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In this paper we tackle the problem of dynamic portfolio optimization, i.e., determining the optimal trading
trajectory for an investment portfolio of assets over a period of time, taking into account transaction costs and
other possible constraints. This problem is central to quantitative finance. After a detailed introduction to the
problem, we implement a number of quantum and quantum-inspired algorithms on different hardware platforms
to solve its discrete formulation using real data from daily prices over 8 years of 52 assets, and do a detailed
comparison of the obtained Sharpe ratios, profits, and computing times. In particular, we implement classical
solvers (Gekko, exhaustive), D-wave hybrid quantum annealing, two different approaches based on variational
quantum eigensolvers on IBM-Q (one of them brand-new and tailored to the problem), and for the first time
in this context also a quantum-inspired optimizer based on tensor networks. In order to fit the data into each
specific hardware platform, we also consider doing a preprocessing based on clustering of assets. From our
comparison, we conclude that D-wave hybrid and tensor networks are able to handle the largest systems, where
we do calculations up to 1272 fully-connected qubits for demonstrative purposes. Finally, we also discuss how
to mathematically implement other possible real-life constraints, as well as several ideas to further improve the
performance of the studied methods.
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I. INTRODUCTION

In quantitative finance, portfolio optimization is the prob-
lem of selecting the best distribution of assets that optimizes
some objective function [1]. Typically, this objective function
tries to maximize the expected returns and minimize the fi-
nancial risk. The problem gets more complicated if we do
it dynamically, i.e., optimize the investment portfolio over a
series of consecutive trading days. In this dynamic portfolio
optimization, the goal is to determine the optimal trading
trajectory over the considered period of time, i.e., the optimal
decisions that should be taken (or should have been taken) by a
broker in order to maximize the overall return at the end of the
time period. The dynamic problem is more complex because
transactions’ costs and transactions’ market impact must be
taken into account, as well as other possible constraints. In
practice, it is well known that this is an intractable problem
for generic instances.
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Parallel to the above, it has been understood recently that
quantum and quantum-inspired computing can help in solv-
ing hard financial problems [2,3]. For instance, a quantum
computer should be able to solve more efficiently and with
more accuracy problems related to pricing of financial deriva-
tives [4–6], prediction of financial crashes [7,8], detection of
arbitrage cycles [9], credit scoring [10], and identification of
several types of fraud, among many applications. Portfolio op-
timization is no exception, as observed in several preexisting
studies [11,12]. Yet, to the best of our knowledge, none of
these works aimed to solve the problem on real datasets, and
no comparison has ever been done openly and democratically
between different methods and hardware platforms.

In this paper we implement several quantum and quantum-
inspired algorithms for dynamic portfolio optimization, and
run them for the first time (as fas as we are aware) with
real data corresponding to daily prices over 8 years of 52
assets. In particular, we implement D-wave hybrid quantum
annealing, a variational quantum eigensolver (VQE) on a
quantum processor of IBM-Q, a new VQE-inspired algo-
rithm, which we call “VQE constrained” also on IBM-Q,
and a quantum-inspired tensor network (TN) optimization
algorithm (which is also the first implementation of a TN
algorithm to solve a real and practical financial problem).
We benchmark our algorithms using two classical methods: a
Gekko solver (a Python-based optimization suite [13]) and an
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exhaustive solver. We expose how preprocessing is performed,
and reduce the problem’s dimensionality using a clustering
algorithm. We then do a detailed comparison of all the results,
focusing on the obtained Sharpe ratios and computing times.
From our comparison we conclude that, as of today, D-wave
hybrid and tensor networks are able to handle the largest
systems, where we do calculations up to 1272 fully-connected
qubits for demonstrative purposes. Interestingly, we see that
there is no clear answer as to which is the “best” algorithm
and/or hardware platform to deal with large systems, as this
depends strongly on different figures of merit.

This paper is organized as follows. In Sec. II we give
an overview of the dynamic portfolio optimization problem.
We show how it can be expressed quadratic unconstrained
binary optimization (QUBO) problem, and discuss the dif-
ferences between the continuous and discrete formulations.
In Sec. III we give a very brief overview of the D-wave
hybrid, VQE, and TN algorithms. In Sec. IV we expose the
data-preparation procedure, which reduces the problem’s di-
mensionality by identifying irrelevant assets and performing
clusterization. Section V compares results obtained using the
Gekko, exhaustive, D-wave hybrid, VQE, VQE-constrained,
and TN solvers. Section VI discusses industry relevant next
steps, such as the inclusion of more real-life constraints (e.g,
market impact, exact linear transaction costs, and the so-called
10 − 5 − 40 rule) and potential performance improvements.
Finally, in Sec. VII we wrap up and conclude.

II. PROBLEM OVERVIEW

The dynamic portfolio optimization problem can be ex-
pressed in a form amenable to a quantum computer. In what
follows, we present the problem in some technical detail.
Where possible, we use the notation of [11].

A. Optimal dynamic portfolio

1. Generalities

In the dynamic version of the so-called Modern Portfolio
Theory (or Mean Variance Analysis), we deal with the issue of
allocating weigths to a number of assets over a period of time,
in order to maximize the overall return at the end of the period.
More specifically, for N assets we consider an N-dimensional
vector of weigths ωt . Each of its component ωn,t is the weigth
of asset n at time t = ti, ti + 1, . . . , t f , where ti and t f are
respectively the initial and final trading (rebalancing) times,
being the number of trading steps Nt = t f − ti + 1. We also
define μt , assets’ forecast returns at time t , and �t , the assets’
covariance at time t . μt is a N-length vector while �t is and
N × N matrix. For a given trading trajectory (i.e., a given set
of vectors {ωti , . . . , ωt f }), the overall return is given by

Return ≡
t f∑

t=ti

μT
t ωt , (1)

and the risk of the trajectory is defined as

Risk ≡ 1

2

t f∑
t=ti

ωT
t �tωt . (2)

Notice that ωT
t �tωt is the variance of the portfolio return at

time t . In practical situations, one typically measures risk at
time t in terms of the volatility, which is the square root of this
variance. Nevertheless, Eq. (2) is a convenient way to quantify
the risk in the dynamic setting since it makes the optimization
problem better behaved, being the prefactor 1/2 a convention.

