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Cooper-pair condensates with nonclassical long-range order on quantum devices
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An important problem in quantum information is the practical demonstration of nonclassical long-range order
on quantum computers. One of the best known examples of a quantum system with nonclassical long-range
order is a superconductor. Here we achieve Cooper-like pairing of qubits on a quantum computer, which can
be interpreted as superconducting or superfluid states via a Jordan-Wigner mapping. We rigorously confirm the
quantum long-range order by measuring the large O(N ) eigenvalue of the two-electron reduced density matrix.
The demonstration of maximal quantum long-range order is an important step toward more complex modeling
of phenomena with significant quantum long-range order on quantum computers such as superconductivity and
superfluidity.
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I. INTRODUCTION

Phenomena like superconductivity and superfluidity arise
from a Bose-Einstein-like condensation of fermion pairs into
a quantum state with large nonclassical long-range order
[1–21]. Recently, quantum computers have emerged as po-
tentially powerful calculators of correlated quantum systems
[22–32], which foreshadows the potential emergence of a
significant advantage of quantum computers over classical
computers for certain classes of problems—a phenomenon
known as quantum advantage [33–35]. Here we prepare and
measure Cooper-like pairs of qubit particles on a transmon-
qubit quantum computer. As the distinction between bosonic
and fermionic statistics is lost as a result of a Jordan-Wigner
mapping, condensations of Cooper-like qubit pairs can be in-
terpreted as fermion-pair condensations, which can represent
superconducting (or superfluid) states.

In this study, qubit particles—which are hard-core
bosons—are entangled into Cooper-like bosonic pairs
(see Fig. 1) to form superconducting-like states—extreme
antisymmetrized geminal power (AGP) wave functions
[12,36–46]. As originally shown by Yang [37] and Coleman
[39,41,47], such states are extreme in the set of two-electron
reduced density matrices (2-RDM), exhibiting the largest pos-
sible eigenvalue of the 2-RDM on the order of the number
N of electrons O(N ) that represents the maximum possible
number of Cooper pairs in a common two-electron (gemi-
nal) eigenfunction of the 2-RDM. We use tomography on
the quantum computer to measure a sub-block of the 2-
RDM [41,48,49] [see Eq. (9)] containing the large eigenvalue.
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Diagonalization of this sub-block on a classical computer
produces the large eigenvalue and confirms the preparation of
the extreme states with maximal nonclassical (off-diagonal)
long-range order (ODLRO) [37,47]. Even though the ex-
treme AGP functions are expressible as projections of product
wave functions [39,41], they have contributions from an ex-
ponentially scaling number of orbital-product configurations
(see Fig. 2). Moreover, the measurement of the large eigen-
value of the 2-RDM is applicable to confirming nonclassical
long-range order in a much richer set of quantum states.
Because a necessary criterion for the modeling of supercon-
ductors (superfluids) on the quantum computer is the ability
to capture the ODLRO, its demonstration provides a first step
toward modeling more complex superconducting (superfluid)
materials.

II. THEORY

A. The wave function

The superconducting-like state on the quantum computer
is prepared by entangling pairs of qubits into Cooper-like
bosonic states. Consider the creation of a state with a Cooper
pair of electrons, an extreme geminal [2,39–41], from the
vacuum state

|g〉 =
∑

j

eiθ â†
j̄
â†

j |∅〉, (1)

where j and j̄ are the indices of the paired orbitals φ j and
φ j̄ , the sum over j is taken with respect to all pairs, and θ

is an arbitrary global phase. If we represent each orbital by
a qubit with the |0〉 state representing an unfilled orbital and
the |1〉 state representing a filled orbital, we can use a spe-
cific Klein transformation [50] known as the Jordan-Wigner
mapping [51],

â†
j = eiπ

∑ j−1
k=1 σ+

k σ−
k σ+

j , (2)
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FIG. 1. A schematic demonstrating the interpretation of the
Cooper pairing of qubit particles to create an overall Cooper-like
paired state in a quantum system.

to map the fermionic operators in Eq. (1) to qubit operators to
obtain

|g〉 =
∑

j

eiθ eiπ
∑ j̄−1

k=1 σ+
k σ−

k σ+
j̄

eiπ
∑ j−1

k=1 σ+
k σ−

k σ+
j |∅〉. (3)

If the paired orbital indices j and j̄ are selected to be consec-
utive integers in the range [1, r] where r is the total number of
orbitals, then the Jordan-Wigner mappings in Eq. (3) simplify
to a negative global phase which we can cancel by selecting
θ = π to obtain

|g〉 =
∑

j

σ+
j̄
σ+

j |∅〉. (4)

Hence the extreme geminal of the Cooper pair |gj j̄〉 of elec-
trons can be represented as two-qubit excitations without
approximation. The difference between the fermion and the
qubit statistics, typically included through an explicit many-
qubit Jordan-Wigner mapping, disappears from the pairing of
the orbitals to generate an extreme geminal. Moreover, the
explicit details of the pairing of the particles are contained
within the unspecified orbitals φ j and φ j̄ . Consequently, the
extreme geminal can physically represent Cooper pairing of
electrons in a superconductor or a superfluid in addition to

FIG. 2. A schematic demonstrating the possible configurations
(i.e., each row) for a given number r of qubits where a filled circle
indicates the |1〉 state which corresponds to an occupied orbital and
an unfilled circle represents the |0〉 state which corresponds to an
unoccupied orbital.

FIG. 3. A schematic demonstrating the quantum state prepara-
tion for the r = 4 AGP wave function given in Eq. (8) where H
represents the Hadamard gate which maps |0〉 to (|0〉 + |1〉)/

√
2 and

|1〉 to (|0〉 − |1〉)/
√

2 and where each pair of qubits is connected via
a standard controlled-NOT (CNOT) gate with control • and target ⊕.

representing even the Cooper-like pairing of qubit particles
(hard-core bosons) [52] which are paraparticles [53,54].

The N-electron extreme AGP wave-function |�N
AGP〉 for

even N can be generated from the wedge product of the
extreme geminal with itself N/2 times [39–41,55],

|�N
AGP〉 = |g(12)〉 ∧ |g(34)〉 ∧ ... ∧ |g((N − 1)N )〉, (5)

where the wedge ∧ denotes the sum of all products result-
ing from the antisymmetric permutation of the particles. We
can also consider a wave function |�AGP〉, also known as a
Bardeen-Cooper-Schrieffer (BCS) wave function [1], that is a
linear combination of the |�N

AGP〉 for all N which is express-
ible as a product state

|�AGP〉 =
r/2∏
j=1

(1 + eiθ â†
2 j â

†
2 j−1)|∅〉. (6)

Using the Jordan-Wigner transformation and simplifying as
above, we can generate the AGP state in Eq. (6) with the qubit
excitation operators

|�AGP〉 =
r/2∏
j=1

(1 + σ̂+
2 j σ̂

+
2 j−1)|∅〉, (7)

which can also be cast as the tensor multiplication of r/2
distinct extreme geminals (or the |�+〉 Bell states [56])

|�AGP〉 = r/2⊗
j=1

1√
2

[|00〉2 j,2 j−1 + |11〉2 j,2 j−1], (8)

where j specifies the pair index and adjacent qubits with
qubit indices 2 j − 1 and 2 j paired by definition. This state,
which is composed of substates with all possible, paired, even-
numbered excitations, can be prepared on a quantum device
according to the general gate sequence given in Eq. (A1).
Figure 3 shows the specific r = 4 preparation.

On the quantum computer, the extreme AGP state is
physically composed of Cooper-like pairs of qubits. Be-
cause the phase changes from the fermionic statistics are lost
in the pairing, as seen in the above fermionic encoding of the
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qubits, the extreme state rigorously represents not only entan-
gled pairs of qubits but also Cooper pairs of electrons that are
entangled in superconducting or superfluid states. Moreover,
the state can represent any physical model for pairing as the
precise nature of the pairing (i.e., the pairing of electrons
in physical space or in momentum space) is contained in
the paired orbitals φ j and φ j̄ , which are left unspecified.
All pairing states have fundamental entanglement and order
properties that are independent of the physical definition of
the orbitals. The nonclassical long-range order of the extreme
AGP state can be assessed from the number of Cooper pairs
in the same extreme geminal, which is determinable from the
largest eigenvalue of the 2-RDM [37–39].

B. The signature of nonclassical ODLRO

In order to measure whether the experimentally prepared
quantum state and/or the number-conserving substates—
which are all possible, even eigenstates of the number operator
[Eq. (C1)] that can be projected out from the overall ensem-
ble quantum state according to the methodology presented
in Appendix C—demonstrate off-diagonal long-range or-
der, we conduct quantum tomography (see Appendix B and
Appendix C) to probe directly the presence and extent of
ODLRO . To determine the presence and degree of this long-
range order for a specified quantum state, it is useful to
establish a calculable, characteristic property [12,36–39,41–
43]. Such a signature of ODLRO is a large eigenvalue in
the 2-RDM, which we denote as λD [37,38]. As this large
eigenvalue corresponds to the number of Cooper-like qubit
pairs occupying the same two-qubit geminal (which is directly
analogous to the one-qubit orbital), any λD value exceeding
the Pauli-like limit of one is indicative of ODLRO [37–39].

