diffusion
as

fin(k) → 1√
2πσk

e−k2/4σ 2
k exp

[
−k2

∫ T

0
dtc2(1 − η2)C

]

= 1√
2πσk

exp

[
− k2

4σ̃ 2
k

]
, (B22)

where

1

σ̃ 2
k

= 1

σ 2
k

+ 4
∫ T

0
dtc2(1 − η2)C. (B23)

Apparently, the squared variance decreases/increases in the
k spatial domain. Using the example parameters in our sim-
ulation, the ratio σ̃k/σk for |1〉L

o and |1〉R
o is 1.38 and 1.09,

which is consistent with the result shown in Fig. 3 of the main
text. The gate efficiency reduced by the C term is ζ = 0.745
for |1〉L

o and ζ = 0.928 for |1〉R
o , respectively. Combining the

gate efficiency reduced by the C and A terms leads to the gate
efficiency provided in the truth table of the main text.

The influence of the D term to the wave form is relatively
small; a simple estimation using our sampling parameters can
easily show that we can approximate the influence of the D
term by Taylor expansion as

fin(k) → 1√
2πσk

e−k2/4σ 2
k

[
1 − ik3c3

∫ T

0
dtD(1 − η)3

]
. (B24)

Fourier transformation to the spatial domain leads to the D
correction term to the original wave form as

8
√

π iσ 4
k [2(σkx)3 − 3σkx]e−σ 2

k x2
. (B25)

Using the parameters in our simulation and setting x ∼ 1/σk ,
the orders of magnitude of the ratio between the correction
term Eq. (B25) and the input wave form is 4.67 × 10−4 and
2.70 × 10−4 for |1〉L

o and |1〉R
o , respectively, from which we

can understand that the D-term corrections are very small
compare to the distortion contributed by the C term.

In a short summary, we can conclude that for |1〉R
o , the

distortion is mainly contributed by the A term, which is a
global amplitude reduction of the wave form, e.g., for |1〉L

o
the distortion is mainly contributed by the C term.

Phenomenological description of the qubit states. For a
single-photon state, the output optical quantum state now is
(Û is the evolution operator)

|�〉out = Û
∫

dx fin(x)ε̂†
x |vac〉 = Û

∫
dk fin(k)ε̂†

k |vac〉

=
∫

dk fin(k, T )[χ∗(k)e−i�T (k)ε̂
†
k (0)

+
√

1 − |χ (k)|2n̂†
k]|vac〉, (B26)

where we have used the fact that Û |vac〉 = |vac〉, and the |vac〉
should be the joint Hilbert space of optical qubit and the noise
field. In a more phenomenological way, it can be written as
(despite the unimportant common phase for R/L polarization,
respectively):

|�〉L
out = CoL

1 |1outL〉q ⊗ |0〉L
n + CoL

2 |0〉 ⊗ |1〉L
n ,

|�〉R
out = CoR

1 |1outR〉q ⊗ |0〉R
n + CoR

2 |0〉 ⊗ |1〉R
n ,

(B27)

with

CoL/R
1 =

√∫
dk| fin(k, T )|2|χL/R(k)|2, (B28)

and |CoL
1 |2 + |CoR

2 |2 = 1, which is the normalization condi-
tion.

Since the optical qubit here is a single-photon state, we can
use the postselection detection scheme for many applications.
In the postselection scheme, for the superposition input state
|�〉 = a|�〉L

in + b|�〉R
in, we have postselected the output qubit
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state as

|�〉out = aCoL
1 |1outL〉q + bCoR

1 |1outR〉q. (B29)

If we have balanced the EIT storage process for the optical
qubits with left and right polarizations, that is, CoL

1 = CoR
1 , we

then have

|�〉out = CoR
1 (a|1outL〉q + b|1outR〉q), (B30)

which perfectly matches the ideal qubit state. Therefore, prac-
tically, we can increase the loss of certain channels to balance
these two EIT storage processes at the price of sacrificing the
postselection probability.

APPENDIX C: CAVITY QUANTUM ELECTRODYNAMICS

The microwave (MW) qubit is processed by a cavity QED
system during the optical storage. In the above EIT process,
we use single photon as optical qubits; therefore at most one
atom populates on the Rydberg state |r1〉. In addition, the
wavelength of a MW qubit is much larger than the size of
the Rydberg atom ensemble.

