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Implementation of discrete positive operator valued measures on linear optical systems
using cosine-sine decomposition
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Positive operator valued measurements (POVMs) play an important role in efficient quantum communication
and computation. While optical systems are one of the strongest candidates for long distance quantum com-
munication and information processing, efficient methods to implement POVMs in these systems are scarce.
Here we propose an all-optical scheme to implement an arbitrary POVM using linear optical components on
m-dimensional Hilbert space of internal degrees of freedom. Linear optical nature of the proposed scheme makes
it efficient and robust. We show how the scheme can be applied for state tomography and for preparing arbitrary
mixed states.
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I. INTRODUCTION

Projective measurements play an important role in infor-
mation theoretic applications of quantum theory. However,
they are not the most general type of measurements or even
the optimal ones in most cases [1,2]. For example, in quan-
tum optics, the homodyne and heterodyne measurements [3,4]
routinely implemented in the laboratory cannot be modeled as
projective measurements. The most general class of measure-
ments are mathematically represented as quantum instruments
[5–8] with positive operator valued measures (POVMs) [1,9]
being a special case of them. POVMs and their applications
have been theoretically studied [10–14]; however, their ex-
perimental implemention on optical systems still remains a
challenge. In this paper we propose a scheme to implement
an arbitrary POVM on optical systems. The scheme uses the
Naimark dilation theorem and cosine-sine (CS) decomposi-
tion [15] in order to realize the POVMs.

POVMs have proven to be advantageous in quantum state
discrimination [2,16,17], quantum metrology [18], quantum
state and process tomography [19,20], coherent controls [21],
local filtering operations [22], and more recently in quantum
key distribution protocols [23,24]. They are also significant
in exploring foundational aspects including Bell nonlocality
[25,26] and quantum contextuality [27] where it is not clear
how these scenarios hold if POVMs are considered instead of
projective measurements. Specifically, in the field of quantum
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contextuality, where experimental demonstrations have only
been performed for projective measurements, while experi-
mental signatures of the same for POVMs is still an ongoing
research [28]. An efficient technique to perform arbitrary
POVMs would greatly benefit these fields. Photonic systems
are becoming an important platform for quantum information,
communication, and computation. Therefore, it is of tanta-
mount importance to have efficient schemes to realize POVMs
on these systems.

In general, POVMs can be implemented on a quantum
system by coupling the system with an ancillary system and
performing projective measurements on the combined system.
POVMs have been experimentally realized on optical systems
for quantum state discrimination [29,30], quantum state es-
timation [31], and entanglement distillation [32]. However,
these schemes require the use of a large number of beam
splitters (BSs), wave plates (WPs), and other optical elements.
It is also not known whether they are optimal or not. Several
theoretical protocols have also been put forward for their
optical implementation using polarization degrees of freedom
of single- and two-photon [33–35] quantum walks [36] and
also on circuit based quantum computers [37]. There also
exist theoretical protocols to simulate arbitrary POVMs on
a d-dimensional quantum system using classical randomness
and postselection [38,39]. However, an efficient experimental
implementation of the same has not yet been done. Further,
these theoretical protocols only succeed probabilistically, with
lower success probability for higher dimensions. Techniques
to implement arbitrary POVMs deterministically for any di-
mension of Hilbert space on optical systems is unknown. This
limits their applicability in quantum information and commu-
nication tasks.

In this paper we propose an efficient, scalable, and an
all-optical scheme to implement an arbitrary POVM on
optical systems using unitary operations and projective mea-
surements. We use the Naimark dilation theorem and CS
decomposition to realize the POVMs. Our scheme requires
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only 2(n − 1) number of balanced BS and other simple linear
optical elements to realize an n-outcome POVM. Since all the
components required are linear, this makes our scheme de-
terministic and efficient. We explicitly provide simple optical
circuits for the implementation of two-outcome POVMs and
symmetric informationally complete POVMs (SIC-POVMs)
on a single qubit and provide a method for realizing an
arbitrary mixed state of a photonic quantum system which
can be readily implemented in a laboratory with the current
technology.

This paper is organized as follows: In Sec. II we review
the concept of POVMs and the CS decomposition [15]. We
also discuss in detail the optical setup and the allowed opera-
tions on the internal and external degrees of freedom of light.
In Sec. III we present our scheme to implement n-outcome
POVMs and the applications of the scheme are presented in
Sec. IV. We conclude in Sec. V.