While the entire 2-RDM can be measured by quantum
tomography, only the following sub-block of the 2-RDM
[41,48,49] is required due to the block diagonal structure of
the 2-RDM of the AGP wave function,

2D j j̄
kk̄

= 〈�AGP|â†
j â

†
j̄
âk̄ âk|�AGP〉, (9)

where j/ j̄ and k/k̄ represent paired fermions, which are given
by j = 2m/ j̄ = 2m − 1 and k = 2n/k̄ = 2n − 1 for integers
m, n in the framework of the AGP wave function. After
Jordan-Wigner transformation to the qubit representation, we
can equivalently represent this block of the 2-RDM in terms
of the qubit excitation operators as

2D j j̄
kk̄

= 〈�AGP|σ̂ †
j σ̂

†
j̄
σ̂k̄ σ̂k|�AGP〉. (10)

For fixed number N of electrons, if the 2-RDM is normalized
to N (N − 1) as in second quantization, the maximum eigen-
value for even N is bounded from above by N as shown by
Yang [37] and Sasaki [38]. Moreover, for a finite rank of r
orbitals, this bound can be further tightened [39,41] to

λD � N

(
1 − N − 2

r

)
. (11)

While the thermodynamic limit is not reached until r → ∞,
even for finite r, as long as N � 4, the 2-RDM exhibits a large
eigenvalue that represents the nonclassical long-range order
associated with Cooper pairing. The 2-RDM from the non-

FIG. 4. The λD values for the overall ensemble state preparation
for QASM simulation and experimental Melbourne results.

number-conserving extreme AGP state |�AGP〉 also exhibits a
large eigenvalue, representing an average of the Cooper pairs
in each of the fixed-N extreme AGP states (i.e., the number-
conserving substates). The number-conserving blocks of the
2-RDM with even particle numbers—i.e., 2-RDMs of zero,
two, four,..., r − 2, and r particles for an r-qubit system—
can be determined from the non-number-conserving state via
postmeasurement analysis (see Appendix C). Analysis on the
presence and extent of ODLRO (measured via λD) of both
the overall entangled state (|�〉) and the number-conserving
substates is conducted for various numbers r of total qubits in
the following sections.

III. RESULTS

The extreme non-number-conserving AGP state is pre-
pared for both simulation utilizing IBM’s QASM simulator
(ibmq_qasm_simulator) and an experimental quantum device
for all even-numbered qubit systems from r = 0 to r = 14.
Postmeasurement computation of the quantum signature of
off-diagonal long-range order (λD) is then employed to probe
the presence and extent of ODLRO for these overall states.
As can be seen in Figure 4, the signature of ODLRO in-
creases as the number r of qubits comprising the system
is increased, and—for QASM simulation—ODLRO is ob-
served (i.e., λD > 1) for all prepared states with r � 8. While
the experimental results deviate from QASM simulation due
to the noisy nature of near-term quantum devices [57] (see
Appendix D and Appendix F), experimental systems with
r = 12 and r = 14 qubits did demonstrate ODLRO. Further,
the trend of the extent of ODLRO increasing as the number
of qubits comprising the system increases holds for the exper-
imental results, which is promising for future benchmarking
of quantum computers through the preparation of extreme
AGP states with larger number of qubits as well as efforts to
probe more macroscopically scaled materials demonstrating
ODLRO on quantum devices.

As the non-number-conserving extreme AGP state is an en-
semble composed of number-conserving substates, the large
eigenvalue associated with the ODLRO of the ensemble state
is the ensemble average of the substates. By definition, then,
the long-range order of the ensemble is less than that of
the substate with the largest degree of ODLRO, which is
expected to occur around the center of the number distribution
N ≈ r/2. Additionally, real-world materials demonstrating
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FIG. 5. The λD values for the number-conserving substates of
rank r = 14 for QASM simulation and experimental Melbourne
results.

ODLRO such as superconductors should conserve particle
number. It is hence beneficial to probe the number-conserving
substates that comprise the overall entangled state in order to
both isolate the ODLRO behavior of the number-conserving
substates and more closely model real-world materials.

By projecting out a specific number of particles from
the results obtained for the overall entangled state (see
Appendix C), we can probe the behavior and properties of
the number-conserving substates. Specifically, as is shown in
Fig. 5, the extent of ODLRO (λD) for each number-conserving
state can be isolated from the overall r-qubit preparation de-
scribed in Eq. (8). As can be seen from the QASM simulation
results, all number-conserving substates with 2 < N < r
demonstrate ODLRO (λD > 1) where N = 2 fails to
demonstrate condensation behavior as the maximum signature
of condensation is N/2 for even N-particle systems [37,38]
and where N = r fails to demonstrate condensation behavior
as this substate describes the state in which all orbitals are
fully occupied with no entanglement—i.e., the single Slater
determinant |1〉⊗r—and is hence expected to have a maximum
eigenvalue of λD = 1. Further, the signature of condensation
seems to follow a bell curve centered around (r + 2)/2 such
that maximum ODLRO is observed at half filling for N =
(r + 2)/2 if (r + 2)/2 is even and for both N = (r + 2)/2 − 1
and (r + 2)/2 + 1 if (r + 2)/2 is odd. Again, the extent
of ODLRO is lesser for the experimental results for all
particle-conserving states due to experimental error; however,
the qualitative trends described for QASM simulation hold
in general although the bell curve does demonstrate a slight
negative (right-modal) skew, implying that the quantum
computer does not exactly treat the particle and hole statistics
symmetrically. Importantly, ODLRO is clearly observed for
r = 14 experimental results for particle numbers N � 6. Note
that although only results for the largest-qubit preparation
r = 14 are shown, all data are included in Table I. The
trends in the r = 14 data hold for the lower-qubit results, and
additionally, the r = 14 qubit data demonstrate the largest sig-
nature of off-diagonal long-range order as the largest λD value
for a fixed N increases as the number r of qubits is increased.

IV. CONCLUSIONS

Here we prepare superconducting-like states from the
Cooper pairing of qubits on a transmon quantum computer,

where each qubit is composed of a microwave phonon in an
anharmonic well potential. Using the Jordan-Wigner mapping
between fermions and qubits, we rigorously show that the
prepared states are equally valid representations of condensa-
tions of Cooper pairs of fermions, bosons, or qubits. Hence
such Cooper-pair-based condensations and their associated
nonclassical long-range order are independent of the particle
statistics. Moreover, the prepared states are also independent
of the physical details of the paired orbitals, and consequently,
are representative of superconducting, superfluid, or other
pairing states. The studied states are known as extreme AGPs
because they exhibit the maximum degree of nonclassical
(off-diagonal) long-range order as determined by the number
of Cooper pairs in the same geminal state, which is equal
to the largest eigenvalue of the 2-RDM [2,37–39,41,44,47].
We measure a sub-block of the 2-RDM [41,48,49] on the
quantum computer and compute its largest eigenvalue on a
classical computer. We observe large eigenvalues both for the
nonparticle conserving extreme AGP state and for the particle-
conserving extreme AGP substates. The large eigenvalues
confirm the preparation of these extreme AGP states, which
are the only states to exhibit the largest possible eigenvalues
[41], as well as the generation of maximum nonclassical long-
range order.

The upper bound on the largest eigenvalue of the 2-RDM,
λD = N , is technically only reached in the thermodynamic
limit of r → ∞. However, as seen in Eq. (11), the large eigen-
value is rapidly approached with increasing r as the fraction
of Cooper pairs that are removed from the condensate due to
finite size effects scales as 1/r. Consequently, the quantum
long-range order as well as its associated entanglement begin
to appear for the range of r (r � 14) explored in the present
study. On both IBM’s QASM simulator and an IBM quantum
computer, we observe that the large eigenvalue follows the
expected bell curve with respect to r. The known value for
the maximum eigenvalue of the extreme AGP state provides
a clear metric for not only confirming the presence of the
extreme state and its long-range order but also benchmarking
the fidelity with respect to noise of both current and future
quantum computers.

An aspirational goal of quantum computing is to achieve
a quantum advantage over traditional classical computing
for the solution of a significant problem. One such area of
chemistry and physics, which traces back to the original
proposal of Feynman [58], is the simulation of molecules
on quantum computers. The construction of the wave func-
tion on a classical computer scales exponentially in the
number of orbital-based configurations. In principle, the
quantum computer offers the possibility of preparing and
measuring quantum states with nonexponential scaling. In the
present case, the extreme AGP wave function is a product
state composed of a product of extreme geminals (or Bell
states). Consequently, the maximum degree of nonclassical
long-range order, at least as measured by the largest eigen-
value of the 2-RDM, can be achieved with polynomial cost
on both classical and quantum computers. The extreme AGP
states, nonetheless, provide an intriguing reference for the
exploration of more complicated states demonstrating large
ODLRO (i.e., demonstrating large eigenvalues) that cannot
be easily expressed as product-state wave functions. From
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TABLE I. All eigenvalue (λD) information for the non-number-conserving overall state (all) and the number-conserving substates are given
with state preparation fidelities (F ) and joint probability of occupation numbers of other orbitals (qubits) if the first orbital (Q0) is filled for
ibmq_16_melbourne.

r N λD F Probability of occupation if particle in Q0

2 All 0.437 0.924 [x, 0.930]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000]

4 All 0.616 0.788 [x, 0.92, 0.476, 0.472]
0 0.000 1.000 N/a
2 0.971 0.971 [x, 0.972, 0.014, 0.014]
4 1.000 1.000 [x, 1.000, 1.000, 1.000]

6 All 0.783 0.658 [x, 0.920, 0.484, 0.483, 0.424, 0.438]
0 0.000 1.000 N/a
2 0.923 0.916 [x, 0.946, 0.013, 0.010, 0.013, 0.018]
4 1.250 0.916 [x, 0.974, 0.569, 0.563, 0.444, 0.449]
6 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000]