In this case, a MW qubit enters the cavity and reflects from
the cavity. In the rotating frame, the Hamiltonian is (the mi-

crowave cavity is on resonance with the transition |r1〉 → |r2〉)

H = h̄gmâcσ̂r2r1 + h̄
√

κ âcb̂†(0) + h̄
√

κsâcn̂† + H.c., (C1)

where gm is the coupling rate of the single atom to the cavity
field, κ represents the cavity-qubit coupling strength, while κs

represents the MW cavity loss rate.
The Heisenberg equations of motion for the cavity QED

system read

˙̂σr1r2 = −γsσ̂r1r2 + 2igmσ̂zâc +
√

2γsn̂en,

˙̂ac = −igmσ̂r1r2 − κ + κs

2
âc − √

κ âin − √
κsn̂,

b̂out = b̂in + √
κ âc,

(C2)

where n̂en and n̂ are noise induced by the decay of the Rydberg
state and cavity loss, respectively. These equations can be
approximately treated in the strong-coupling region and small
cat-state amplitude (see Sec. D). In the Fourier domain, it has
the following form:

(−iω + γs)σ̂r1r2 (ω) = −igmâc(ω) +
√

2γsn̂en(ω),(
−iω + κ + κs

2

)
âc(ω) = −igmσ̂r1r2 (ω) − √

κ âin(ω) − √
κsn̂(ω). (C3)

Solving these equations in the Fourier domain, we have

âc(ω) =
√

κ b̂in(ω) + √
κsn̂(ω) + igm

√
2γsn̂en(ω)/(−iω + γs)

iω + g2
m/(iω − γs) − (κ + κs)/2

, (C4)

and the input-output relation is

b̂out (ω) = iω + g2
m/(iω − γs) − (κs − κ )/2

iω + g2
m/(iω − γs) − (κs + κ )/2

b̂in(ω) +
√

κκs

iω + g2
m/(iω − γs) − (κs + κ )/2

n̂(ω)

− igm
√

2κγs/(iω − γs)

iω + g2
m/(iω − γs) − (κs + κ )/2

n̂en(ω). (C5)

The second and third term correspond to the noise injection from the cavity loss and the Rydberg state decay. Using Cave’s
approach [69], we can phenomenologically write a noise term ∝ n̂in which represents both these contributions as

b̂out (ω) = C1(ω)b̂in(	) + C2(ω)n̂in(ω), (C6)

where n̂in represents all possible noise contributions, and

C1(ω) = iω + g2
m/(iω − γs) − (κs − κ )/2

iω + g2
m/(iω − γs) − (κs + κ )/2

,

C2(ω) = iω − γeff

iω − γs

√
κκs

iω + g2
m/(iω − γs) − (κs + κ )/2

, (C7)

|C1(ω)|2 + |C2(ω)|2 = 1,

with γeff = √γ 2
s + 2g2

mγs/κs.
Let us consider that the input state is a Schrödinger cat state:

|�〉MW
in = e−α2/2

[
exp

(
α

∫
dx fin(x, t )b̂†

in(x)

)
+ (α → −α)

]
|0〉qn, (C8)
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where |0〉qn = |0〉q ⊗ |0〉n is the joint vacuum state of MW qubit and the noise field. The MW qubit-noise joint state evolution
can be written as (we ignore the normalization factor for brevity)

|�〉out = Û |�〉MW
in =

[
exp

(
α

∫
dx fin(x, t )b̂†

out (x)

)
+ (α → −α)

]
|0〉qn = |�α〉q

out ⊗ |Eα〉 + |�−α〉q
out ⊗ |E−α〉, (C9)

where

|�±α〉q
out = exp

[
±α

∫
dω fin(ω, t )[C1(ω)b̂†

in(ω)

]
|0〉q|E±α〉 = exp

[
±α

∫
dω fin(ω, t )C2(ω)n†

in(ω)

]
|0〉n. (C10)

In the spatial domain, the mode shape function fout (x, t ) is

fout (x, t ) =
∫

dω fin(ω, t )C1(ω)eiωx/c. (C11)

The input and output pulse shapes are given in Fig. 4 of the
main text. For the case when the Rydberg state is occupied,
the mode function mismatch between the input and output
fields are negligible. However, when the Rydberg state is
unoccupied, there will be a significant mismatch. This fact can
be easily seen from Eq. (C7). For example, in the occupied
case, the g2

m term is much larger than the loss terms, so we can
approximate

b̂out (ω) ≈ iω + g2
m/(iω − γs)

iω + g2
m/(iω − γs)

b̂in(ω) = b̂in(ω), (C12)

which means C1 = 1 and no mode function mismatch. When
gm decreases and thereby κ/gm increases, the system will
deviate from the strong-coupling region, and the wave-form
mismatch 1 − � (defined in the main text) becomes larger.
This explains the feature of the solid curves in Fig. 4 of the
main text.