II. BACKGROUND

In this section, we present the relevant background required
for understanding the results in the paper. We start with dis-
cussing the optical systems considered in this paper. Here we
discuss the external and internal degrees of freedom of light
and the allowed unitary operations on them. We also review
the concepts of POVMs and the CS decomposition.

A. Optical systems

In this paper we primarily focus on implementing POVMs
on an optical system using external and internal modes of
light. Throughout the paper, the spatial modes of light are
regarded as an external degree of freedom (DoF), while po-
larization and orbital angular momentum (OAM) modes as
internal. We present a scheme to implement an n-outcome
POVM on the internal DoF using spatial modes as ancilla
systems. Although the current scheme works for any internal
DoFs with an arbitrary Hilbert space dimension, we assume
that one is capable of experimentally implementing unitary
operations on any internal DoF of choice. This is apparent in
the OAM DoF where it is still a challenge to experimentally
implement arbitrary local unitaries on them.

Any arbitrary unitary operation U (N ) on N-spatial modes
can be applied using the prescription given by Reck et al.
[40]. In this prescription, U (N ) is decomposed using O(N2)
balanced beam splitters (BBSs) and phase plates. The action
of a BBS on two spatial modes is represented by the matrix

B = 1√
2

(
1 i
i 1

)
, (1)

and the action of a phase plate can be written as

P (θ ) =
(

1 0
0 eiθ

)
, (2)

for any arbitrary real parameter θ . One can easily see that any
U(2) operator W (up to an overall phase) can be realized using
three phase plates and two BBSs as

W = P (θ1)BP (θ2)BP (θ3), (3)

which represents a Mach-Zehnder interferometer.

The polarization DoF forms a two-dimensional vector
space spanned by two orthogonal polarization states. All the
normal preserving operation on the polarization states span
the SU(2) group. Some examples of such operations are half-
wave plates (HWPs) and quarter-wave plates (QWPs), whose
matrix form in the horizontal and vertical polarization states
basis reads [41]

H (θ ) = e−iπ/2

(
cos(2θ ) sin(2θ )
sin(2θ ) − cos(2θ )

)
, (4)

Q(θ ) = e−iπ/4

(
cos2 θ + i sin2 θ (1 − i) sin θ cos θ

(1 − i) sin θ cos θ i cos2 θ + sin2 θ

)
.

(5)

Here, θ is the angle between the fast axis of the WP and the
horizontal axis. An arbitrary SU(2) operation on the polariza-
tion states can be realized using just one HWP and two QWPs
[42–44].

Another interesting DoF of light is the OAM. Laguerre
Gauss modes are the eigenmodes of the paraxial wave equa-
tion, and are represented by two indices −∞ < � < ∞ and
0 � p < ∞. For p = 0, � characterizes the orbital angular
momentum in the light beam (or single photon) [45]. Such
states are known as OAM states of light and have infinitely
many orthogonal states. Such states are highly sought after in
quantum information and communication tasks due to their
large Hilbert space. However, while in theory it is possible to
implement any arbitrary transformation on OAMs, the meth-
ods to realize such transformations are not known.

B. Quantum measurements

The most general measurements in quantum theory are
represented by a mathematical model in which the system of
interest is coupled to a probe via some channel. Later on, a
projective measurement is performed on the probe only. Due
to the coupling between the probe and system, it is possible to
infer information about the state of the latter by a projective
measurement on the former. Such models are called quantum
instruments [5–8].

In this paper, we look at a subclass of measurement models
having a discrete number of outcomes in which the coupling
channel between the probe and system is taken to be a unitary
transformation. Such measurements are known as POVMs
with immense scope of application in quantum information,
as has been discussed earlier.

POVMs consist of a set of N positive operators M =
{E0, E1, . . . , EN−1} known as effects acting on the m-
dimensional Hilbert space H, such that Ei � 0 ∀ i and∑N−1

i=0 Ei = 1. There are three levels of descriptions of a quan-
tum measurement which are the following:

(i) In the first level of description, only the statistics of the
outcomes of the POVM are of interest with only the measure-
ment effects {Ei} being fully specified. The probability of the
ith measurement outcome is given by pi ≡ 〈Ei〉 = Tr(ρEi ),
i.e., the expectation value of the effect Ei.