The goal of modern portfolio theory is to find the trajectory,
which maximizes returns for a fixed risk. It is common to
request the total investment at any given time is fixed, i.e.,

N∑
n=1

ωn,t = K ∀t, (3)

with K the total investment [14]. Let us define at this step the
normalized weigths

ωn,t ≡ ωn,t

K
, (4)

so that their sum at every time t is equal to one. In terms
of these normalized weigths, the problem can be solved by
finding the trajectory {ωti , . . . , ωt f }, which minimizes:

H =
t f∑

t=ti

−μT
t ωt + γ

2
ωT

t �tωt + ρ(uT ωt − 1)2. (5)

By analogy to quantum mechanics, we shall refer to the
above cost function H as Hamiltonian. γ is the risk aversion,
which tunes the eagerness of the investor to explore risky
trajectories, and ρ is a Lagrange multiplier that imposes the
constraint in Eq. (3) as a penalty term. We have introduced
the N-dimensional vector u, with un = 1 ∀n, which makes the
constraint in Eq. (3) more compact. The Lagrange multiplier
ρ is fine-tuned in order to satisfy Eq. (3).

Note that Eq. (5) can also be written as

H =
t f∑

t=ti

ht , (6)

with

ht ≡ −μT
t ωt + γ

2
ωT

t �tωt + ρ(uT ωt − 1)2. (7)

Thus, the Hamiltonian is diagonal in time. This implies that
the optimal trading trajectory is simply the concatenation of
the optimal portfolios at each time t . As we will see in the
following, if this is the case, then the problem can be solved
analytically (in the continuous variable limit). This is not
the case when the objective function has terms correlating
different times with each other.

Note that the ωn,t are interpreted as a percentage of the
total investment. For instance, having ωn,t = 0.1 means that
we invest a 10% of our total amount K in asset n at time t . Ad-
ditionally, one may also introduce a cap K ′ on the maximum
amount that can be invested for each asset, i.e., ωn,t � K ′/K .

We measure the quality of a portfolio by the so-called
Sharpe ratio.

Sharpe ≡
∑t f

t=ti μ
T
t ωt√∑t f

t=ti ω
T
t �tωt

, (8)
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This quantifies the amount of return per unit of risk of trading
trajectory. Notice that the numerator is the Return, and not the
Profit, which would imply removing all possible additional
costs (such as transaction costs, to be discussed later). Notice
also that, for example, one rebalancing step, the denominator
is the normalized volatility, understood as the square root of
the variance of the normalized returns. A large Sharpe ratio
means a large return for the risk that is assumed, whereas a
ratio close to zero means the opposite, and a negative ratio
means losses instead of profits.

2. Transaction costs

The problem stated above is simplistic as it does not ac-
count for transaction costs. These frequently are comparable
to the profit incurred by a given portfolio. The transaction
costs are typically a percentage of the transaction (whether
buying or selling assets). They can be expressed in terms of
unnormalized weigths as

Cost ≡
t f∑

t=ti

νt |�ωt | =
t f∑

t=ti

N∑
n=1

νnt |ωn,t+1 − ωn,t |, (9)

with νnt the cost percentage (e.g., νnt = 0.001 for 10 basis
points (BPS), meaning a cost of the 0.1% of the total amount
of the transaction). The objective function, which accounts for
these costs in terms of normalized weigths is given by

H =
t f∑

t=ti

−μT
t ωt + γ

2
ωT

t �tωt + νt |�ωt | + ρ(uT ωt − 1)2.

(10)

Note that this is not of the form in Eq. (6), since �ωt correlates
times t and t + 1.

The (percentual) transaction costs are not polynomial in
the variables ωn,t because of the absolute value function. This
could limit the applicability of some quantum optimization
methods. To get around this problem, we can Taylor-expand
the absolute value, in a way similar to the expansion in Ref. [7]
for a step-function. Alternatively, we could introduce ancillary
qubits to treat this problem exactly, as explained in Sec. VI.
Here, we choose to approximate Eq. (9) by a parabola in the
considered range of ωn,t :

νt |�ωt | ≈ �ωT
t �t�ωt , ωn,t ∈

[
0,

K ′

K

]
, (11)

with �t the best matrix of transaction costs at time t that is
compatible and realistic with market conditions. This is an
excellent approximation to Eq. (9) when the ωn,t are discrete
variables and K ′/K is small. The cost function therefore re-
duces to:

H =
t f∑

t=ti

−μT
t ωt + γ

2
ωT

t �tωt + λ(�ωt )
2 + ρ(uT ωt − 1)2,

(12)

with λ the optimal parabolic coefficient for the transaction
costs, as discussed above. Finally, let us remark that in this
setting, the percentual profits of the trading trajectory are

given by the expression

Profit ≡
t f∑

t=ti

(
μT

t ωt − λ(�ωt )
2
)
, (13)

i.e., the percentual returns minus the percentual costs.

B. Continuous versus discrete formulations

In this article, we chose to discuss the portfolio optimiza-
tion problem with discrete variables, which is more relevant
to big industry players, as investment funds typically trade in
large, discrete amounts. In this section, we will briefly discuss
the case where the asset allocations ωn,t can be approximated
by continuous variables. This problem is comparatively sim-
pler, as it gives us access to the full toolbox of differential
calculus.