8 All 0.898 0.466 [x, 0.842, 0.436, 0.476, 0.498, 0.487, 0.549, 0.494]
0 0.000 1.000 N/a
2 0.788 0.777 [x, 0.831, 0.016, 0.039, 0.027, 0.031, 0.037, 0.018]
4 1.230 0.728 [x, 0.871, 0.311, 0.348, 0.351, 0.341, 0.410, 0.368]
6 1.291 0.791 [x, 0.928, 0.599, 0.630, 0.698, 0.692, 0.743, 0.710]
8 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

10 All 0.937 0.303 [x, 0.897, 0.475, 0.401, 0.452, 0.541, 0.483, 0.448, 0.384, 0.462]
0 0.000 1.000 N/a
2 0.631 0.624 [x, 0.856, 0.024, 0.011, 0.011, 0.019, 0.017, 0.024, 0.010, 0.027]
4 1.084 0.500 [x, 0.898, 0.282, 0.217, 0.241, 0.332, 0.294, 0.263, 0.193, 0.281]
6 1.280 0.498 [x, 0.928, 0.525, 0.446, 0.517, 0.624, 0.541, 0.495, 0.422, 0.502]
8 1.211 0.606 [x, 0.958, 0.761, 0.697, 0.776, 0.860, 0.784, 0.740, 0.682, 0.742]
10 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

12 All 1.116 0.269 [x, 0.820, 0.486, 0.417, 0.479, 0.512, 0.558, 0.482, 0.420, 0.491, 0.502, 0.490]
0 0.000 1.000 N/a
2 0.647 0.626 [x, 0.678, 0.067, 0.019, 0.036, 0.026, 0.046, 0.041, 0.026, 0.031, 0.012, 0.017]
4 1.130 0.478 [x, 0.763, 0.237, 0.156, 0.213, 0.244, 0.295, 0.236, 0.171, 0.239, 0.229, 0.216]
6 1.404 0.445 [x, 0.840, 0.407, 0.327, 0.425, 0.453, 0.507, 0.432, 0.347, 0.418, 0.428, 0.416]
8 1.450 0.485 [x, 0.889, 0.600, 0.533, 0.619, 0.650, 0.688, 0.597, 0.531, 0.616, 0.644, 0.633]
10 1.288 0.616 [x, 0.944, 0.805, 0.763, 0.790, 0.821, 0.868, 0.796, 0.767, 0.820, 0.811, 0.817]
12 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

14 All 1.261 0.193 [x, 0.893, 0.389, 0.320, 0.588, 0.491, 0.507, 0.599, 0.499, 0.514, 0.548, 0.538, 0.459, 0.464]
0 0.000 1.000 N/a
2 0.555 0.535 [x, 0.784, 0.026, 0.009, 0.009, 0.009, 0.004, 0.043, 0.013, 0.022, 0.039, 0.030, 0.009, 0.004]
4 1.038 0.375 [x, 0.840, 0.100, 0.069, 0.205, 0.135, 0.175, 0.273, 0.211, 0.215, 0.241, 0.252, 0.139, 0.146]
6 1.358 0.326 [x, 0.869, 0.229, 0.167, 0.440, 0.310, 0.351, 0.478, 0.360, 0.380, 0.418, 0.413, 0.287, 0.300]
8 1.510 0.335 [x, 0.906, 0.382, 0.302, 0.616, 0.506, 0.529, 0.641, 0.510, 0.519, 0.575, 0.563, 0.472, 0.478]
10 1.483 0.402 [x, 0.933, 0.576, 0.497, 0.794, 0.715, 0.699, 0.760, 0.665, 0.683, 0.700, 0.688, 0.648, 0.640]
12 1.282 0.561 [x, 0.963, 0.789, 0.741, 0.907, 0.879, 0.864, 0.875, 0.805, 0.820, 0.829, 0.829, 0.843, 0.856]
14 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

this perspective, the present work of preparing and measuring
superconducting-like states from Cooper pairs of qubits on
a quantum computer provides an initial step toward investi-
gating more complicated condensates of Cooper pairs—with
potential future applications to the study of both supercon-
ducting materials and simulation.

Certain electronic structure methodologies—such as
Hartree Fock (HF), density functional theory, and cou-
pled cluster (CCSD) theory—are incapable of demonstrating
ODLRO indicative of particle-particle condensation. As such,
in order to accurately explore complex, real-world super-
conducting states on quantum devices, it is necessary to
establish that noisy intermediate quantum devices are both

capable of exhibiting ODLRO as well as the features of
state preparations that yield such ODLRO. In the strongly
correlated regime, HF-based and multireference approaches
on quantum devices are not suitable starting points for state
preparations for exploring ODLRO. Instead, we show that
number-projected BCS wave functions—alternatively termed
AGP wave functions—are ideal starting points for building
more complicated wave functions that may model real-world
superconducting states as we demonstrate that these AGP
wave functions created by the pairing of adjacent qubits are
capable of demonstrating ODLRO on the noisy near-term
quantum devices. Such insight may additionally prove use-
ful in the development of an appropriate ansatz for hybrid
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quantum-classical algorithms—such as the variational quan-
tum eigensolver—in order to accurately describe strongly
correlated systems demonstrating ODLRO.
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APPENDIX

We include details on the quantum algorithms used to
prepare the qubit states presented in the article; the quantum
tomography of the particle-particle reduced density matrix
for both the overall non-number-conserving state and the
number-conserving substates; a description of noise on near-
term quantum devices; an analysis of errors by comparing
simulated and experimental joint probabilities of occupation;
relevant details on the experimental quantum backends em-
ployed; full results obtained from ibmq_qasm_simulation,
ibmq_16_melbourne, ibmq_5_yorktown, ibmq_santiago, and
ibmq_rochester; and information regarding the state prepara-
tion fidelity.

APPENDIX A: STATE PREPARATIONS

The overall quantum state is composed of all pairwise
even excitations of the r/2 individually paired qubits. This
preparation is accomplished by

|�〉 =
[

r/2−1∏
p=0

C2p+1
2p H2p

]
|0〉⊗r, (A1)

where |0〉⊗r is the initial quantum state in which all qubits
are in their ground state (i.e., all orbitals are unoccupied),;
p represents the index of each of the possible r/2 adjacent,
paired qubits; Hi is the Hadamard gate acting on Qi; and
C j

i is a CNOT gate with Qi and Q j acting as the control
and target qubits, respectively. Application of the gate se-
quence given in Eq. (A1)—represented pictorially for r = 4 in
Fig. 3—produces the AGP wave function described by Eq. (8).

APPENDIX B: QUANTUM TOMOGRAPHY FOR THE
PARTICLE-PARTICLE RDM

While the full particle-particle RDM has elements given by

2Di, j
k,l = 〈�|â†

i â†
j âk âl |�〉, (B1)

for all possible combinations of one-boson spin orbitals in-
dexed by i, j, k, and l in a finite basis state with rank r, the
large eigenvalue, λD, is contained within the sub-block of the
2-RDM given by [39,41]

â1â0 â3â2 · · · âr−2âr−1

â†
0â†

1 â†
0â†

1â1â0 â†
0â†

1â3â2 · · · â†
0â†

1âr−2âr−1

â†
2â†

3 â†
2â†

3â1â0 â†
2â†

3â3â2 · · · â†
2â†

3âr−2âr−1
...

...
...

. . .
...

â†
r−2â†

r−1 â†
r−2â†

r−1â1â0 â†
r−2â†

r−1â3â2 · · · â†
r−2â†

r−1âr−2âr−1,

(B2)

and hence only this portion of the matrix is constructed. Note
that â†

i and âi are creation and annihilation operators for
orbital i (and thereby qubit Qi), which can be represented in
matrix form as

â†
i =

(
0 0
1 0

)
i

(B3)

and

âi =
(

0 1
0 0

)
i

, (B4)

such that each creation operator creates a particle in an
empty orbital i—takes a qubit i from |0〉 to |1〉—and each
annihilation operator kills a particle in a filled orbital i—takes
a qubit i from |1〉 to |0〉—where

|0〉 =
(

1
0

)
(B5)

and

|1〉 =
(

0
1

)
. (B6)

After construction of the sub-block of the 2-RDM cor-
responding to the large eigenvalue (2Ds.b.), the signature of

off-diagonal long-range order—λD—is then obtained by solv-
ing the eigenvalue equation

2Ds.b.v
D
i = εD

i vD
i , (B7)

with the signature corresponding to the largest εD
i value.

1. Tomography via Pauli expectation values

The sub-block of the 2-RDM containing the large eigen-
value [i.e., Eq. (B2)] can be obtained via translation of each
of its elements into the bases of Pauli matrices, the expectation
values of which can be directly probed on a quantum device.
Specifically, the creation and annihilation operators can be
rewritten as

â†
i = 1

2 (Xi − iYi) (B8)

and

âi = 1
2 (Xi + iYi ), (B9)

013003-6



COOPER-PAIR CONDENSATES WITH NONCLASSICAL … PHYSICAL REVIEW RESEARCH 4, 013003 (2022)

with diagonal elements being given by

â†
j â

†
j+1â j+1â j = (â†

j â j )(â
†
j+1â j+1)

= 1
16 (Xj − iYj )(Xj + iYj )(Xj+1 − iYj+1)

× (Xj+1 + iYj+1)

= 1
4 (I j − Zj )(I j+1 − Zj+1)

= 1
4 (1 − Zj − Zj+1 + ZjZ j+1) (B10)

and off-diagonal elements being given by

â†
j â

†
j+1âk+1âk = 1

16 (Xj − iYj )(Xj+1 − iYj+1)(Xk+1 + iYk+1)(Xk + iYk )

× 1
16 (XjXj+1XkXk+1 + iXjXj+1XkYk+1 + iXjXj+1YkXk+1 − XjXj+1YkYk+1

− iXjYj+1XkXk+1 + XjYj+1XkYk+1 + XjYj+1YkXk+1 + iXjYj+1YkYk+1

− iYjXj+1XkXk+1 + YjXj+1XkYk+1 + YjXj+1YkXk+1 + iYjXj+1YkYk+1

− YjYj+1XkXk+1 − iYjYj+1XkYk+1 − iYjYj+1YkXk+1 + YjYj+1YkYk+1). (B11)

Therefore, each 2-RDM matrix element can be obtained by
directly probing the expectation values of four-qubit tensor
products of Pauli matrices.