(ii) The second level of description for quantum measure-
ments involves the state update rules after the measurements.
In this level, we specify the measurement operators Ki j such
that the ith measurement outcome results in the transformation
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of the system’s state

ρ ′ =
∑

j Ki jρK†
i j

Tr(Ki jρK†
i j )

, (6)

and the probability for such event is given by Tr(Ki jρK†
i j ). The

relation between the effects Ei and the measurement operators
Ki j reads

Ei =
∑

j

K†
i jKi j . (7)

(iii) In the third level of description, the detailed interaction
between the system and the probe is specified along with the
initial state of the probe. If the net effect of this interaction is
represented by joint a unitary operator USP acting on the sys-
tem and probe, then the general transformation of the system
plus probe is written as

ρ ′
SP = USP(ρS ⊗ σP )U †

SP. (8)

Here the subscripts S and P stand for system and probe, re-
spectively. σP = ∑

j q j |φ j〉 〈φ j | is the initial state of the probe
where |φ j〉 and q j are the eigenvectors and eigenvalues of σP,
and ρS is the initial state of the system. The application of
the unitary operator is followed by a projective measurement
on the probe in an orthonormal basis {|i〉}. The measurement
operators Ki j and the unitary operator USP is related as

Ki j = √
q j 〈i|USP |φ j〉 . (9)

Hence, the measurement operators Ki j contain information
about the interaction between the system and the probe as well
as the initial state of the probe.

For the special cases, when the probe is in a pure state
initially, i.e., σB = |0〉〈0| the measurement operators become
Ki = 〈i|USP |0〉 and the effects read Ei = K†

i Ki. Such mea-
surements are purity preserving measurements as in each
measurement outcome the system state is a pure state if ini-
tially the system was in pure state.

Although the state update rule given in Eq. (6) is more
general, for the rest of the paper we deal with measurement
operators and their unitary equivalents for the choice of pure
probe states. This makes some of the calculations easier, while
keeping the scheme we present is general enough to also allow
for mixed ancillary states.

Any POVM measurement described according to the sec-
ond level with only the measurement operators {Ki} specified,
can be realized as a joint unitary evolution of the system state
ρS coupled with an ancilla initialized in the state |0〉〈0|A, fol-
lowed by a projective measurement on the latter with elements
{�i = |i〉 〈i|}, where {|i〉} is an orthonormal basis for the finite
dimensional Hilbert space of the ancilla. If the joint unitary
operator is U , then the probability to obtain the ith outcome
on the state ρAS = |0〉〈0|A ⊗ ρS is then given by

P(i) = Tr(�i ⊗ 1[U (|0〉〈0|A ⊗ ρS )U †])

= Tr(K†
i KiρS ), (10)

where Ki = 〈i|U |0〉. Any unitary matrix U of the form

U =

⎛
⎜⎜⎝

K0 A1,1 . . . A1,N−1

K1 A1,1 . . . A2,N−1
...

...
. . .

...

KN−1 AN,1 . . . AN ...N−1

⎞
⎟⎟⎠ (11)

will result in the measurement operators Ki. Since we are
working in the second level of description of POVMs, the
matrix U is not unique and the m × m matrices Ai, j can be
chosen arbitrarily as long as U is unitary.

Projective measurements are a special case of POVMs
where Ei’s are one-dimensional projectors with an additional
constraint Tr(EiEj ) = δi j , which states that the outcomes form
an orthonormal basis. Unlike a nondegenerate projective mea-
surement, the number of outcomes in a POVM need not be
equal to the dimension of Hilbert space of the system and
can also be continuous. For example, a measurement of the
direction of spin-1/2 particles is a POVM with a contin-
uous spectrum of outcomes. Moreoever, such POVMs can
be transformed into a random choice of measurements with
a finite number of outcomes [46]. However, dealing with
measurements having a continuous set of outcomes including
homodyne and heterodyne measurements is beyond the scope
of this paper, while we primarily focus on discrete outcome
measurements only. We implement these POVMs using uni-
tary transformations and projective measurements.