1. Continuous asset allocations

When no transaction costs are present, the problem can
actually be solved exactly. The minimization of Eq. (6) can
then be written as

∂H
∂ωT

t
= ∂ht

∂ωT
t

= 0 ∀t, (14)

which, using μT
t ωt = (μT

t ωt + ωT
t μt )/2 [15], amounts to

−1

2
μt − ρu +

(γ

2
�t + ρu · uT

)
ωt = 0. (15)

Therefore, the optimal solution at time t is given by

ωt =
(γ

2
�t + ρu · uT

)−1
(

1

2
μt + ρu

)
, (16)

and the optimal dynamic portfolio is just the concatenation of
the optimal portfolios at each time t . For completeness, one
could also get an equation for the multiplier ρ:

∂H
∂ρ

= ∂ht

∂ρ
= 0 ∀t, (17)

which in the end simply implies:

uT ωt = 1. (18)

This is nothing but the condition in Eq. (3), implying:

uT
(γ

2
�t + ρu · uT

)−1
(

1

2
μt + ρu

)
= 1, (19)

which is indeed an equation for ρ at each time t . In practice,
though, it is much easier to simply use Eq. (16) for a suffi-
ciently large ρ, and check a posteriori that Eq. (3) is satisfied
up to some degree of accuracy.

When transaction costs are included, it is no longer possi-
ble to solve the problem analytically. In the continuous-time
limit, we can recast the problem as a set of nonlinearly cou-
pled ordinary differential equations. To do so, we notice that
in the discrete formulation the increment in time �t between
two consecutive time steps is �t = 1. The continuous-time
limit can then be taken as �t → 0, implying

t f∑
t=ti

�t →
∫ t f

ti

dt,
�ωt

�t
→ ω̇, (20)
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with ω̇ the time derivative of the vector of asset allocations ω,
which is now a vector field. In this limit, the cost function is
given by

S =
∫ t f

ti

L(ω, ω̇, t )dt . (21)

We will refer to S as the action and L(ω, ω̇, t ) as the La-
grangian, by analogy to physics. The Lagrangian is obtained
by taking the continuous-time limit of the cost function H,
Eq. (12). Finding the optimal trading trajectory thus reduces
to a conventional functional minimization problem. Our goal
is to find the time path of ω, which minimizes the action S:

δS
δω

= 0. (22)

As is well known, the solution to this equation corresponds to
the Euler-Lagrange equations for the Lagrangian, i.e.,

∂L

∂ω
− d

dt

∂L

∂ω̇
= 0. (23)

For a specific problem at hand, it is easy to write the La-
grangian and unfold the above equation, resulting in a set
of nonlinearly coupled ordinary differential equations for the
asset allocations ωn(t ) with initial conditions at t = ti. In this
limit, one can thus solve the dynamic portfolio optimization
problem using the wide variety of algorithms for systems of
coupled differential equations. As an example, for Eq. (12) the
Lagrangian is given by

L(ω, ω̇, t ) = −μT ω + γ

2
ωT �ω + λ(ω̇)2 + ρ(uT ω − 1)2,

(24)

with ω, ω̇, μ and � being time dependent.

2. Discrete asset allocations

In industry, the rebalancing is done at discrete time steps
t , and it is common for funds to trade assets in large, discrete
packages.

In this setting, the problem is naturally recast as a quadratic
unconstrained binary optimization (QUBO). For this, we
choose a binary encoding of each variable ωn,t in terms of
Nq bits xn,t,q. There are several options for this encoding, as
discussed, e.g., in Ref. [11]. For simplicity in this paper we
choose to work with the binary encoding

ωn,t = 1

K

Nq−1∑
q=0

2qxn,t,q, (25)

where xn,t,q = 0, 1. By construction, we have that the maxi-
mum investment per asset is K ′ = 2Nq − 1, which is naturally
included in the formalism. Investments go also in discrete
packages of amount 1. Substituting Eq. (25) into, e.g., (12)
results in a QUBO problem for the Ntot = N × Nt × Nq bit
variables, i.e., finding the optimal portfolio weigths at any
given time is therefore equivalent to finding the ground state
(i.e., the minimum over the variables {xn,t,q}) of the classical
Hamiltonian

H = xT Qx (26)

with x ∈ {0, 1}Ntot the bit vector and Q ∈ RNtot×Ntot the corre-
sponding QUBO matrix, which can be easily derived from
Eqs. (12) and (25). To solve this problem on a quantum
computer, we quantize Eq. (26) by promoting the bit variables
{xn,t,q} to qubit operators {x̂n,t,q} with eigenstates |0〉 and |1〉.
Our conclusion at this step is that the portfolio optimization
problem, with discrete investments, as happen in real life, is a
natural problem for quantum and quantum-inspired methods.
Its formulation is directly a QUBO, by construction, without
the need of further mapping the problem to anything else:
we can feed this problem to a quantum or quantum-inspired
solver as is.

3. Discrete problem complexity

Note that, by applying the transformation xi = (1 + si)/2,
Eq. (26) can be mapped to finding the ground state of an Ising
spin glass:

H =
Ntot−1∑
i, j=0

Ji jsis j, (27)

where the si = ±1 are spin variables. The couplings Ji j can be
derived from Eq. (26).

Ising spin-glasses are known to be NP-Hard in the generic
case [16], demonstrating that the portfolio optimization prob-
lem can be computationally costly. This is true even when
there are no transaction costs. The optimal trading trajectory
is then the concatenation of optimal portfolios at each time
step t . Finding the optimal trajectory there means solving Nt

independent optimization problems for N × Nq bits each. The
instantaneous problem is itself an Ising spin glass, which,
in the worst case, may correspond to a hard instance (very
much unlike in the continuous formulation, which is exactly
solvable!).

III. METHODS OVERVIEW

In this paper we use a variety of methods and hardware
implementations to solve the dynamic portfolio optimization
problem in its discrete formulation. These are the following:

(1) Classical: Gekko solver, exhaustive solver.
(2) Quantum annealing: D-wave hybrid.
(3) Quantum universal: VQE, VQE constrained.
(4) Quantum inspired: TN solver.
The classical methods were implemented as a benchmark

of the rest of the algorithms. Gekko is a library, which offers
tools for non-convex, integer optimization problems [13]. The
exhaustive solver is a brute-force search over valid configura-
tions of the minimum of the cost function. Let us now make a
brief overview of the rest of the methods.