As all wave functions prepared in this study are real, the
2-RDM should consist of only real-valued elements; hence, all
imaginary components of 2-RDM elements should approach
zero within a small range dictated by randomness inherent to
quantum systems as well as error on the device employed.
Therefore, only eight of the 16 four-qubit expectation values
corresponding to real contributions to a given 2-RDM element
are nonzero and hence necessary for the determination of the
sub-block of the 2-RDM; thus, to lower computational ex-
pense, only these real values are used to construct the 2-RDM
sub-block where tomography via Pauli expectation values is
conducted (as is consistent with previous analysis conducted
in a manner similar to that described in Ref. [31]).

2. Tomography via direct computation of the wave function

As can be observed from Eq. (8), the phase angle of all
qubits in the AGP wave function are known to be uniformly

zero. As such, knowledge of the probabilities, with which each
of the possible 2r basis states (|ηi〉) for an r-qubit calcula-
tion are sampled out of the 81,920 times (8192 per trial) a
given state is prepared and probed, is sufficient information
to completely construct the wave-function (|�〉). Specifically,
the wave function takes the form of a vector (using tradi-
tional qubit vector notation [59]) with each element of the
wave-function |�i〉 corresponding to the basis state |ηi〉 being
given by

|�i〉 = +
√

p(ηi ) = +
√

|〈ηi|�〉|2 = +|〈ηi|�〉|, (B12)

which is the positive square root of the probability (p(ηi)) with
which the corresponding qubit basis state is measured.

Each individual element of the matrix shown in Eq. (B2)
is then computed from the appropriate expectation value
〈�|â†

j â
†
j+1âk+1âk|�〉 for the wave function in vector

form obtained for a given state preparation. The opera-
tor â†

j â
†
j+1âk+1âk can be represented as a 2r × 2r matrix

according to

â†
j â

†
j+1âk+1âk =

[
j−1⊗
a=1

(
1 0
0 1

)
a

]
⊗

(
0 0
1 0

)
j

⊗
(

0 0
1 0

)
j+1

⎡
⎣ k−1⊗

b= j+2

(
1 0
0 1

)
b

⎤
⎦ ⊗

(
0 1
0 0

)
k

⊗
(

0 1
0 0

)
k+1

[
r⊗

c=k+2

(
1 0
0 1

)
c

]

(B13)

which is the tensor product of the creation and annihilation
operators in matrix form [Eqs. (B3) and (B4)] corresponding
to the appropriate qubits ( j, j + 1, k, k + 1) and identity ma-
trices for each spectator qubit. The expectation value can thus
be computed directly via matrix-vector multiplication.

Comparing this method for the tomography of the sub-
block of the 2-RDM corresponding to the large eigenvalue
(2D�

s.b.[i, j]) to the tomography obtained via the expec-
tation values of the Pauli matrices (2DP

s.b.[i, j]) yields
Euclidean distances between the two matrices represented

mathematically as

√√√√r/2−1∑
i=0

r/2−1∑
j=0

(2DP
s.b.[i, j] − 2D�

s.b.[i, j])2 (B14)

of [r = 2 : 0.001, r = 4 : 0.004, r = 6 : 0.003, r = 8 :
0.005, r = 10 : 0.007, r = 12 : 0.009] for IBMQ QASM
simulation, which indicates that any difference between
the two methods is caused by inherent randomness in the
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absence of error. Indeed, if the QASM simulator is used, no
difference is observed between the two methodologies.
On the error-prone Melbourne experimental device,
the Euclidean distances for the r = 2 and the r = 8
calculations are [r = 2 : 0.015, r = 8 : 0.338], which is
likely due to a large degree of error on the quantum
device, which increases with the number of qubits (and
hence the number of two-qubit gates) involved. In fact,
for the same number of qubits, the Euclidean distance
between 2DP

s.b.[i, j] and the ideal expected 2Ds.b. matrix is
[r = 2 : 0.063, r = 8 : 0.541] and that between 2D�

s.b.[i, j]
and 2Ds.b. is [r = 2 : 0.048, r = 8 : 0.372], showing that the
Euclidean distance between the two is on the same order
or significantly smaller than the distance between each and
the ideal. If anything, the direct wave-function methodology
seems to provide a slight mitigation of errors, likely due to the
smaller number of circuits run as only one circuit per trial for
the direct wave function is necessary while multiple circuits
per trial must be run in order to obtain the expectation values
of the Pauli matrices.

Note that to decrease computational expense—especially
in terms of the isolation of the number-conserving substates as
explained in the following section—in this paper, we imple-
ment the tomography via the direct computation of the wave
function.

APPENDIX C: ISOLATION OF NUMBER-CONSERVING
COMPONENTS

The number-conserving substates are eigenfunctions of the
number operator,

N̂ =
N−1∑
q=0

â†
qâq =

N−1∑
q=0

1 − Zq

2
, (C1)

where Zq is the Pauli Z gate corresponding to qubit q. There-
fore, each substate is composed of a definite number of
particles (i.e., qubits in the |1〉 state) such that, for example,
an overall r = 6 AGP wave function

∣∣�6,full
AGP

〉 = 1

2
√

2
[|000000〉 + |000011〉 + |001100〉 + |110000〉

+ |111100〉 + |110011〉 + |001111〉 + |111111〉],
(C2)

which has contributions from basis states with N = 0, N =
2, N = 4, and N = 6 particles can be decomposed into the
following substates that are eigenfunctions of the number
operator and hence have a definite number of particles:

|�6,0
AGP〉 = |000000〉, (C3)

∣∣�6,2
AGP

〉 = 1√
3

[|000011〉 + |001100〉 + |110000〉], (C4)

∣∣�6,4
AGP

〉 = 1√
3

[|111100〉 + |110011〉 + |001111〉], (C5)

and ∣∣�6,6
AGP

〉 = |111111〉. (C6)

In general, the overall AGP wave function is constructed from
its number-conserving substates according to

∣∣�r,full
AGP

〉 =
(

1√
2

)r/2
[

r/2∑
i=0

√(
r/2

i

)
|�r,2i

AGP〉
]
. (C7)

The density matrices associated with the number-
conserving substates (2Dr,N ) are able to be isolated as shown
in the following sections such that the signature of ODLRO,
λD, can be attained for sub-blocks of the 2-RDM specific to
each substate in addition to the signature of the overall non-
particle-conserving AGP state with contributions from each of
the number-conserving substates.

1. Tomography via Pauli expectation values

As can be extrapolated from Eq. (C7), the full density-
matrix (2Dr,full) obtained as shown using tomography via Pauli
expectation values in Appendix Ba can be represented as a
sum of the density matrices for each of the individual substates
(2Dr,N ) with elements given according to

2Dr,full
i, j
k,l =

(
1

2

)r/2
[

r/2∑
i=0

(
r/2

i

)
2Dr,2i

i, j
k,l

]

= 〈�r,full|â†
i â†

j âl âk|�r,full〉. (C8)

This relationship alone is insufficient to solve for the
number-conserving density matrices in terms of the full den-
sity matrix. Instead we introduce the number operator from
Eq. (C1) to define a new matrix with elements given by

P1
i, j
k,l = 〈�|â†

i â†
j âl âkN̂ |�〉. (C9)

The elements of this new matrix can be obtained by again
directly computing the expectation values of Pauli matri-
ces in a manner directly analogous to that described in
Appendix B1 with the creation and annihilation operators in
the basis of Pauli matrices being written as shown in Eqs. (B3)
and (B4) and the number operator being written as shown in
Eq. (C1). Thus each element can be expressed as

â†
j â

†
j+1âk+1âkN̂ = 1

32

r∑
q=0

(Xj − iYj )(Xj+1 − iYj+1)

× (Xk+1 + iYk+1)(Xk + iYk )(1 − Zq), (C10)

so that the expectation values of four- and five-qubit Pauli
expressions—such as XjYj+1Xk+1Yk and XjYj+1Xk+1YkZq—
can be directly probed on the quantum device in order to
compute each element of the P1 matrix.

Each element of the P1 matrix can additionally be
represented as the following linear combination of number-
conserving density matrices (2Dr,N )

P1
i, j
k,l =

(
1

2

)r/2
[

r/2∑
i=0

(
r/2

i

)[
(2i)1

](
2Dr,2i

i, j
k,l

)]
. (C11)

Similarly, other matrices can be defined with elements

Px
i, j
k,l = 〈�|â†

i â†
j âl âkN̂x|�〉, (C12)
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TABLE II. The joint probability of the occupation numbers of other orbitals (qubits) if the first orbital (Q0) is filled for QASM simulation
(sim.) and ibmq_16_melbourne results.

r, N λsim.
D Probability of occupation if particle on Q0 (sim.)

2, 2 0.502 [x, 1.000]
4, 2 0.745 [x, 1.000, 0.000, 0.000]
6, 2 0.996 [x, 1.000, 0.000, 0.000, 0.000, 0.000]
8, 2 1.253 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
10, 2 1.500 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
12, 2 1.755 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
14, 2 1.991 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]

r, N λmel.
D Probability of occupation if particle on Q0 (mel.)