An important class of POVMs is called SIC-POVM. The
measurement effects for SIC-POVMs are proportional to one-
dimensional projectors. For a single qubit the SIC-POVM
consists of the operators M = { 1

2�0,
1
2�1,

1
2�2,

1
2�3},

where �i = |ψi〉〈ψi|, such that

Tr(�i� j ) = 2δi j + 1

3
, ∀i, j ∈ {0, 1, 2, 3}. (12)

The corresponding measurement operators for this SIC-
POVM can be chosen as Ki = 1√

2
�i. SIC-POVMs are known

to be important for many quantum information processing
tasks [47,48] and quantum measurements [19,49]. For exam-
ple, one can perform a full state tomography for a single-qubit
state ρ by estimating the probabilities pi = Tr(ρK†

i Ki ) of
various outcomes of the SIC-POVM given above. From these
outcome probabilities and information about the SIC-POVM
effects M one can reconstruct the density operator ρ.

C. CS decomposition

CS decomposition is a powerful method to decompose an
arbitrary unitary operator U into smaller unitaries and cosine-
sine (C) matrices [15]. The most notable application of this
decomposition is in the optical systems where the smaller
matrices correspond to the operations on the internal degree
of freedom of light such as polarization and OAM and the
CS matrices correspond to generalized Mach-Zehnder inter-
ferometers.

CS decomposition states that an arbitrary (m + n) ×
(m + n) unitary matrix Um+n (n � m) can be decomposed into
n × n and m × m unitaries and a CS matrix as [15]

Um+n =
(

Lm 0
0 L′

n

)
(S2m ⊕ 1n−m)

(
R†

m 0
0 R′†

n

)
, (13)
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FIG. 1. An optical setup to implement a two-outcome POVM.
Here the two wires represent the two spatial modes and the inter-
nal degrees of freedom are inherent in each wire. The operations
R†

m, Lm, and L′
m act only on the internal modes in their respective

spatial modes. The S2m operator is realized using two BBSs and two
WPs. Finally, one performs the intensity measurement on the two
spatial modes which yields the probability of the two measurement
outcomes. This optical setup can implement a discrete valued two-
outcome POVM only.

where S2m is the CS matrix given as

S2m =
(

Cm −Sm

Sm Cm

)
. (14)

Here Cm = diag{cos θ1, cos θ2, . . . , cos θm} and Sm =
diag{sin θ1, sin θ2, . . . , sin θm}. The matrix S2m can be further
simplified as

S2m = (B2 ⊗ 1m)(�m ⊕ �†
m)(B†

2 ⊗ 1m), (15)

where

B2 = 1√
2

(
1 i
i 1

)
, (16)

�m = diag(eiθ1 , eiθ2 , . . . , eiθm ). (17)

Since Lm, L′
n, R†

m, R′†
n are unitary, the CS decomposition

can be applied iteratively to break the unitaries into smaller
dimensional unitaries, as is explained in detail in Ref. [15]. In
optical systems, B2 ≡ B represents the BBS and the �m ma-
trix corresponds to the phase operation on the internal degree
of freedom. For m = 2, it can be seen that the phase operation
corresponds to a WP. Hence, the CS matrix represents a gen-
eralized Mach-Zehnder interferometer. The unitary operations
Lm, L′

n, R†
m, R′†

n are the operators acting on the internal degrees
of freedom of light. These unitaries are applied in a particular
path of beam. Hence, they take on the form of control unitaries
and are of the form

L = |0〉〈0| ⊗ Lm + |1〉〈1| ⊗ L′
n, (18)

with a similar control operator for the unitaries R†
m and R′†

n .
As can be seen the spatial mode controls which unitary op-
eration acts on the internal degrees of freedom. Such control
operations can be easily handled on optical systems, where
the corresponding operators can simply act on the photons in
different modes locally as shown in Fig. 1.

III. RESULTS

In this section, we describe the scheme to implement an
arbitrary POVM on optical systems based on the second level
of description of quantum measurements in which the mea-
surement operators are specified. Here the internal DoFs of
photons span the Hilbert space for the systems and the spatial
modes serve as the ancilla. We use Naimark dilation theorem
and CS decomposition to implement the POVM. In order to
implement an n-outcome POVM we require n − 1 BS setups
along with unitary transformations on the internal DoFs in
each of the spatial modes, irrespective of the dimension of the
system. As an example, we present a scheme single-shot state
tomography of a quantum state.