A. D-wave hybrid

As is well known, quantum annealing is a type of quantum
algorithm based on the ideas of adiabatic quantum computa-
tion [17], and is particularly well suited to solve optimization
problems. This process is similar to classical or simulated an-
nealing, where thermal fluctuations allow the system to jump
between different local minima in the energy landscape. In
quantum annealing, the jumps are mainly driven by quantum
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FIG. 1. Quantum circuit used for VQE and VQE-constrained algorithms. The system had 15 qubits on the whole, of which 12 were used
in the ansatz. The initial state was |0〉⊗12. In the figure, single-site boxes are one-qubit y rotations, and the two-qubit gates are CNOTs (target
qubit being the large circle). In the end, measurements in the computational basis (boxes after the vertical dotted line) are performed on each
qubit and stored in a classical register (as shown by the arrows).

tunneling events, which allow for a more efficient exploration
of the landscape of local minima, especially when the energy
barriers are tall and narrow.

In this paper we used the quantum annealer provided by
D-wave, in particular the so-called D-wave 2000Q proces-
sor, which gives access to 2048 noncoherent qubits coupled
through the so-called chimera graph. This architecture allows
us to solve problems for up to 65 fully-connected qubits,
due to embedding overheads. The D-wave hybrid algorithm
uses a hybrid classical-quantum strategy to overcomes this
limitation, allowing us to deal with much larger problems. In
a nutshell, D-wave hybrid breaks down problems, which are
larger than the capability of the quantum processor into parts.
These are subsequently recombined to produce the solution.

B. Variational quantum eigensolver

The variational quantum eigensolver (VQE) [18] is a hy-
brid quantum-classical algorithm for optimization. The idea is
to do a variational optimization of a quantum state in order to
obtain an approximation to the ground state of a Hamiltonian.
This idea is quite generic, but the point of the VQE algorithm
is that the ansatz quantum state is, itself, a real quantum state
that is implemented on a quantum processor by some quan-
tum circuit. The gates in the circuit depend on parameters,
which are the variational parameters of the algorithm. After
estimating the energy of the quantum state via sampling, the
parameters are then fine-tuned to lower the energy (using, e.g.,
conjugate gradient). After a number of iterations, the energy
converges, producing an approximation to the desired ground
state. The performance of VQE depends strongly on several
aspects, but most importantly on the choice of variational
quantum circuit. In some cases, the search for some com-
plex ground states require of a strongly-entangling quantum
circuit, in turn increasing the complexity of the algorithm.
However, VQE is still a good option as an optimization tool in
current noisy intermediate-scale quantum (NISQ) processors
[19].

For the sake of this paper, we implemented VQE optimiza-
tion in the quantum processors of IBM-Q, up to 12 qubits. The
circuit ansatz for VQE optimization is shown in Fig. 1. It is
based on a strategy of strongly entangling layers, inspired by
the circuit-centric classifier design from Ref. [20], with single-
qubit rotations around the y axis. In particular, we developed
our own VQE algorithm using Xanadu’s PennyLane library
for quantum machine learning [21], which is well suited to
run on IBM’s quantum backend. Our variational quantum

circuit consisted of 82 C-NOTs and 24 variational one-qubit
rotations, as shown in Fig. 1.

Moreover, in order to tackle slightly-larger problems than
those reachable by plain-vanilla VQE, we implemented a new
and original approach, which we call VQE-constrained for
dynamic portfolio optimization. The idea here is quite simple:
use VQE to sample several low-energy states at every rebal-
ancing time t , and then use a classical approach to find, which
combination of these provides the highest returns over the
whole trading time period. This approach is inspired by low-
energy-subspace methods in physics. It follows the intuition
that the optimal portfolio can be built in most cases from a
combination of near-optimal states. Thus, we identify these
states using VQE (this is the computationally expensive part),
and then recombine them and estimate their associated profits
classically (which is computationally cheap). Our strategy
here was to look for the best 10 solutions at each trading step
using VQE. Then, in the postprocessing, we tried all possible
combinations until finding the one that mininized the cost
function.

C. Tensor networks

TNs are representations of complex quantum states based
on their local entanglement structure [22,23]. Take for in-
stance a system of n qubits. Any wave function of the system
can be described inefficiently just by giving its O(2n) coeffi-
cients in the computational basis. As such, these coefficients
can be understood as a tensor with n indices, where each
index takes two possible values (say, 0 and 1). We could then
think of replacing this huge, nasty tensor, by a network of
interconnected tensors with less coefficients, see Fig. 2 for an
example. This construction defines a TN, with each subsystem
in the figure corresponding in practice to the Hilbert space of a
qubit. Constructed in this way, the TN depends on O(poly(n))
parameters only, assuming that the rank of the interconnecting
indices is upperbounded by a parameter D, which is called
“bond dimension”. Similarly, interconnecting indices in the
network are also called “bond indices”, and provide the struc-
ture of the many-body entanglement in the quantum state. Any
D > 1 provides an entangled quantum state.

As is well known in physics, TNs are a natural tool to solve
optimization problems. People have been using them as an
ansatz to approximate low-energy eigenstates of Hamiltoni-
ans, and many algorithms have been invented to this aim (see,
e.g., Ref. [23] and references therein). The idea here is that,
by mapping optimization problems to Hamiltonian eigenvalue
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FIG. 2. The coefficient of the quantum state of n qubits is a tensor
with exponentially many coefficients in the system’s size. The inner
structure of this tensor is that of a tensor network, which is a network
of tensors interconnected by ancillary indices that take into account
the structure and amount of entanglement in the quantum state.
We represent this here using diagrams, where shapes correspond to
tensors, lines to indices, and lines connecting shapes to contracted
(summed) common indices. The tensor network on the right-hand
side is an example of matrix product state. “Open”—uncontracted—
lines in the tensor network correspond to the degrees of freedom of
the original physical qubit (for the case at hand, one line per qubit).

problems, as done in quantum annealing, we can then use the
huge machinery of TN techniques and algorithms to solve the
optimization problem at hand.