2, 2 0.437 [x, 1.000]
4, 2 0.616 [x, 0.972, 0.014, 0.014]
6, 2 0.783 [x, 0.946, 0.013, 0.010, 0.013, 0.018]
8, 2 0.898 [x, 0.831, 0.016, 0.039, 0.027, 0.031, 0.037, 0.018]
10, 2 0.937 [x, 0.856, 0.024, 0.011, 0.011, 0.019, 0.017, 0.024, 0.010, 0.027]
12, 2 1.116 [x, 0.678, 0.067, 0.019, 0.036, 0.026, 0.046, 0.041, 0.026, 0.031, 0.012, 0.017]
14, 2 1.261 [x, 0.784, 0.026, 0.009, 0.009, 0.009, 0.004, 0.043, 0.013, 0.022, 0.039, 0.030, 0.009, 0.004]

which can be additionally be represented according to

Px
i, j
k,l =

(
1

2

)r/2
[

r/2∑
i=0

(
r/2

i

)
[(2i)x]

(
2Dr,2i

i, j
k,l

)]
. (C13)

Obtaining 2Dr,full, P1, P2, etc. directly from probing ex-
pectation values of Pauli matrices and solving the system of
linear equations described by Eqs. (C8), (C11), and (C13)
for the individual number-conserving density matrices (2Dr,N )
allows for the computation of the signature of ODLRO (λD)
corresponding to each of the number-conserving substates.

As can be readily observed, this methodology for ob-
taining the number-conserving substates quickly becomes
prohibitively expensive as system size is increased. As such,
this study relies on the methodology presented in the follow-
ing section.

2. Tomography via direct computation of the wave function

Wave functions corresponding to each individual number-
conserving substate can be determined from the probability
information obtained from a quantum device in a manner
analogous to how the full AGP wave function is prepared as
described in Appendix B2. Specifically, for a specific possi-
ble, even value of N ∈ {0, 2, 4, . . . , r}, each element of the
number-conserving wave-function (|�r,N

i 〉) in the basis of the
2r possible stated (|ηi〉) can be obtained

|�r,N
i 〉 =

{
0 i f N̂ |ηi〉 �= N |ηi〉
+|〈ηi|�〉| i f N̂ |ηi〉 = N |ηi〉, (C14)

whereby if the basis state |ηi〉 contains N particles (i.e., has N
qubits in the |1〉 state), the element of the number-conserving
wave-function (|�r,N

i 〉) corresponding to that basis state is
identical to that from the full wave-function (|�i〉); however, if
the basis state |ηi〉 doesn’t contain N particles, |�r,N

i 〉 is set to
zero. The resulting number-conserving wave function is then
normalized to one.

The signature of ODLRO (λD) can then be obtained di-
rectly from the number-conserving wave function in the

manner described in Appendix B2. Note that this projec-
tion can act as a form of error mitigation as contributions
from bases corresponding to odd-numbered basis states—
and indeed all basis states not corresponding to the number
of particles of interest—are omitted. Additionally note that
for QASM simulation, this methodology for isolating the
number-conserving substates from the data obtained from the
quantum device yields identical results within sampling error
to the methodology presented in Appendix C1 while being
significantly less computationally expensive. As such, tomog-
raphy via direct computation of the wave function is employed
in this study.

APPENDIX D: DESCRIPTION OF NOISE ON NEAR-TERM
QUANTUM DEVICES

Three main classes according to of errors lead to the de-
viation of physical qubits from the idealized logical qubits,
namely, gate noise, readout noise, and decoherence. Quantum
gate noise/error refers to a situation where the application of
a unitary gate Û to a quantum state |�〉 yields a result that
deviates from Û |�〉. This class of error is caused either by
imprecisely calibrated control of the qubits and/or imperfect
isolation of qubits from their environment, and the overall gate
error increases with the number of gates applied. Readout
noise/error refers to transmission line noise that makes the
|0〉 state appear to be |1〉 or vice versa; it can be caused
by the probability distributions of the measured physical
quantities that correspond to the |0〉 and |1〉 states overlap-
ping and/or the qubit decaying during readout. Decoherence
involves interactions with external systems (vibrations, tem-
perature fluctuations, electromagnetic waves, etc.) leading to
the degradation of the quantum state prepared on quantum
devices. As both the number of gates applied to a system—and
hence gate noise—and decoherence tend to increase with sys-
tem size (r), larger-scale quantum computations often involve
more and more error [57]. See the Supplemental Material of
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TABLE III. All eigenvalue (λD) information for the non-number-conserving overall state (all) and the number-conserving substates are
given with state preparation fidelities (F ) and joint probability of occupation numbers of other orbitals (qubits) if the first orbital (Q0) is filled
for QASM simulation.

r N λD F Probability of occupation if particle in Q0

2 All 0.502 1.000 [x, 1.000]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000]

4 All 0.745 1.000 [x, 1.000, 0.506, 0.506]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000, 0.000, 0.000]
4 1.000 1.000 [x, 1.000, 1.000, 1.000]

6 All 0.996 1.000 [x, 1.000, 0.491, 0.491, 0.497, 0.497]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000, 0.000, 0.000, 0.000, 0.000]
4 1.333 1.000 [x, 1.000, 0.494, 0.494, 0.506, 0.506]
6 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000]

8 All 1.253 1.000 [x, 1.000, 0.505, 0.505, 0.498, 0.498, 0.506, 0.506]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
4 1.499 1.000 [x, 1.000, 0.334, 0.334, 0.331, 0.331, 0.335, 0.3358]
6 1.500 1.000 [x, 1.000, 0.671, 0.671, 0.657, 0.657, 0.673, 0.673]
8 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

10 All 1.500 1.000 [x, 1.000, 0.499, 0.499, 0.499, 0.499, 0.502, 0.502, 0.490, 0.490]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
4 1.598 1.000 [x, 1.000, 0.233, 0.233, 0.274, 0.274, 0.263, 0.263, 0.230, 0.230]
6 1.798 1.000 [x, 1.000, 0.519, 0.519, 0.481, 0.481, 0.499, 0.499, 0.500, 0.500]
8 1.600 1.000 [x, 1.000, 0.743, 0.743, 0.760, 0.760, 0.758, 0.758, 0.739, 0.739]
10 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

12 All 1.755 1.000 [x, 1.000, 0.518, 0.518, 0.499, 0.499, 0.508, 0.508, 0.502, 0.502, 0.509, 0.509]
0 0.000 1.000 N/a
2 1.000 1.000 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
4 1.664 1.000 [x, 1.000, 0.228, 0.228, 0.205, 0.205, 0.184, 0.184, 0.181, 0.181, 0.202, 0.202]
6 1.997 1.000 [x, 1.000, 0.410, 0.410, 0.376, 0.376, 0.389, 0.389, 0.432, 0.432, 0.393, 0.393]
8 1.997 1.000 [x, 1.000, 0.615, 0.615, 0.590, 0.590, 0.619, 0.619, 0.567, 0.567, 0.609, 0.609]
10 1.666 1.000 [x, 1.000, 0.792, 0.792, 0.810, 0.810, 0.802, 0.802, 0.793, 0.793, 0.802, 0.802]
12 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

14 All 1.991 1.000 [x, 1.000, 0.494, 0.494, 0.497, 0.497, 0.501, 0.501, 0.506, 0.506, 0.500, 0.500, 0.494, 0.494]
0 0.000 1.000 N/a
2 1.000 0.999 [x, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]
4 1.707 1.000 [x, 1.000, 0.134, 0.134, 0.167, 0.167, 0.149, 0.149, 0.205, 0.205, 0.167, 0.167, 0.177, 0.177]
6 2.137 1.000 [x, 1.000, 0.334, 0.334, 0.332, 0.332, 0.315, 0.315, 0.330, 0.330, 0.359, 0.359, 0.331, 0.331]
8 2.278 1.000 [x, 1.000, 0.508, 0.508, 0.477, 0.477, 0.514, 0.514, 0.518, 0.518, 0.482, 0.482, 0.502, 0.502]
10 2.138 1.000 [x, 1.000, 0.649, 0.649, 0.679, 0.679, 0.684, 0.684, 0.669, 0.669, 0.675, 0.675, 0.644, 0.644]
12 1.713 1.000 [x, 1.000, 0.835, 0.835, 0.864, 0.864, 0.835, 0.835, 0.818, 0.818, 0.813, 0.813, 0.835, 0.835]
14 1.000 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

Ref. [31] for a more thorough exploration of error on near-
term quantum devices.

APPENDIX E: ANALYSIS OF ERRORS VIA JOINT
PROBABILITIES OF OCCUPATION

Comparing the results obtained from the simulated and
experimental Melbourne data illustrates the error associated
with the Melbourne device. The probability of a given orbital
(i.e., qubit) being occupied if the orbital with index 0 (i.e.,
Q0) is occupied was computed for all combinations of total
orbitals (qubits, r) and particles (|1〉 qubit states, N), and the
results for N = 2 are shown in Table II in order to comment

on relative error based on system size (r). Note that all other
joint probabilities for Melbourne and QASM simulation are
given in Tables I and III, respectively.

As can be seen from the joint probability data in Table II,
simulated results exactly demonstrate the orbital (qubit) pair-
ing that we program into the system, as the only possible
two-particle orientation with Q0 being occupied should be
to have Q1 simultaneously occupied. However, due to errors
on Melbourne, this ideal behavior is not exactly recreated
on the experimental quantum device. Specifically, the joint
probability of occupying Q0 and Q1 is not unity and seems to
decrease with increasing system size. Additionally, the joint
probability of Q0 and Qi where i �= 0, 1 should be zero as
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TABLE IV. Calibration data for “Yorktown”.