We start with the simplest case of POVM, i.e., a two-
outcome POVM in Sec. III A and generalize this result to
n-outcome POVM in Sec. III B.

A. Two-outcome POVMs

Consider a two-outcome POVM specified according to the
second level of description of measurement with measurement
operators {K0, K1} acting on an m-dimensional Hilbert space.
Following the discussion in Sec. II B we can write the unitary
acting on the system and a two-dimensional ancilla as

U =
(

K0 A
K1 B

)
, (19)

where A and B are appropriately chosen complex matrices of
dimension m × m such that the matrix U is unitary. The matrix
U is acting on the Hilbert space Ha ⊗ Hs, where a and s stand
for ancilla and system, respectively.

Our aim is to design an optical setup to implement the
unitary operator U and the desired projective measurements.
If we consider the spatial modes of a photon as the ancilla and
the internal modes such as polarization, orbital angular mo-
mentum, or frequency modes as the system states, then using
CS decomposition we can decompose U into BS operations
on the spatial modes and unitary operations on the internal
modes.

The CS decomposition of the operator U reads

U =
(

Lm 0
0 L′

m

)(
Cm −Sm

Sm Cm

)(
R†

m 0
0 R′†

m

)
. (20)

Here Lm, L′
m, R†

m are m × m unitary matrices acting on the
internal modes of the photon and Cm, Sm are cosine and sine
matrices [see Eq. (14)]. From here we can write

K0 = LmCmR†
m,

K1 = L′
mSmR†

m.
(21)

Equation (21) is simply a singular value decomposition of the
measurement operator Ki, which can be solved efficiently to
get Lm, L′

m, R†
m operators and the Cm, Sm matrices. Further-

more, the choice of A and B matrices reflects in choosing
the unitary R′†

m . While working in the paradigm of second
level of description of quantum measurements in which the
unitary operation is not completely specified, this freedom
can be exploited to simplify the setup by having R′†

m = 1. We
further discuss the case of first and third level of description
of quantum measurements in Sec. III B.
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The matrix S2m, constructed from Cm and Sm can be further
decomposed into BS and phase shift transformations as given
in Eq. (15).

The local unitary matrices Lm, L′
m, R†

m can be implemented
on optical systems and for the case of polarization degrees of
freedom, it requires just one half WP and two quarter WPs
mounted coaxially [42,43].

Finally, a projective measurement is implemented on the
ancillary modes. This can be viewed as detection of a photon
in one or the other spatial mode corresponding to the two
outcomes of the POVM. The resultant frequency of clicks of
each detector can then be used to simulate the statistics of the
POVM. This way it is possible to implement a measurement
according to the first level of description. However, it is not
always necessary to implement a photon detection on both
of the spatial modes. The updated state after the application
of the POVM can be extracted corresponding to a particular
outcome by postselection. As an example, the updated state
corresponding to a measurement operator Ki, given by Eq. (6),
can be obtained by not placing any detectors on this mode,
while having photon detections on the modes j �= i. Whenever
the detectors on the modes j �= i do not click, we are assured
to get the required updated state in the ith mode. Using this
approach it is thus possible to implement a measurement
according to the second and third level of description.

Hence, an arbitrary two-outcome POVM can be imple-
mented in optical systems. A schematic diagram to implement
these POVM is given in Fig. 1.

It is to be noted that spatial degrees of freedom (as denoted
by wires in Fig. 1) are taken as ancilla while internal degrees
of freedom correspond to the system as in Eq. (10). The ini-
tialization of the ancilla state to |0〉〈0| implies that the system
is injected into the setup through the upper spatial mode. For a
special choice of mixed states of ancilla σB = ∑1

j=0 p j | j〉〈 j|,
where the eigenstates | j〉, j ∈ {0, 1} correspond to the upper
and lower spatial modes, the system is injected through the
upper spatial mode with probability p0 and the lower spatial
mode with probability p1 = 1 − p0. It should be noted that a
mixed state can also be prepared probabilistically using our
technique described in Sec. IV B. This way we can implement
a general quantum instrument.