In our case, we implemented an optimization strategy over
the so-called matrix product states (MPS) [24]. This family of
states has been tested already in a variety of algorithms for
many physical examples. For practical reasons, here we use
imaginary-time evolution as optimization method. Moreover,
in order to improve the performance, we also tailored the
actual implementation of our optimization to the specifics of
our problem.

IV. DATA PREPARATION

As a first step, we benchmarked our different algorithms
for the optimization problem using random data. Studying
real data proved to be more challenging, given the shear size
of the dataset and necessity to extract the data trend. Our
dataset consists of the daily values of 52 assets over 8 years.
Among these assets were government bonds, variable income
securities, fixed income securities, etc.

The bare return for each asset is given by

μbare
n,t ≡ Pn,t − Pn,t−1

Pn,t−1
, (28)

with Pn,t the price at time t of asset n. Importantly, mathemat-
ical expressions often call for the logarithmic returns instead
of the bare returns. These are defined as

μn,t ≡ log

(
Pn,t

Pn,t−1

)
= log

(
1 + μbare

n,t

)
. (29)

There are several reasons why logarithmic returns are pre-
ferred over the bare returns [25]. In particular they follow a
normal distribution, but most importantly for us, they are time
additive, and hence justify the sum in Eq. (1). In trading situ-
ations, though, the bare returns are usually small (μbare

n,t 
 1),
implying that bare and logarithmic returns are interchangeable

at the expense of a very small error, since

μn,t = log
(
1 + μbare

n,t

) ≈ μbare
n,t + �

((
μbare

n,t

)2)
. (30)

We used a dimensional reduction technique prior to ap-
plying our optimization routine. The motivation for this is
two-fold.

First, most algorithms cannot tackle the problem in its full
complexity. This is mainly true for the VQE algorithm, where
dimensional reduction methods are key to solving the problem
despite the processor’s limited resources. This contrasts with
the tensor networks and D-wave hybrid algorithms, which can
actually find close to optimal trajectories even when all of the
problem’s variables are used.

Second, we found that even the highest performance opti-
mization algorithms tend to get stuck in local minima when
the number of variables is truly gigantic. Dimensional re-
duction methods such as clustering serve the purpose of
discarding irrelevant degrees of freedom early.

We have observed that assets, which simultaneously
present low variance and low returns tend to not be part of the
optimal portfolio. Indeed, investing in these assets promises
consistently low returns. By discarding assets, which simul-
taneously have sub-average variance and sub-average returns,
our dataset can be reduced from 52 down to 28 relevant assets.

Prior to clustering, we may also eliminate the noise in
the data by applying a Hodrick-Prescott smoothing, which
extracts the data trend. We then compute the Euclidean dis-
tance in the data trend for each pair of assets. This allows
us to identify the degree of correlation between assets, which
is represented as a dendogram in the diagram of Fig. 3. To
select the optimal number of clusters we wish to consider, we
plot the mean cluster variance versus the number of clusters
(Fig. 4). We can clearly see that, beyond 8 clusters, increasing
the number of clusters no longer significantly reduces the
mean cluster variance. We therefore take ≈6 − 8 as a reason-
able choice of number of clusters for this dataset. The assets’
trend is shown in Fig. 5, grouped by cluster, for the case of
6 clusters. We observe a good agreement in general for the
assets within each cluster. Only one of the clusters shows a rel-
atively high variance between assets’ trends. We could always
address this issue by considering a larger number of clusters.
Alternatively, we could also run several optimization rounds
with variable numbers of clusters. By analogy to physics, we
actually renormalized the assets. Within this picture, the den-
drogram in Fig. 3 is nothing but the coarse-graining structure.
In practice, after the clustering, the optimization is run over
a cost function of clusterized assets, i.e., at every time step,
the mean investment in each cluster n is the component ωn

of the investment vector. In this paper, we choose to equally
distribute the total investment in a cluster among all the assets
within the cluster, i.e., investing 10 on a cluster with 5 assets
means for us an investment of 10/5 on each asset belonging
to the cluster. Let us stress also that we only applied this
clustering for specific methods and hardware, namely, for the
ones that could not handle the full problem being analyzed
(essentially VQE and VQE constrained, which run on limited
quantum hardware).

We will consider the portfolio rebalancing to happen once
monthly, for the sake of concreteness. The returns between
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FIG. 3. Dendogram showing possible data clusters. The Euclidean distance between the different time series is shown on the vertical axis.

transactions are calculated as the sum of returns during the
course of that month. Note that we could have calculated them
on the basis of a rolling average. This has the advantage of
eliminating daily fluctuations, which make it easier to extract
trends. On the flip side, the asset returns used in comparison
would only approximately reflect the actual asset returns.

The daily covariance is an estimate of the daily fluctuations
of a group of assets, encoded in the matrix �t at time t . We
estimate the covariance at time t based on the fluctuations
in assets’ returns over a window of the prior 20 business
days. As a remark, notice also that clustered assets have,
by construction, low covariance (since similar assets—i.e.,
those with large covariance—are the ones being clustered!).
In practice, this also means having a smaller risk factor in the
final cost function.

Once we get an optimal portfolio trajectory for clustered
effective assets, we unfold the investment by assuming an
equal investment on each asset forming each specific cluster.
From this we obtain the daily return on an equal investment in
each asset within each cluster, and in turn an overall trading
trajectory in the original variables.