Device: ibmqx2 (“Yorktown”)
Calibration date: 09/10/20
Version: 2.0.0
Gate time (ns): 71.1
Qubit: 0 1 2 3 4

T2 (μs) 24.6 24.8 90.8 41.5 45.0
f (GHz) 5.28 5.25 5.03 5.29 5.08
T1 (μs) 46.7 40.1 60.2 60.9 73.3

Gate error (10−3) 0.99 1.94 0.59 0.49 0.52
Readout error (10−3) 65.2 41.6 29.2 17.0 30.8

Multi-Qubit: 0, 1 0, 2 1, 2 2, 3 2, 4 3, 4
Error (10−3) 20.9 14.7 22.2 15.3 15.0 13.7

TABLE V. Calibration data for “Santiago”.

Device: ibmq_santiago (“Santiago”)
Calibration date: 09/10/20
Version: 2.0.0
Gate time (ns): 561.78
Qubit: 0 1 2 3 4

T2 (μs) 149.2 86.3 100.8 108.1 123.2
f (GHz) 4.83 4.62 4.82 4.74 4.82
T1 (μs) 74.0 190.2 138.2 161.5 106.9

Gate error (10−3) 0.32 0.18 0.19 0.19 0.20
Readout error (10−3) 22.6 12.1 8.8 10.9 7.5

Multi-Qubit: 0, 1 1, 2 2, 3 3, 4
Error (10−3) 10.5 7.8 5.8 5.4

TABLE VI. Calibration data for “Melbourne”.

Device: ibmq_16_melbourne
(“Melbourne”)

Calibration date: 09/02/20
Version: 2.0.0
Gate time (ns): 53.3
Qubit: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T2 (μs) 95.6 56.0 87.9 16.5 63.1 37.7 77.4 14.4 101.6 30.9 92.3 24.9 68.8 34.4 64.6
f (GHz) 5.11 5.24 5.04 4.89 5.02 5.07 4.93 4.98 4.75 4.97 4.94 5.00 4.76 4.97 5.01
T1 (μs) 73.7 56.0 63.1 66.7 59.1 20.3 72.5 38.0 108.6 44.5 64.5 14.6 71.9 32.2 45.8

Gate error (10−3) 0.64 1.03 0.64 0.50 0.80 3.16 1.19 1.66 0.76 1.48 2.00 50.90 0.83 2.14 0.61
Readout error (10−3) 27.8 34.3 25.2 89.1 38.7 43.9 33.1 66.0 55.4 78.3 72.9 268.3 159.3 80.1 50.7

Multi-Qubit: 0, 1 0, 14 1, 2 1, 13 2, 3 2, 12 3, 4 3, 11 4, 5 4, 10 5, 6 5, 9 6, 8 7, 8 8, 9 9, 10 10, 11 11, 12 12, 13 13, 14
Error (10−3) 19.9 28.1 12.0 45.8 25.5 38.8 17.1 1000.0 26.2 27.8 58.3 32.8 28.4 34.3 39.4 39.7 1000.0 1000.0 22.5 35.7
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TABLE VII. Calibration data for “Rochester”.

Device: ibmq_rochester

(“Rochester”)

Calibration date: 2/26/20

Version: 1.2.0

Gate time (ns): 53.3

Qubit: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T2 (μs) 77.9 48.3 61.1 78.3 59.2 74.6 63.8 32.9 53.2 55.4 73.5 56.8 67.8 66.7 64.7 26.0 46.7 11.2 43.4 47.0

f (GHz) 4.92 5.08 5.00 5.05 4.94 5.05 5.05 4.93 5.03 4.97 5.06 4.93 5.05 4.95 5.07 4.87 5.08 4.99 5.06 5.02

T1 (μs) 51.0 41.8 54.2 49.3 51.9 53.0 46.6 56.4 45.8 44.3 59.4 64.6 57.3 53.9 54.9 50.5 36.6 47.6 51.2 62.6

Gate error (10−3) 0.88 1.24 4.48 3.74 1.16 1.61 1.43 13.95 8.85 1.80 0.88 1.47 1.96 2.06 0.74 0.95 0.61 1.18 1.09 1.19

Readout error (10−3) 76.9 210.6 129.4 133.1 47.5 256.3 61.9 361.2 312.5 103.8 61.9 152.5 145.0 280.6 98.8 63.7 341.9 66.3 34.4 85.6

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

T2 (μs) 84.6 38.0 14.5 42.3 37.8 58.2 18.1 66.6 63.3 14.7 27.8 86.6 69.7 76.2 32.0 22.6 11.5 50.7 50.7 45.4

f (GHz) 4.89 5.14 4.90 4.96 4.88 4.97 5.02 4.99 5.02 5.00 5.13 4.96 5.15 5.21 4.97 5.05 5.03 5.17 4.91 5.05

T1 (μs) 65.4 48.1 54.0 79.1 62.0 61.2 48.8 54.0 55.6 63.9 31.2 66.2 47.2 58.8 55.0 61.4 50.1 51.6 79.1 55.5

Gate error (10−3) 0.64 4.13 1.12 1.54 1.25 0.69 1.73 1.92 0.85 2.05 3.77 1.12 2.59 1.10 1.11 2.95 4.21 1.07 0.96 1.06

Readout error (10−3) 17.5 87.5 130.0 335.0 35.6 175.0 56.3 121.3 196.3 26.2 353.8 171.3 58.1 65.0 38.7 209.4 25.6 171.3 195.6 125.0

40 41 42 43 44 45 46 47 48 49 50 51 52

T2 (μs) 79.6 35.3 83.7 46.3 48.1 57.0 60.9 63.8 89.4 50.2 31.1 47.8 57.9

f (GHz) 5.06 5.05 4.99 5.07 4.98 5.09 5.03 5.07 4.97 5.07 4.96 5.13 5.04

T1 (μs) 53.4 51.0 45.2 51.7 64.4 44.5 51.8 57.2 68.4 46.5 60.9 59.5 54.5

Gate error (10−3) 1.76 1.87 0.62 1.05 0.90 1.00 1.46 0.86 1.38 0.88 0.90 8.12 5.01

Readout error (10−3) 121.9 446.3 36.9 197.5 103.8 154.4 243.8 161.9 28.1 345.6 104.4 110.6 266.3

Multi-Qubit: 0, 1 0, 5 1, 2 2, 3 3, 4 4, 6 5, 9 6, 13 7, 8 7, 16 8, 9 9, 10 10, 11 11, 12 11, 17 12, 13 13, 14 14, 15 15, 18 16, 19

Error (10−3) 63.0 54.1 32.9 60.5 48.4 39.2 31.6 1000.0 1000.0 1000.0 1000.0 35.7 24.2 51.0 20.5 1000.0 46.3 80.9 35.1 22.7

17,23 18,27 19,20 20,21 21,22 21,28 22,23 23,24 24,25 25,26 25,29 26,27 29,36 30,31 30,39 31,32 32,33 33,34 34,35 34,40

Error (10−3) 40.1 39.4 20.8 32.8 69.4 38.2 59.2 36.4 38.8 45.2 73.1 33.6 75.4 1000.0 1000.0 39.4 31.5 37.6 38.9 33.3

35,36 36,37 37,38 38,41 39,42 40,46 41,50 42,43 43,44 44,45 44,51 45,46 46,47 47,48 48,49 48,52 49,50

Error (10−3) 56.2 92.7 58.8 1000.0 38.7 40.8 1000.0 28.0 28.0 1000.0 134.6 1000.0 29.2 19.8 31.4 49.4 29.7

is seen in QASM simulation; however, the experimental data
demonstrate that other double excitations are contributing to
the overall two-particle substate, indicating error in either
state preparation or measurement. Overall, the error associ-
ated with noisy near-term quantum computers decreases the
signature of ODLRO, indicating less ODLRO character for
the experimentally prepared states than predicted by QASM
simulation. In order to best construct and probe entangled
states on quantum computers, then, errors on real-world de-
vices need to be minimized.

APPENDIX F: EXPERIMENTAL QASM SIMULATOR AND
QUANTUM DEVICE SPECIFICATIONS

Throughout this work, we have employed the
ibmq_qasm_simulator [60] and the ibmq_16_melbourne

[61] IBM Quantum Experience device, which are available
online. The QASM simulator is a general-purpose simulator
that emulates execution of quantum circuits either in an
ideal manner (i.e., with only sampling error) or subject to
highly configurable noise modeling; in this study, all reported
QASM results are ideal. The ibmq_16_melbourne device is
composed of fixed-frequency transmon qubits with co-planer
waveguide resonators [62,63]. Experimental calibration data
and connectivity for this device—as well as that for other
devices employed in obtaining supplemental data—is given
in Tables IV–VII.