B. n-outcome POVMs

In this section, we generalize the results on the previous
section to implement an n-outcome POVM on optical sys-
tems. Consider a POVM with n number of m-dimensional
measurement operators {K0, K1, . . . , Kn−1}. The correspond-
ing nm × nm unitary operator U is given in Eq. (11) with
m × m complex matrices Ai, j chosen such that U is unitary.

Similar to the two-outcome case, we can decompose the
matrix U as

U =
(

L(1)
m 0
0 L′(1)

m(n−1)

)(
S (1)

2m ⊕ 1m(n−2)
)(R(1)†

m 0
0 R′(1)†

m(n−1)

)
,

(22)

where the unitary operators L(1)
m and R(1)†

m are of dimension m,
while L′(1)

m(n−1) and R′(1)†
m(n−1) are of m(n − 1) dimension, and S (1)

2m
is a 2×2 block matrix where each block is an m × m diagonal

matrix consisting of cosine and sine as given in Eq. (14). The
superscript (1) denotes the first iteration of CS decomposition.

Since Ai, j are chosen arbitrarily, this gives us freedom to
choose any m(n − 1)-dimensional unitary for R′(1)

m(n−1). For the

sake of simplicity, we choose R′(1)
m(n−1) = 1. With this choice

of R′(1)
m(n−1), we get

K0 = L(1)
m C(1)

m R(1)†
m , (23)

⎛
⎜⎜⎝

K1

K2
...

Kn−1

⎞
⎟⎟⎠ = L′(1)

m(n−1)

⎛
⎜⎜⎝

S(1)
m
O
...

O

⎞
⎟⎟⎠R(1)†

m . (24)

Here O is an m × m null matrix. From there it is clear
that only the first m number of columns of L′(1)

m(n−1) will
contribute in Ki measurement operators; therefore, the rest
of the columns can be chosen arbitrarily. In this sense the
problem is similar to the one with U matrix, but now we
have n − 1 measurement operators. We can further use CS
decomposition for the L′(1)

m(n−1) operator to find m × m unitary
operators L(2)

m and R(2)†
m such that K1 = L(2)

m C(2)
m R(2)†

m S(1)
m R(1)†

m ,
an m(n − 2)-dimensional unitary operator R′(2)†

m(n−2) = 1, and

an m(n − 2)-dimensional L′(2)
m(n−2). Recursively CS decompos-

ing L′( j)
m(n− j) unitary operators in the jth iteration, we can get

K0 = L(1)
m C(1)

m R(1)†
m ,

K1 = L(2)
m C(2)

m R(2)†
m S(1)

m R(1)†
m ,

K2 = L(3)
m C(3)

m R(3)†
m C(2)

m R(2)†
m S(1)

m R(1)†
m ,

...

Kn−2 = L(n−1)
m C(n−1)

m R(n−1)†
m . . . S(1)

m R(1)†
m ,

Kn−1 = L(n)
m S(n−1)

m R(n−1)†
m . . . S(1)

m R(1)†
m . (25)

Since each of the S ( j) represents a generalized Mach-
Zehnder interferometer which can be realized using two
balanced BS and two diagonal unitaries on the internal states
of photons, an n-outcome POVM can be decomposed into 2n
general unitary operations and 2n − 2 diagonal unitaries on
the internal states of the photons and 2n − 2 BBS.

In order to solve Eq. (25), we can convert these equations
into singular value decompositions as follows: the first equa-
tion is already a singular value decomposition of K0 which
yields L(1)

m , R(1)†
m and the diagonal matrices C(1)

m and S(1)
m =√

1 − (C(1)
m )2. Using this we can rewrite the second equation

as

K1
(
S(1)

m R(1)†
m

)−1 = L(2)
m C(2)

m R(2)†
m , (26)

which is a singular value decomposition which yields
L(2)

m , R(2)†
m , and C(2)

m . Similarly, one can find all the other
matrices and construct the optical setup. It can be seen that
for decomposing any Ki, it is required to evaluate a simple
singular value decomposition problem.