V. RESULTS

Let us now discuss the results obtained with the different
techniques [26]. To show the capabilities of each solver, we

FIG. 4. Mean variance in each cluster versus the number of
clusters.

built datasets of different sizes. We considered datasets of
size XS, S, M, L, XL, and XXL, each of which pushes a
solver to its limit. The S dataset, for instance, is the maximal
system size, which the exhaustive solver could handle. Details
of these datasets are shown in Table I. The risk aversion γ

represents a compromise between risk and returns. By tuning
this parameter, we can find the portfolio, which promises the
highest returns for any fixed risk. The set of most profitable
portfolios for all risks is known as the efficient frontier. In
all simulations, and for the sake of simplicity, we set the risk
aversion parameter γ = 1.

In Table II we show the comparison of Sharpe ratios ob-
tained with the different methods and datasets, in Table III
we show the profits (i.e., returns minus transaction costs,
percentual), and in Table IV we show an estimation of the
computational running time of our simulations. Entries were
left blank when a dataset’s size exceed a solver’s capabilities.

Note that the solution, which minimizes the cost function
H does not always extremize the profit, returns, and Sharpe
ratio. For dataset M for instance, the TN simulation produces
a trajectory, which presents higher profits and Sharpe ratio
than other solvers, but is further away from the global minima.
Another example is dataset L, for which Gekko produces the
largest profits, but the largest Sharpe ratio is obtained with

FIG. 5. Effective assets after clustering, from 52 down to 6. Hor-
izontal axis is the period of time considered for this clustering (two
years).
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TABLE I. Specifics of the different datasets used for benchmarking the different algorithms and hardware platforms. Risk aversion for all
datasets is fixed to γ = 1 and transaction costs to λ = 1. Time steps Nt are measured in business months (i.e., not considering weekends due
to closure of some markets).

Param. XS S M L XL XXL

N 3 4 4 8 8 8
Nt 2 5 7 17 29 53
Nq 1 1 1 2 2 3
Ntot 6 20 28 272 464 1272
2Ntot 64 O(106) O(108) O(1081) O(10139) O(10382)
K 2 3 3 5 10 15
K ′ 1 1 1 3 3 7

TNs instead (see Tables II and III). In fact, the performance
of Gekko is quite remarkable, sometimes even better than
quantum and quantum-inspired solutions depending on the
metric, but unfortunately the method hits a memory wall
around 500 qubits. In this sense, it would be nice to test also
the performance of other quantum-inspired solutions such as
Fujitsu’s Digital Annealing, Microsoft QIO, and Amazon’s
Alpha-QUBO, as well as popular methods nowadays such as
metaheuristics. Some of these techniques provide also a very
good performance that would be worth analyzing. We leave
this for future studies.

Rosenberg et al. were able so study a system of 24 fully
connected qubits at most (see Ref. [11] Table IV) using
the capabilities of D-wave’s processor from 2016. By way
of comparison, with today’s D-wave hybrid as well as with
our TN algorithm we optimized up to 1272 fully-connected
qubits, and didnot hit the limit of the two approaches. From
our experience, these two algorithms could well handle the
full dataset of 28 relevant assets without any clustering and for
reasonable periods of time. The algorithms are under continu-
ous development, but this already shows important progress in
the performance and variety of portfolio optimization strate-
gies.

Concerning universal quantum processors, we observed
good convergence of VQE for this problem in small datasets.
As can be seen from Tables II , III, and IV, a naive application
of universal quantum processors such as IBM-Q still struggle
to tackle optimization problems of commercially relevant di-
mensions. We were able to obtain good performance using
appropriate data preparation. Note, however, that universal
quantum processors have seen a phenomenal improvement
over the past decade, such that we look forward to seeing
progress in this area in the coming years.

We have observed that the D-wave hybrid approach works
well for this problem, better in fact than a simple D-wave
approach (results not shown). Specifically, D-wave hybrid al-
lows us to solve problems up to 1272 fully-connected qubits in
171 seconds, which in our opinion is really fast. We conclude
that hybrid classical-quantum approaches can be already quite
useful for quickly finding good-quality solutions to practical
optimization problems. For the sake of comparison, the cur-
rent version of our TN solver took 116 833 seconds in solving
the same problem running on a common laptop (a MacBook
Pro using Matlab), and a pure quantum-annealing approach in
D-wave 2000Q would only have been able to solve up to 65
fully-connected qubits. We observe also that D-wave hybrid
provides an interesting landscape of potential solutions, see
for instance Table V, where we show the energies as well as
other relevant quantities computed by the algorithm for an
optimization of 8 assets over 53 trading steps. As shown in
that table, the different figures of merit are in fact different:
minimizing the energy does not necessarily, e.g., maximize
profits.

We notice that our quantum-inspired TN solver tends to
approach the problem’s global minimum more reliably than
D-wave hybrid in some cases. In the case of the M, L, and
XL datasets, for instance, our TN algorithm returns solu-
tions, which have a larger Sharpe ratio and/or larger profits.
Furthermore, for the XXL dataset the solution could still
be further improved by playing with different hyperparame-
ters and fine-tuning the algorithm further, which is currently
work in progress. In any case, it is interesting to notice that
whereas D-wave hybrid provides the largest profits for the
XXL dataset, the largest Sharpe ratio is however given by the
TN solver. This deserves a deeper analysis, which we leave
for future works.

TABLE II. Sharpe ratios computed by the different methods for the different datasets and time periods from Table I.

Method XS S M L XL XXL

VQE 3.59
Exhaustive 6.31 8.90
VQE constrained 6.31 6.04 4.81
Gekko 5.98 8.90 8.39 15.83 20.76
D-wave hybrid 5.98 8.90 8.39 7.47 9.70 12.16
Tensor networks 5.98 8.90 9.54 16.36 15.77 15.83
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TABLE III. Profits (percentual) computed by the different methods for the different datasets and time periods from Table I.