APPENDIX G: STATE PREPARATION FIDELITY

To provide a metric on which to judge the degree to which
the expected state preparation was prepared on the quantum

TABLE VIII. All eigenvalue information for the non-number-conserving overall state (all) and the number-conserving substates are given
with joint probability of occupation numbers of other orbitals (qubits) if the first orbital (Q0) is filled for ibmq_5_yorktown.

r N λD Probability of occupation if particle on Q0

2 All 0.460 [x, 0.902]
0 0.000 N/a
2 1.000 [x, 1.000]

4 All 0.658 [x, 0.900, 0.486, 0.493]
0 0.000 N/a
2 0.957 [x, 0.983, 0.006, 0.011]
4 1.000 [x, 1.000, 1.000, 1.000]
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TABLE IX. All eigenvalue information for the non-number-conserving overall state (all) and the number-conserving substates are given
with joint probability of occupation numbers of other orbitals (qubits) if the first orbital (Q0) is filled for ibmq_santiago.

r N λD Probability of occupation if particle on Q0

2 All 0.429 [x, 0.959]
0 0.000 N/a
2 1.000 [x, 1.000]

4 All 0.669 [x, 0.964, 0.506, 0.508]
0 0.000 N/a
2 0.998 [x, 0.997, 0.001, 0.002]
4 1.000 [x, 1.000, 1.000, 1.000]

TABLE X. All eigenvalue information for the non-number-conserving overall state (all) and the number-conserving substates are given
with joint probability of occupation numbers of other orbitals (qubits) if the first orbital (Q0) is filled for ibmq_rochester.

r N λD Probability of occupation if particle on Q0

2 All 0.339 [x, 0.690]
0 0.000 N/a
2 1.000 [x, 1.000]

4 All 0.490 [x, 0.687, 0.507, 0.511]
0 0.000 N/a
2 0.779 [x, 0.785, 0.114, 0.101]
4 1.000 [x, 1.000, 1.000, 1.000]

6 All 0.673 [x, 0.771, 0.514, 0.522, 0.501, 0.497]
0 0.000 N/a
2 0.727 [x, 0.720, 0.088, 0.099, 0.042, 0.051]
4 1.071 [x, 0.853, 0.548, 0.552, 0.526, 0.520]
6 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000]

8 All 0.746 [x, 0.751, 0.504, 0.484, 0.469, 0.495, 0.519, 0.497]
0 0.000 N/a
2 0.514 [x, 0.549, 0.075, 0.076, 0.088, 0.087, 0.076, 0.049]
4 0.921 [x, 0.740, 0.389, 0.374, 0.355, 0.373, 0.399, 0.370]
6 1.015 [x, 0.851, 0.689, 0.668, 0.645, 0.686, 0.734, 0.727]
8 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

10 All 0.898 [x, 0.819, 0.483, 0.536, 0.465, 0.432, 0.508, 0.515, 0.477, 0.455]
0 0.000 N/a
2 0.515 [x, 0.608, 0.053, 0.072, 0.045, 0.050, 0.042, 0.050, 0.042, 0.038]
4 0.966 [x, 0.759, 0.293, 0.342, 0.254, 0.237, 0.288, 0.300, 0.279, 0.249]
6 1.163 [x, 0.847, 0.518, 0.578, 0.494, 0.446, 0.555, 0.564, 0.514, 0.485]
8 1.108 [x, 0.925, 0.751, 0.785, 0.751, 0.707, 0.795, 0.801, 0.752, 0.735]
10 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

12 All 0.974 [x, 0.846, 0.518, 0.534, 0.568, 0.555, 0.426, 0.422, 0.469, 0.447, 0.476, 0.474]
0 0.000 N/a
2 0.361 [x, 0.565, 0.056, 0.040, 0.052, 0.048, 0.044, 0.032, 0.028, 0.016, 0.073, 0.044]
4 0.831 [x, 0.743, 0.222, 0.234, 0.314, 0.305, 0.192, 0.202, 0.182, 0.172, 0.215, 0.221]
6 1.103 [x, 0.833, 0.443, 0.473, 0.519, 0.501, 0.350, 0.354, 0.378, 0.357, 0.394, 0.398]
8 1.165 [x, 0.898, 0.654, 0.673, 0.671, 0.665, 0.534, 0.521, 0.617, 0.585, 0.592, 0.588]
10 1.024 [x, 0.946, 0.850, 0.854, 0.823, 0.841, 0.752, 0.733, 0.849, 0.816, 0.763, 0.773]
12 1.000 [x, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

14 All 0.909 [x, 0.529, 0.561, 0.487, 0.551, 0.545, 0.536, 0.515, 0.432, 0.451, 0.538, 0.539, 0.487, 0.485]
0 0.000 N/a
2 0.149 [x, 0.093, 0.155, 0.052, 0.031, 0.000, 0.062, 0.103, 0.103, 0.155, 0.062, 0.103, 0.031, 0.052]
4 0.580 [x, 0.302, 0.311, 0.224, 0.161, 0.155, 0.260, 0.204, 0.235, 0.230, 0.280, 0.276, 0.175, 0.188]
6 0.905 [x, 0.436, 0.436, 0.367, 0.374, 0.366, 0.405, 0.379, 0.333, 0.354, 0.439, 0.438, 0.338, 0.335]
8 1.036 [x, 0.546, 0.589, 0.517, 0.599, 0.600, 0.573, 0.548, 0.446, 0.449, 0.556, 0.568, 0.504, 0.507]
10 1.032 [x, 0.665, 0.713, 0.635, 0.802, 0.797, 0.711, 0.696, 0.582, 0.604, 0.720, 0.698, 0.691, 0.686]
12 0.945 [x, 0.778, 0.850, 0.823, 0.943, 0.925, 0.873, 0.859, 0.764, 0.778, 0.838, 0.831, 0.866, 0.873]
14 1.000 [0, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]
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devices employed, we include the state preparation fidelity
given by [64]

F (�ideal, �exp.) = |〈�ideal|�exp.〉|2, (G1)

where |�ideal〉 is the wave function corresponding to the result
of applying the unitary obtained from the matrix form of the
state preparation given in Eq. (A1) to the all-zero initial state

(
r−1⊗
p=0

|0〉) and is hence the ideal expected outcome for a given

state preparation on a device with no error and where |�exp.〉

represents the wave function obtained from the quantum de-
vice. The state preparation fidelities for ibmq_16_melbourne
and QASM simulation are reported in Tables II and III.

APPENDIX H: ADDITIONAL DEVICE DATA

While only data from QASM simulation and the
ibmq_16_melbourne quantum device are presented, ad-
ditional data for ibmq_5_yorktown, ibmq_santiago, and
ibmq_rochester are provided in Tables VIII–X.

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of super-
conductivity, Phys. Rev. 108, 1175 (1957).

[2] J. M. Blatt, Electron pairs in the theory of superconductivity,
Prog. Theor. Phys. 23, 447 (1960).

[3] P. W. Anderson, Twenty-five years of high-temperature
superconductivity—A personal review, J. Phys.: Conf. Ser. 449,
012001 (2013).

[4] A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin,
M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev,
D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev,
M. Tkacz, and M. I. Eremets, Superconductivity at 250 K in
lanthanum hydride under high pressures, Nature (London) 569,
528 (2019).

[5] V. L. Ginzburg, High-temperature superconductivity (history
and general review), Sov. Phys. Usp. 34, 283 (1991).

[6] A. Glatz, I. A. Sadovskyy, U. Welp, W.-K. Kwok, and G. W.
Crabtree, The quest for high critical current in applied high-
temperature superconductors, J. Supercond. Novel Magn. 33,
127 (2020).

[7] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[8] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park, K.
Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunable corre-
lated states and spin-polarized phases in twisted bilayer-bilayer
graphene, Nature (London) 583, 215 (2020).

[9] A. Uri, S. Grover, Y. Cao, J. Crosse, K. Bagani, D. Rodan-
Legrain, Y. Myasoedov, K. Watanabe, T. Taniguchi, P. Moon
et al., Mapping the twist-angle disorder and Landau levels in
magic-angle graphene, Nature (London) 581, 47 (2020).

[10] E. Tutuc, M. Shayegan, and D. A. Huse, Counterflow Measure-
ments in Strongly Correlated GaAs Hole Bilayers: Evidence for
Electron-Hole Pairing, Phys. Rev. Lett. 93, 36802 (2004).

[11] D. V. Fil and S. I. Shevchenko, Electron-hole superconductivity
(review), Low Temp. Phys. 44, 867 (2018).

[12] S. Safaei and D. A. Mazziotti, Quantum signature of exciton
condensation, Phys. Rev. B 98, 045122 (2018).

[13] A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe,
L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van
Wezel, and P. Abbamonte, Signatures of exciton condensation
in a transition metal dichalcogenide, Science 358, 1314 (2017).

[14] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim,
Quantum Hall drag of exciton condensate in graphene, Nat.
Phys. 13, 746 (2017).

[15] F. London, Superfluids: Macroscopic Theory of Superconduc-
tivity, Structure of Matter Series (Wiley, New York, NY, 1950).

[16] R. P. Feynman, Chapter II application of quantum mechanics to
liquid helium, in Progress in Low Temperature Physics, edited
by C. Gorter (Elsevier, 1955), Vol. 1, pp. 17–53.

[17] A. J. Leggett, Superfluidity, Rev. Mod. Phys. 71, S318 (1999).
[18] C. Gorter, Progress in Low Temperature Physics (Elsevier Sci-

ence, Amsterdam, Netherlands, 2011).
[19] Y. Guo, R. Dubessy, M. G. de Herve, A. Kumar, T. Badr, A.

Perrin, L. Longchambon, and H. Perrin, Supersonic Rotation of
a Superfluid: A Long-Lived Dynamical Ring, Phys. Rev. Lett.
124, 025301 (2020).

[20] Y. Hao, S. Pang, X. Zhang, and L. Jiang, Quantum-confined
superfluid reactions, Chem. Sci. 11, 10035 (2020).

[21] G. Del Pace, W. J. Kwon, M. Zaccanti, G. Roati, and F. Scazza,
Tunneling Transport of Unitary Fermions Across the Superfluid
Transition, Phys. Rev. Lett. 126, 055301 (2021).

[22] F. Verstraete, J. I. Cirac, and J. I. Latorre, Quantum circuits for
strongly correlated quantum systems, Phys. Rev. A 79, 032316
(2009).

[23] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas,
A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A.
Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey,
J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D.
Sank et al., Spectroscopic signatures of localization with inter-
acting photons in superconducting qubits, Science 358, 1175
(2017).