A schematic diagram to implement a four-outcome POVM
for m = 2 is given in Fig. 2 which can be extended in a similar
fashion to a higher number of outcomes as desired. As can be
seen the module to implement a two-outcome POVM appears
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FIG. 2. A schematic diagram to implement a four-outcome
POVM which can be easily generalized for n outcomes. Here the
wires represent spatial modes and the internal DoFs are inherent
in each wire. The module to implement a two-outcome POVM as
shown in Fig. 1 is seen to appear between two different modes more
than once in this schematic. This setup can implement a discrete
valued four-outcome POVM only.

more than once in the schematic. A numerical code for the
same can be found at [50].

The most crucial step in solving Eq. (25) is taking the in-
verse of matrix (S(1)

m R(1)†
m ). For the case of n = 2, this problem

does not arise. However, for n > 2, the situation is a little
nontrivial. For the case of two-level systems, i.e., m = 2, the
operator S(1)

2 is noninvertible only if E0 = K†
0 K0 is a rank-

one projection. For m = 2 and n > 2, not all the Ei’s can
be rank-one projectors, as can be seen from the condition∑

i Ei = ∑
i K†

i Ki = 1. Therefore, we can always find at least
n − 2 number of measurement operators for which the S2 is
invertible. Therefore, for these systems Eq. (25) can be solved
exactly.

For m > 2, solving Eq. (25) may not always be pos-
sible. For example, for m = 3 the projective measurement
contains three measurement operators each of which are
one-dimensional projectors. Therefore, the first equation in
Eq. (25) will yield a rank-one C(1)

m matrix and rank-two S(1)
m

matrix, which is noninvertible. Therefore, even for projective
measurements it is difficult to solve this equation using the
method prescribed above.

A numerical method can be used for the m > 2 case. In
this method, we construct the unitary operator U using the
given measurement operators {Ki} and choose matrices Ai j

randomly such that the matrix U is unitary. This can easily be
ensured by using Gram-Schmidt orthogonalization. Using CS
decomposition numerically on the operator U we can obtain

all the optical components required to experimentally realize
it. Schematically, the decomposition looks as shown in Fig. 3.
From Eq. (25) it is known that only the rightmost set of L(i)

m
operators, S (i)

m operators, and R(i)†
m operators contribute to the

measurement operators Ki. All the rest of the operators in
the decomposition can be chosen arbitrarily, without affecting
Ki. Therefore, for convenience we can choose the rest of the
operators to be identity.

The protocol so presented can accommodate the three lev-
els of description of a quantum measurement as described
in Sec. II B. The aforementioned analysis for two- and n-
outcome POVMs is presented keeping in mind the second
level of description, in which the measurement operators are
specified. The schemes presented in Figs. 1 and 2 suffice for
this case.

For a description of the first level, we are given only the ef-
fects {Ei = K†

i Ki}; there can be infinitely many measurement
operators resulting in the same Ei. Any measurement opera-
tor K̃i = W Ki where W †W = 1 will also yield Ei = K̃†

i K̃i =
K†

i Ki. In this case we are free to choose the simplest possible
K̃i for our purpose. Using this freedom we can remove the
L(i)

m unitary operators from the setup. Therefore, we need only
n number of general unitaries, 2n − 2 diagonal unitaries, and
2n − 2 BBSs. This greatly simplifies our experimental setup.

For the third level of description, the unitary operator is
completely specified and therefore, we no longer have the
freedom to choose R′†

m = 1. This complicates the setup as
more unitaries have to be implemented now. A schematic
diagram to implement a four-outcome POVM according to the
third level of description is given in Fig. 2, where the grayed
out components can no longer be set to identity. As is evident
from the discussion, the complexity of the experimental setup
increases with the level of description of the POVM.

IV. APPLICATIONS

In this section we detail some applications of CS decompo-
sition to implement POVMs on optical systems and perform
their cost analysis in terms of the required number of optical
elements.

A. Single-shot quantum state tomography of photonic qubit

In general, complete state tomography of a two-level
system requires estimating the expectation value of three

FIG. 3. A schematic diagram to experimentally realize an arbitrary four-outcome POVM using the Gram-Schmidt orthogonalization
method for the nontrivial cases in the m > 2 scenario. The wires represent spatial modes of light, while the internal DoFs are inherent in
each wire. All the optical elements appearing in the grayed out box can be set to identity without compromising either the measurement
operators or the CS decomposition when either the first or second level of description of a quantum measurement is specified. The resultant
decomposition then resembles the one given in Fig. 2. However, that is no longer the case when dealing with the third level, when the elements
in the grayed box can be set to identity. This optical setup can implement discrete valued POVMs only.
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noncommuting observables. This can be done using three
measurement settings. However, changing the experimental
setting can cause errors and misalignment, which can result in
inaccurate outcomes. Single-shot quantum state tomography
is a technique where a single experimental setup can be used
to estimate the state of a quantum system. This technique often
requires measurements involving POVMs. One can use SIC-
POVM to perform single-shot state tomography. However,
generally it is difficult to perform four-outcome POVMs on
optical systems.