Method XS S M L XL XXL

VQE 2.4%
Exhaustive 5.1% 13.9%
VQE constrained 5.1% 9.1% 7.1%
Gekko 5.8% 13.9% 13.6% 54.1% 71.6%
D-wave hybrid 5.8% 13.9% 13.6% 18.9% 29.3% 67.6%
Tensor networks 5.8% 13.9% 15.4% 38.2% 39.6% 39.7%

We anticipate that our TN results can still be largely im-
proved, both in terms of accuracy and performance. Based
on our own estimations, we can reduce at least ≈100× the
runtime of our TN algorithm (see Sec. VI), as, in its present
version, the TN algorithm is not memory intensive. In fact,
acceleration of the TN code is possible at three levels: (i) soft-
ware, (ii) hardware, and (iii) the algorithm itself. All in all, our
paper proves that TN solvers are a cheap and practical way to
tackle large combinatorial optimization problems, compared
to other quantum and quantum-inspired approaches.

VI. NEXT STEPS

Let us now discuss what would be the next steps to make
our algorithms better tailored to real-life situations, as well as
to improve their efficiency.

A. More constraints

As we said in the introduction, the portfolio optimization
problem is central to quantitative finance. We have discussed
its dynamic version, where we search for an optimal trading
trajectory given the price history of several assets. There exist
many commercially relevant variations of this problem. In
this section, we will discuss three: the market impact, exact
transaction costs, and the 10 − 5 − 40 rule.

1. Market impact

Intuitively, when a large order is passed, it can affect the
market. For instance, a large “buy” order may increase the
price of an asset because it signals high demand, whereas a
large “sell” order may instead decrease it. This, of course,
would alter the optimal trading trajectory. As discussed in
Ref. [11] this can be implemented as

Market =
t f∑

t=ti

�ωT
t �′

tωt , (31)

with �t a diagonal matrix of market impact coefficients.
Equation (31) can be interpreted as follows: The impact of

a trade in asset n at time t on the value of our portfolio is
proportional to �ωn,t , the amount of shares of asset n bought
or sold, and to ωn,t , the amount of shares of asset n held at
time t .

Note that if we are buying asset n, �ωn,t > 0, we expect
the asset’s value to increase. Our portfolio’s returns should
then grow as ωn,t . The matrix �′

t is therefore positive definite.
Similarly, when selling, �ωn,t < 0, and our portfolio’s returns
drop with ωn,t .

The resulting classical Hamiltonian including market im-
pact is therefore

H =
t f∑

t=ti

−μT
t ωt + γ

2
ωT

t �tωt + λ(�ωt )
2

−�ωT
t �′

tωt + ρ(uT ωt − 1)2, (32)

again in terms of normalized weigths. Note that this Hamilto-
nian is in the form of a QUBO.

As can be inferred from Eq. (31), this term is non-
negligible only when (i) we have a large amount of the asset
being traded in our portfolio, and (ii) the traded amount is
large.

2. Exact linear transaction costs

As discussed in Sec. II, we would expect the transaction
costs to be linear in the absolute value of the transaction mag-
nitude. We approximated these by a parabola, as polynomial
expressions find a more natural formulation as a QUBO. That
option is cheap, fast, and works quite well for the accuracies
that are normally considered. It is however possible to exactly
implement the linear transaction costs by introducing N × Nt

extra ancillary qubits yn,t . This can be done by noticing that
the sign of the difference (ωn,t+1 − ωn,t ) in Eq. (11) can be

TABLE IV. Runtimes (in seconds) estimated for the different methods for the different datasets from Table I.

Method XS S M L XL XXL

VQE 278
Exhaustive 0.005 34
VQE constrained 123 412 490
Gekko 24 27 21 221 261
D-wave hybrid 8 39 19 52 74 171
Tensor networks 0.838 51 120 26649 82698 116833
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TABLE V. Example of landscape of computed solutions with D-wave hybrid, for an optimization of 8 assets over 53 trading steps, with
maximum holdings 15: Computed trajectory (T), energy (E), covariance (C), returns (R), transaction costs (TC), profit (P), and Sharpe ratio
(SR). The actual trajectory is not given for space reasons, but is available upon request.

T E C R TC P SR

1 –0.673 0.755 10.566 6.514 4.052 12.161
2 –0.661 0.731 19.347 6.026 4.321 12.101
3 –0.656 0.736 10.248 5.662 4.586 11.939
4 –0.621 0.741 9.841 7.366 2.475 11.428
5 –0.620 0.793 9.736 6.066 3.670 10.931

controlled by yn,t as follows:

νnt |ωn,t+1 − ωn,t | → νnt (ωn,t+1 − ωn,t )(1 − 2yn,t ), (33)

with yn,t = 0 if (ωn,t+1 − ωn,t ) > 0 and yn,t = 1 otherwise.
This condition can be further imposed by including the
penalty term

ρ ′
t f∑

t=ti

N∑
n=1

(ωn,t+1 − ωn,t )yn,t , (34)

with ρ ′ a Lagrange multiplier. So, in this way, one could
introduce the linear transaction costs in the QUBO formu-
lation (notice that the above equations are quadratic), but at
the expense of introducing more qubits, thus increasing the
complexity of the optimization problem.

3. 10 − 5 − 40 rule

It is common for investors to be bound by a constraint
known as the 10 − 5 − 40 rule: no investment in an asset can
represent more than 10% of the total portfolio’s value; invest-
ments larger than 5% of the portfolio’s value cannot total 40%
of the portfolio’s value. In the following we will demonstrate
a way to implement this constraint as a QUBO, but at the price
of increasing the complexity of the optimization problem.