However, when the Rydberg state is empty, gm = 0, and
Eq. (C7) is

b̂out (ω) = iω + κ/2

iω − κ/2
b̂in(ω) ≈ −ei4ω/κ b̂in(ω), (C13)

there will be a phase delay whose magnitude is proportional
to 1/κ . When κ increases, the mismatch will decrease, which
explains the features of dashed lines in Fig. 4 of the main text.

APPENDIX D: LINEARIZATION OF CQED DYNAMICS

In the above derivation, we approximate the cQED dy-
namics by linearization. Having a linearized dynamics of the
cQED system is also essential for a high-fidelity processing of
the MW Schrödinger cat qubit; otherwise, the nonlinear dy-
namics of the cQED system will distort the MW Schrödinger
cat qubit. In this Appendix two important points of this linear
approximation are discussed.

Firstly, we discuss the validity conditions of this linearized
dynamics: (1) the coherent amplitude α in the cat state
cannot be too large (but also cannot be too small for appli-
cations in quantum information science, usually α2 � 2); (2)
strong-coupling region g2

m/κγs � 1. The errors of the fidelity
calculated by linearized cQED dynamics and the simulation
result without linearization have been shown in Fig. 7. It is
clear that the validity of the linear approximation 〈σ̂z〉 ≈ −1/2
will be degraded by decreasing the coupling strength gm and
increasing the cavity bandwidth κ and the coherent amplitude

α. In the following we give have a detailed analysis of the
validity of this linear approximation.

Our approach to examine the validity of linear approxi-
mation is to check the consistency of this approximation by
substituting the result calculated under 〈σ̂z〉 ≈ −1/2 to the σ̂z

equation of motion:

˙̂σz(t ) = igmσ̂r1r2 (t )â†
c (t ) + H.c. (D1)

Here, by Fourier-transforming the result obtained in the
Appendix C, we have

σ̂r1r2 (t ) =
∫

igm
√

κe−iω(t−t ′ )

−ω2 − i(κ/2 + γs)ω + κγs/2 + g2
m

âin(t ′)dωdt ′.

(D2)

In our system we can neglect the ω2 term as an approximation
since we have the long pulse as the initial state:

σ̂r1r2 (t ) = igm
√

κ

(κ/2 + γs)

∫
e−iω(t−t ′ )

−iω + �
âin(t ′)dωdt ′, (D3)

with

� = κγs/2 + g2
m

(κ/2 + γs)
. (D4)

Solving the integral leads to [where σ̂r1r2 (0) = 0 is assumed]

σ̂r1r2 (t ) = igm
√

κ

γs + κ/2

∫ t

−∞
e−�(t−t ′ )âin(t ′)dt ′. (D5)

The intracavity MW field â(t ) is given by

âc(t ) =
∫ √

κ (iω − γs)e−iω(t−t ′ )

−ω2 − i(γs + κ/2)ω + g2
m + κγs/2

âin(t ′)dωdt ′

= √
κ

∫ t

−∞
e−(γs/2+κ/4)(t−t ′ )[η sin χ (t − t ′)

− cos χ (t − t ′)]âin(t ′)dt ′, (D6)

with

χ =
√

−(γs + κ/2)2 + 4
(
g2

m + κγs/2
)
/2,

η = (κ/2 − γs)/
√

−(γs + κ/2)2 + 4
(
g2

m + κγs/2
)
. (D7)

For an orders-of-magnitude estimation, let us assume that the
input field is a steady coherent field |α〉. Then the above two
integrals can be explicitly calculated and we have

〈σ̂r1r2〉 = igm
√

κα

(γs + κ/2)�
, 〈âc〉 = −2

√
καγs

2g2
m + κγs

. (D8)
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FIG. 7. The errors of fidelity calculation using the linear approximation 〈σ̂z〉 ≈ −1/2. The dashed and solid curve are the results under
linear approximation, and the results obtained by full simulations, respectively. The left/right panel corresponds to κs = 0.001κ and κs =
0.01κ , respectively. The three rows correspond to α = 1[(a), (b)],

√
2[(c), (d)], and 2[(e), (f)], respectively. It is clear that the error increases

with the increasing of κ/gm and α, which is well consistent with our theoretical analysis.