In order to implement a SIC-POVM on polarization qubits
using our scheme we need six BSs, six WPs, and seven uni-
taries acting on spatial modes. The schematics of this setup is
given in Fig. 2. The 2×2 unitary operators L(i)

2 and R(i)
2 can

be calculated for a given SIC-POVM using Eq. (25) given
in Sec. III B. The low number of BSs and WPs required in
our scheme makes it one of most viable options to imple-
ment single-shot quantum state tomography in a cost-effective
manner.

B. Preparing arbitrary mixed states of a quantum system

Another interesting application of optical implementation
of arbitrary POVM is the preparation of an arbitrary mixed
state in optical systems. Mixed states are important to cali-
brate the experimental setups. Furthermore, the mixed states
have a fundamental uncertainty as they do not retain the
information about the preparation basis. Here we show how
POVMs can be used to prepare an arbitrary given state ρ for
m-dimensional quantum systems.

For this purpose we need a setup for a two-outcome POVM
and a maximally mixed state ρr = 1/m as the input in the
optical setup as shown in Fig. 1. The measurement operators
we choose are K0 = √

ρ/λ0 and K1 = √
1 − ρ/λ0 where λ0

is the largest eigenvalue of the state ρ. One can check that
K†

0 K0 + K†
1 K1 = 1.

Using the technique described in Sec. III A we can de-
compose the POVM into simple unitaries acting on internal
and external DoFs. The choice of local unitaries and phase
shifters will depend on the state ρ that is being prepared and
can be easily calculated using our prescription. At this stage
no final projective measurement as described in Sec. III A has
been made on any of the output modes. Consequently, the
output states in each of the two modes can be seen to corre-
spond to K0ρrK†

0 = ρ/(mλ0) with probability p0 = 1/(mλ0)
in the upper spatial mode and E1 = K1ρrK†

1 = (1 − ρ/λ0)/m
with probability p1 = 1 − 1/(mλ0) in the lower spatial mode.
Hence, the state of the internal degree of freedom in the upper

spatial mode is the desired state ρ before performing the
measurement.

Interestingly, for the case of m = 2 the eigenvalues of the
density operator ρ are of the form λ, 1 − λ, for 0 � λ � 1.
The spectrum of 1 − ρ is the same. Therefore, we can find a
unitary transformation V such that V (1 − ρ)V † = ρ. Hence,
using an appropriate transformation V on the lower spatial
mode, we can transform the outcome into ρ too. This gives
us a 100% success rate for creating an arbitrary single-qubit
mixed state.

V. CONCLUSION

In this paper we detailed a protocol to implement any arbi-
trary POVMs on internal degrees of freedom of a light beam.
The basis of our protocol lies in CS decomposition which
can be used to decompose any complicated unitary matrix
into simpler ones. Applying Naimark’s dilation theorem in
conjunction with CS decomposition it is possible to find a
unitary matrix corresponding to any POVM which can then be
further decomposed. Using our method any n outcome POVM
acting on an arbitrary dimension Hilbert space can be exper-
imentally implemented with a 100% success rate with a far
lower number of optical elements than the current techniques.

Furthermore, our technique can quite easily accommodate
the three levels of description of quantum measurements by
modifying the optical setup by incorporating more (or less)
local unitaries acting on the internal DoF. We show that the
complexity of the experimental setup increases with the level
of description.

Since it is quite hard to experimentally implement POVMs
with arbitrary number of outcomes, our scheme makes it
possible to study their effects and applications in scenarios
like local filtering, state tomography [19,20], quantum key
distribution [23], and quantum nonclassicality [27,51], where
they are known to play an important role.

Further, the techniques discussed in this paper are exper-
imentally feasible with the current technology and can be
readily implemented.
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