If we choose to impose the 10 − 5 − 40 rule, we could pro-
ceed as follows. First, choose K ′ = 0.1 × K so that variables
ωt,n ∈ [0, K ′/K] directly satisfy the 10% constraint, which
can be achieved by choosing an appropriate Nq. Notice that,
in our previous simulations, the ratios K ′/K can be extracted
from Table I, but we could easily impose K ′/K = 0.1. Next,
we impose that the sum of those weights larger than 5%
does not amount to more than 40% of the total investment.
We can do this by adding a penalty term, which uses Slack
variables αt ∈ R. The idea is that, by minimizing also over the
Slack variables, one is able to convert an inequality constraint
into an equality constraint. Additionally, we include ancillary
qubits yn,t such that yn,t = 1 if ωn,t > 0.05 and yn,t = 0 oth-
erwise. The penalty term for the 40% constraint is given by

UpToForty = ρ ′
t f∑

t=ti

(
N∑

n=1

yn,tωn,t − 0.4 + α2
t

)2

, (35)

with ρ ′ a Lagrange multiplier. Finally, we need to ensure that
yn,t = 1 if and only if ωn,t > 0.05, which can be accounted for

by the penalty term

WhoIsFive = ρ ′′
t f∑

t=ti

N∑
n=1

yn,t
(
0.05 − ωn,t + μ2

n,t

)2

+ (1 − yn,t )
(
ωn,t − 0.05 + ν2

n,t

)2
, (36)

which again uses a Lagrange multiplier ρ ′′ and Slack variables
μn,t , νn,t ∈ R.

If we include the 10 − 5 − 40 rule, the optimization prob-
lem becomes much more complex because of two reasons:
first, Eqs. (35) and (36) make this a higher-order optimization
problem, since Eq (35) is quartic and Eq. (36) is cubic in the
bit variables. Therefore, the problem is now a HUBO (“H”
for “higher-order”) instead of a QUBO. HUBOs are generally
more complex than QUBOs, and there exist few computa-
tional architectures adapted for solving them (though they
do exist). Second, the 10 − 5 − 40 rule is a set of inequality
constraints, which involve the inclusion of new hyperparam-
eter Slack variables αt , μn,t and νn,t , which also need to be
optimized, thus increasing the complexity of the problem.

B. Improved hardware and codes

We believe that it should be possible to handle bigger
problems in a number of ways. Concerning quantum proces-
sors, D-wave’s processor “advantage” with Pegasus topology
is able to cope with a larger number of variables (5000+
qubits, 35000+ couplers, 15 couplers per qubits, 23x more
optimal solutions than 2000Q for satisfiability problems and
20x faster), see for instance the numerical benchmarks in
D-wave’s documentation [27]. Also, hybrid solutions such as
D-wave hybrid benefit a lot from such developments. Con-
cerning IBM-Q, we have found that a naive application of
VQE was very rather limited for this problem, but obtained
promising results by constraining the solution space using
VQE. We think that it is worth exploring more hybrid solu-
tions of this type. As a matter of fact, this is also the natural
state of affairs: in the NISQ era, hybrid quantum-classical
solutions (both in hardware and software) are offering the best
operational performances, which is also somehow expected.

Our TNs code is able to handle O(103) qubit variables
using a MacBook Pro without problems, even though the per-
formance can be improved in a number of ways. We believe
that a highly optimized code in C++ fully parallelized on a
HPC cluster should be able to handle really large problems
very efficiently. GPU computing, FPGAs, and even optical
processing units (OPUs), should also provide improvements
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at the hardware level. Moreover, at the algorithmic level, it
should be possible to try different TN strategies that should
also improve the performance. The combination of all these
easily mean more than 100× acceleration of the calculations.
Since memory is not a constraint for our algorithm, this would
also mean the ability to simulate much bigger systems than
the ones considered in this paper. And of course, this option
would still be cheaper than other alternatives.

VII. CONCLUSION AND OUTLOOK

In this paper we have solved the problem of dynamic
portfolio optimization using a number of quantum and
quantum-inspired algorithms on different hardware platforms.
We ran our solver on the daily values of 52 assets over 8
years. We implemented classical solvers (Gekko, exhaustive),
D-wave hybrid quantum annealing, two different approaches
based on VQE on IBM-Q (one of them brand-new, which
we dubbed “VQE-constrained”), and in this context also a
quantum-inspired optimizer based on tensor networks. We
also implemented a preprocessing based on clustering of as-
sets. From our comparison, we conclude that D-wave hybrid
and tensor networks are able to handle the largest possible
systems in the present implementation, i.e., those for the
XXL dataset. More specifically, with these two methods we
managed to solve optimization problems up to 1272 fully-
connected qubits, for demonstrative purposes and without
hitting the limiting computational capabilities (we could in
fact have targeted larger systems). For comparison, previous
quantum dynamic portfolio optimizations involved up to 72
qubits (see Table VI in Ref. [11]). We observed also that
D-wave hybrid is remarkably fast, whereas tensor networks
sometimes provide better portfolios at the expense of a longer
calculation time. To the best of our knowledge, our paper is the
first application of VQE and TNs to solve a dynamic portfolio
optimization problem with real data. Moreover, our VQE-
constrained approach is also unique, as far as we know. Our
preprocessing of real data in order to fit the current capabilities
of quantum processors is also novel in this context.

From our results we also conclude that there seems to be no
clear answer as to which is the “best” algorithm and hardware
platform to solve the dynamic portfolio optimization problem
for large systems. This is because there are several figures of
merit at play: profits, Sharpe ratio, time cost, and also money
cost. The performance of the algorithms is different depending
on the figure of merit, leading us to conclude that, in practice,
the more options we have, the better.

We have good reasons to think that the results presented in
this paper are very promising. They show how real data can
be handled by upcoming quantum computers, and also show
the potential of quantum-inspired methods such as tensor net-
works. We also realize the importance of hybrid approaches,
combining quantum and classical processing. This has been
the key to improved results, e.g., in VQE-constrained and
D-wave hybrid. In fact, a hybrid approach combining quantum
processing and tensor networks should be quite successful
for many problems. This is a topic that we are currently
investigating in the broad sense. We also believe that all these
developments, involving quantum and quantum-inspired tech-
niques, will change the way quantitative finance is done, and
for good.
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