It is clear that cavity field is very small for typical parameters;
this reflects the fact that when the Rydberg state is occupied,
the MW fields feel a reflection almost without phase delay.
Then, to leading order, the correction to 〈σ̂z〉 ≈ −1/2 is given
by

〈δ ˙̂σz〉 = 2κg2
mγs(

g2
m + κγs/2

)2 α2
in ≈ 2κγs

g2
m

α2
in. (D9)

Clearly, when we have large enough “cooperativity” g2
m/κγs

and small enough α, the error to the linear approximation can
be tiny. This result has a transparent physical explanation,
since larger cooperativity means a stronger Purcell effect,
which tends to deexcite the atom state |r2〉.

Secondly, we discuss the physical scenarios of this lin-
earized dynamics. For example, when the input optical qubit
is (|1R〉 + |1L〉)/

√
2, the spin wave can be recorded in the

superposition of |r1〉 − |g〉 and |g′〉 − |g〉. This means that the

Rydberg state is either being occupied at |r1〉 or simply empty.
Therefore, as long as the small α and large cooperativity
conditions are satisfied, the linear approximation 〈σ̂z〉 = −1/2
can be applied to both of these two situations. As an example,
suppose we have joint input state |ψ〉 = (|1R〉 + |1L〉)/

√
2 ⊗

|α〉. Then the evolution can be written (in the lossless case) as

Û |ψ〉 = 1√
2
|1R〉 ⊗ Ûexp

[
α

∫
dx fin(x)b̂†

in(x)

]
|0〉

+ 1√
2
|1L〉 ⊗ Ûexp

[
α

∫
dx fin(x)b̂†

in(x)

]
|0〉

= 1√
2
|1R〉 ⊗ exp

[
α

∫
dx fin(x)b̂†gm �=0

out (x)

]
|0〉

+ 1√
2
|1L〉 ⊗ exp

[
α

∫
dx fin(x)b̂†gm=0

out

]
|0〉, (D10)
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where b̂gm=/�=0
out is given in Eq. (C6), where gm = 0 and gm �= 0

correspond to the empty or occupied cavity, respectively. This
method is used in computing the fidelity of our system.

APPENDIX E: FIDELITY

For those transformations in the truth table of which no
entanglement was generated, the gate fidelity can be sim-
ply calculated as F = FMW × Fopt, and the result has been
shown in the truth table in the main text. However, a truth table
can be simulated by the classical computer. For a quantum CZ
gate with the gate matrix

ÛCZ =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎦, (E1)

there exists transformations which generate optical-MW qubit
entanglement. For example,

ÛCZ[(|1〉L + |1〉R) ⊗ (|even〉 + |odd〉)]

= |1〉L ⊗ (|even〉 − |odd〉) + |1〉R ⊗ (|even〉 + |odd〉).

(E2)

Therefore it is of crucial importance to consider the fi-
delity of these entanglement generation processes. We plot
the resultant fidelity in Fig. 8 for two different MW cavity
losses κs/κ = 0.01, 0.001 and different coherent amplitudes
of the Schrödinger cat state α = (1,

√
2, 2), where we use the

rotation operators on the Bloch sphere (see the main text) to
represent different optical and MW input states (see Fig. 8).
The operation of the quantum CZ gate on the separable input
states can produce entangled states. In the following we will
briefly discuss the way we compute the fidelity.