[24] A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, Simulating
quantum many-body dynamics on a current digital quantum
computer, NPJ Quantum Inf. 5, 106 (2019).

[25] G. J. Mooney, C. D. Hill, and L. C. L. Hollenberg, Entangle-
ment in a 20-qubit superconducting quantum computer, Sci.
Rep. 9, 13465 (2019).

[26] R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon,
and D. I. Schuster, A dissipatively stabilized Mott insulator of
photons, Nature (London) 566, 51 (2019).

[27] H.-L. Huang, D. Wu, D. Fan, and X. Zhu, Superconduct-
ing quantum computing: A review, Sci. China Inf. Sci. 63, 8
(2020).

[28] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92,
015003 (2020).

[29] K. Head-Marsden, J. Flick, C. J. Ciccarino, and P. Narang,
Quantum information and algorithms for correlated quantum
matter, Chem. Rev. 121, 3061 (2021).

013003-14

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1143/PTP.23.447
https://doi.org/10.1088/1742-6596/449/1/012001
https://doi.org/10.1038/s41586-019-1201-8
https://doi.org/10.1070/PU1991v034n04ABEH002361
https://doi.org/10.1007/s10948-019-05255-w
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41586-020-2260-6
https://doi.org/10.1038/s41586-020-2255-3
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1063/1.5052674
https://doi.org/10.1103/PhysRevB.98.045122
https://doi.org/10.1126/science.aam6432
https://doi.org/10.1038/nphys4116
https://doi.org/10.1103/RevModPhys.71.S318
https://doi.org/10.1103/PhysRevLett.124.025301
https://doi.org/10.1039/D0SC03574B
https://doi.org/10.1103/PhysRevLett.126.055301
https://doi.org/10.1103/PhysRevA.79.032316
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1038/s41534-019-0217-0
https://doi.org/10.1038/s41598-019-49805-7
https://doi.org/10.1038/s41586-019-0897-9
https://doi.org/10.1007/s11432-020-2881-9
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1021/acs.chemrev.0c00620


COOPER-PAIR CONDENSATES WITH NONCLASSICAL … PHYSICAL REVIEW RESEARCH 4, 013003 (2022)

[30] S. E. Smart and D. A. Mazziotti, Quantum-classical hybrid al-
gorithm using an error-mitigating N-representability condition
to compute the Mott metal-insulator transition, Phys. Rev. A
100, 022517 (2019).

[31] L. M. Sager, S. E. Smart, and D. A. Mazziotti, Preparation of an
exciton condensate of photons on a 53-qubit quantum computer,
Phys. Rev. Research 2, 043205 (2020).

[32] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann,
T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-
Guzik, Noisy intermediate-scale quantum (NISQ) algorithms,
arXiv:2101.08448 (2021).

[33] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell
et al., Quantum supremacy using a programmable supercon-
ducting processor, Nature (London) 574, 505 (2019).

[34] V. E. Elfving, B. W. Broer, M. Webber, J. Gavartin, M. D. Halls,
K. P. Lorton, and A. D. Bochevarov, How will quantum com-
puters provide an industrially relevant computational advantage
in quantum chemistry? arXiv:2009.12472 (2020).

[35] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen,
T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C.
Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li,
N. Li et al., Strong Quantum Computational Advantage Using
a Superconducting Quantum Processor, Phys. Rev. Lett. 127,
180501 (2021).

[36] O. Penrose and L. Onsager, Bose-Einstein condensation and
liquid helium, Phys. Rev. 104, 576 (1956).

[37] C. N. Yang, Concept of off-diagonal long-range order and the
quantum phases of liquid He and of superconductors, Rev. Mod.
Phys. 34, 694 (1962).

[38] F. Sasaki, Eigenvalues of fermion density matrices, Phys. Rev.
138, B1338 (1965).

[39] A. J. Coleman, Structure of fermion density matrices, Rev.
Mod. Phys. 35, 668 (1963).

[40] A. J. Coleman, Electron Pairs in the Quasichemical-
Equilibrium and Bardeen-Cooper-Schrieffer Theories, Phys.
Rev. Lett. 13, 406 (1964).

[41] A. J. Coleman, Structure of fermion density matrices. II.
Antisymmetrized geminal powers, J. Math. Phys. 6, 1425
(1963).

[42] L. M. Sager, S. Safaei, and D. A. Mazziotti, Potential coexis-
tence of exciton and fermion-pair condensations, Phys. Rev. B
101, 081107(R) (2020).

[43] A. Raeber and D. A. Mazziotti, Large eigenvalue of the cu-
mulant part of the two-electron reduced density matrix as a
measure of off-diagonal long-range order, Phys. Rev. A 92,
052502 (2015).

[44] J. M. Blatt, Theory of Superconductivity (Academic Press, Cam-
bridge, MA, 1964).

[45] F. Bloch, Off-diagonal long-range order and persistent currents
in a hollow cylinder, Phys. Rev. 137, A787 (1965).

[46] A. Khamoshi, F. A. Evangelista, and G. E. Scuseria, Correlating
AGP on a quantum computer, Quantum Sci. Technol. 6, 014004
(2021).

[47] A. J. Coleman, The structure of fermion density matrices. III.
Long-range order, J. Low Temp. Phys. 74, 1 (1989).

[48] K. Head-Marsden and D. A. Mazziotti, Pair 2-electron reduced
density matrix theory using localized orbitals, J. Chem. Phys.
147, 084101 (2017).

[49] W. Poelmans, M. Van Raemdonck, B. Verstichel, S. De
Baerdemacker, A. Torre, L. Lain, G. E. Massaccesi, D. R.
Alcoba, P. Bultinck, and D. Van Neck, Variational optimization
of the second-order density matrix corresponding to a seniority-
zero configuration interaction wave function, J. Chem. Theory
Comput. 11, 4064 (2015).

[50] O. Klein, Quelques remarques sur le traitement approximatif
du problème des électrons dans un réseau cristallin
par la mecanique quantique, J. Phys. Radium 9, 1
(1938).

[51] P. Jordan and E. Wigner, Über das paulische Äquivalenzverbot,
Eur. Phys. J. A 47, 631 (1928).

[52] T. Keilmann and J. J. García-Ripoll, Dynamical Creation of
Bosonic Cooper-Like Pairs, Phys. Rev. Lett. 100, 110406
(2008).

[53] L.-A. Wu and D. A. Lidar, Qubits as parafermions, J. Math.
Phys. 43, 4506 (2002).

[54] D. A. Mazziotti, S. E. Smart, and A. R. Mazziotti, Quantum
simulation of molecules without fermionic encoding of the
wave function, New J. Phys. 23, 113037 (2021).

[55] K. Naftchi-Ardebili, N. W. Hau, and D. A. Mazziotti, Rank re-
striction for the variational calculation of two-electron reduced
density matrices of many-electron atoms and molecules, Phys.
Rev. A 84, 052506 (2011).

[56] M. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information (Cambridge University Press, Cambridge, UK,
2010).

[57] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[58] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[59] A. Asfaw, A. Corcoles, L. Bello, Y. Ben-Haim, M. Bozzo-
Rey, S. Bravyi, N. Bronn, L. Capelluto, A. C. Vazquez, J.
Ceroni, R. Chen, A. Frisch, J. Gambetta, S. Garion, L. Gil,
S. D. L. P. Gonzalez, F. Harkins, T. Imamichi, H. Kang, A. H.
Karamlou et al., Multiple qubits and entangled states, in Learn
Quantum Computation Using Qiskit (Qiskit, 2020), Chap. 2.2,
https://qiskit.org/textbook/preface.html.

[60] IBM-Q-Team, Ibm quantum simulators.
[61] IBM-Q-Team, IBM-Q-15 Melbourne backend specification

v2.0.0 (2019).
[62] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J.

Majer, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf
et al., Charge-insensitive qubit design derived from the Cooper
pair box, Phys. Rev. A 76, 042319 (2007).

[63] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti,
B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe,
M. B. Rothwell, M. B. Ketchen, and M. Steffen, Simple
All-Microwave Entangling Gate for Fixed-Frequency Super-
conducting Qubits, Phys. Rev. Lett. 107, 080502 (2011).

[64] I. L. Chuang, Distance measures for quantum information, in
Quantum Computation and Quantum Information: 10th An-
niversary Ed. (Cambridge University Press, Cambridge, UK,
2010), pp. 399–424.

013003-15

https://doi.org/10.1103/PhysRevA.100.022517
https://doi.org/10.1103/PhysRevResearch.2.043205
http://arxiv.org/abs/arXiv:2101.08448
https://doi.org/10.1038/s41586-019-1666-5
http://arxiv.org/abs/arXiv:2009.12472
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/PhysRev.138.B1338
https://doi.org/10.1103/RevModPhys.35.668
https://doi.org/10.1103/PhysRevLett.13.406
https://doi.org/10.1063/1.1704794
https://doi.org/10.1103/PhysRevB.101.081107
https://doi.org/10.1103/PhysRevA.92.052502
https://doi.org/10.1103/PhysRev.137.A787
https://doi.org/10.1088/2058-9565/abc1bb
https://doi.org/10.1007/BF00681750
https://doi.org/10.1063/1.4999423
https://doi.org/10.1021/acs.jctc.5b00378
https://doi.org/10.1051/jphysrad:01938009010100
https://doi.org/10.1007/BF01331938
https://doi.org/10.1103/PhysRevLett.100.110406
https://doi.org/10.1063/1.1499208
https://doi.org/10.1088/1367-2630/ac3573
https://doi.org/10.1103/PhysRevA.84.052506
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/BF02650179
https://qiskit.org/textbook/preface.html
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.107.080502