The separable input qubit state is

|ψ〉in
q = (c1|1〉R + c2|1〉L ) ⊗ (c3|even〉 + c4|odd〉), (E3)

where

|even〉 = 1√
2 + e−2α2

(|α〉 + | − α〉),

|odd〉 = 1√
2 − e−2α2

(|α〉 − | − α〉). (E4)

Then the output state after the postselection is

|�〉out = A+CoR
1 |1outR〉1|αoutR〉 ⊗ |g〉|EαR〉

+ A−CoR
1 |1outR〉1| − αoutR〉 ⊗ |g〉|E−αR〉

+ B+CoL
1 |1outL〉1|αoutL〉 ⊗ |g〉|EαL〉

+ B−CoL
1 |1outL〉1| − αoutL〉 ⊗ |g〉|E−αL〉, (E5)

where we have omitted those terms where the optical qubit is
lost to the environment and

A± = c1c3√
2 + e−2α2

± c1c4√
2 − e−2α2

,

B± = c2c3√
2 + e−2α2

± c2c4√
2 − e−2α2

. (E6)

The ideal output field is given by
|ψ〉ideal

q =
∑
±

A±|1〉R ⊗ | ± α〉 + B±|1〉L ⊗ | ± α〉. (E7)

The output qubit density matrix after postselection is

ρout
q = Trg,E [|�〉out〈�|out], (E8)

where we trace out the atom and environmental degrees of
freedom. Thus the fidelity is given by

F = Tr
[
ρ̂out

q ρ̂ideal
]
. (E9)

The result is quite cumbersome and can be expressed as

F =
ab,cd∑
i j,mn

fi j fmn fab fcd〈Emn|Ei j〉〈aout|1outi〉〈1outm|cout〉

〈(−1)about|(−1)i1out j〉〈(−1)m1outn|(−1)cdout〉, (E10)

where the indices (i, m, a, c) represent the polarizations (R, L)
and ( j, n, b, d ) represent (α,−α), and we define (−1)L/R =
(−/+)1. The f coefficient is the matrix element of F :

F =

⎛
⎜⎝

A+
A−
B+
B−

⎞
⎟⎠⊗ (A∗

+ A∗
− B∗

+ B∗
−), (E11)

where the row/column order is (R, L, α,−α).
In computing the above fidelity, we need to use the follow-

ing inner product of the MW environment states:

〈Eαi|E−α j〉 = exp

[
−α2

∫
dω| fin(ω)|2C∗

2 j (ω)C2i(ω)

]
,

(E12)

where C2i(ω) is given by Eq. (C7) with gm = / �= 0 when i =
L/R, respectively.

As a special case, the fidelity for the truth table can be
easily calculated as follows. The optical part Fopt, with the
ideal output field

|�〉ideal
out =

∫
dk fideal(k)ε̂†

k (0)|vac〉, (E13)

can be written as

Fopt = ∣∣〈� ideal
out

∣∣�out
〉∣∣2

=
∫

dk f ∗
ideal(k

′) fin(k, T )χ∗(k)e−i�T (k). (E14)

The MW part, FMW, is given by

F = 〈�|MW
in ρ̂

q
out|�〉MW

in

= 4N (1 + ξ )(cos 2α2�i + cosh 2α2�r ), (E15)

where we have

� =
∫

dω| fin(ω)|2C∗
1 (ω) = �r + i�i,

ξ = 〈Eα|E−α〉 = exp

[
−α2

∫
dω| fin(ω)C2(ω)|2

]
(E16)

and the normalization factor

N = exp
[− 2α2

0

]/(
2 ± exp

[− 2α2
0

])2
. (E17)

The final fidelity for the truth table is simply F = FMW ×
Fopt.
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FIG. 8. The fidelity of the hybrid quantum gate for the CZ gate with separable input states |ψ〉o
q ⊗ |ψ〉MW

q when κs = 10−3κ [(a), (c), (e)]
and κs = 10−2κ [(b), (d), (f)]. The vertical and horizontal axis represent optical qubit states |ψ〉o

q and the MW qubit states |ψ〉MW
q , respectively.

The color represent the fidelity values. For illustrative purposes, we chose a fiducial state as |ψFD〉 = |1〉R
o or |even〉, and other states are

represented by operations on the Bloch sphere (see the main text) R̂θ
j , where j is the axis index and θ is the rotation angle. The concrete fidelity

value of each input state is also marked.

APPENDIX F: PARAMETER SETTING

Sampling parameters. In choosing parameters, the strong
interaction strength of the cavity QED system leads to some
constraints to other system parameters. The Rabi frequency of
cQED systems driven by a single photon in continuous mode
is given by

gm =
√

h̄ωc

2ε0Vc

pr1r2

h̄
u(r), (F1)

where pr1r2 is the Rydberg dipole transition amplitude, and
u(r) is the cross-sectional field distribution. For the system to

work in the strong-coupling region where gm/κ � 1, the cav-
ity bandwidth κ cannot be too large, which means the cavity
damping time cannot be too short. At the same time, for a
high-fidelity gate, the lifetime of the atom state |r1〉 cannot be
shorter than the cavity damping time, that is, γr1g < κ  gm

is required.
Reducing the temperature of the atomic ensemble can lead

to a small γr1g, since the thermal Doppler effect of atoms
mainly contributes to γr1g as γr1g ≈ (kge − ker1 )kBT/m. Since
the single-photon optical qubit at most excites only one atom
to the Rydberg state, therefore the collective effect discussed
in [75] has no enhancement to γr1g. If we bring the temperature
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FIG. 9. Upper plane (a), (b): The fidelity of the hybrid quantum gate for CZ gate with separable input states |ψ〉o
q ⊗ |ψ〉MW

q for the sampling
parameters when n is around 40 and for α = 2. The fidelity is apparently improved compared to the results shown in Fig. 8 due to less deviation
from linear cQED dynamics. In this case, the Schrödinger cat state α = 2 can also achieve a high gate fidelity. The dashed and solid curve are
the results under linear approximation and the results obtained by full simulations as shown, (c) and (d), respectively.

down to 0.2μK, we will get γr1g = 2π × 3.5 kHz. Previous
work for achieving the strong electric dipole moment of the
Rydberg atom proposed to use a MW resonator based on
superconducting circuits [34,39,68]. This method could also
be useful for our proposal. We assume that the grounded
superconducting electrodes locate at distance wc = 25μm,
which confines the cavity field within the effective volume
Vc = ∫ d3r|u(r)|2 ≈ π

2 ω2L and the cavity length is taken to
be L = 0.45 cm. The relevant transition dipole matrix element
from |r1〉 to |r2〉 is 1898a0e. We also set the distance between
the atom ensemble and the coplanar superconducting circuit
surface as determined by the mode function equation u(r) ≈
e−1. Then we can obtain gm = 2π × 2.723 MHz. Actually,
the gm can be even larger as discussed in [68]. In Fig. 8 it is
clear that the fidelity depends on the value of κs. For coplanar
superconducting resonators, recent state-of-the-art methods
can achieve the loss level to κs/κ = 0.001 (i.e., the internal
quality factor to be 106–107), where the loss is dominated by
the interfacial and surface two-level states (the so-called TLS
loss) [72].

Scaling with principle quantum number and further dis-
cussions. In the main text, as an example the simulation is
performed for the system where the principle quantum num-
ber for the Rydberg state is chosen to be n = 69. This case
corresponds to the 10-GHz MW frequency, which is widely

used in MW quantum optics. Here we further investigate the
dependence of the system performance on n. The scaling of
parameters of n in Eq. (F1) can be summarized as follows.
The dipole moments pr1r2 ∝ n2, and the resonant frequency
ωc ∝ 1/λ ∝ n−3. The volume Vc ∝ Aλ ∝ An3, where A is the
cross-sectional area of the MW field. Therefore we can con-
clude that gm ∝ 1/n, which means the interaction strength can
be increased by decreasing n.

There are some advantages of using a Rydberg state
with smaller n. (1) A Rydberg state with smaller n has a
smaller dipole moment, which could reduce the decoher-
ence rate due to the interaction with stray electric fields.
(2) Smaller n and a proper choice of the l can increase
the coupling strength gm so that the linear QED dynamics
can be preserved for a Schrödinger cat state with higher
α, which is very important for future quantum information
processing. As an example, we have computed the case
with the amplitude of the MW Schrödinger cat state to be
α = 2 and the Rydberg states are |r1〉 = |40D, F = mF =
4〉, |r2〉 = |39F, F = mF = 5〉 with gm = 2π × 6 MHz; the
result is shown in Fig. 9. It is clear that the fidelity
improves compared to α = 2 in Fig. 8, and the cQED
dynamics driven by the α = 2 Schrödinger cat state is
much less deviated from the linear approximation due to
larger gm.
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Finally, we want to emphasize here that our theoretical
analysis is to reveal the physical features and potential of our

protocol, while the final experimental realization needs more
complete and realistic considerations.
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