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Interaction-driven dynamical quantum phase transitions in a strongly correlated bosonic system

Sebastian Stumper ,1,* Michael Thoss,1,2 and Junichi Okamoto 1,2

1Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
2EUCOR Centre for Quantum Science and Quantum Computing, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany

(Received 18 June 2021; revised 9 November 2021; accepted 29 November 2021; published 3 January 2022)

We study dynamical quantum phase transitions (DQPTs) in the extended Bose-Hubbard model after a sudden
quench of the nearest-neighbor interaction strength. Using the time-dependent density matrix renormalization
group, we demonstrate that interaction-driven DQPTs can appear after quenches between two topologically
trivial insulating phases—a phenomenon that has so far only been studied between gapped and gapless phases.
These DQPTs occur when the interaction strength crosses a certain threshold value that does not coincide with
the equilibrium phase boundaries, which is in contrast to quenches that involve a change of topology. In order to
elucidate the nonequilibrium excitations during the time evolution, we define a new set of string and parity order
parameters. We find a close connection between DQPTs and these newly defined order parameters for both types
of quenches. In the interaction-driven case, the order parameter exhibits a singularity at the time of the DQPT
only when the quench parameter is close to the threshold value. Finally, the timescales of DQPTs are scrutinized
and different kinds of power laws are revealed for the topological and interaction-driven cases.
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I. INTRODUCTION

The nonequilibrium dynamics of quantum many-body sys-
tems is a vibrant field of research, much less well understood
than the phases of matter in thermal equilibrium. One way
of bridging this gap is to drive a system away from an ini-
tial equilibrium state by quenching parameters of a system
[1–5]. In particular, a quench across quantum phase bound-
aries can trigger nontrivial dynamics that allows one to define
new concepts of nonequilibrium criticality, and to study how
these are related to the equilibrium cases. Experimentally,
cold atom systems can routinely implement such a quantum
quench [6–9]. A famous example is a quantum version of
the Kibble-Zurek mechanism, where various observables such
as the induced defect density or the correlation length follow
scaling forms of a quench parameter across a quantum critical
point [10–17].

Meanwhile, the limiting case of a sudden quantum quench,
where a closed quantum system prepared in its ground state
shows a nontrivial unitary evolution after a sudden change of
parameters, has emerged as a field on its own [18–25]. One
definition of dynamical quantum phase transitions (DQPTs)
as a generalization of equilibrium concepts uses time and
the Loschmidt echo as analogs of temperature and the parti-
tion function [23,26]. In order to probe this kind of DQPT,
it is highly desirable, from a practical viewpoint, to iden-
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tify observables whose dynamics are linked to those of the
Loschmidt echo, as the Loschmidt echo itself is often inac-
cessible experimentally.

It has been shown that, in general, there is no ex-
act correspondence between DQPTs and the equilibrium
quantum phase transitions of a system [27–31]. On the other
hand, various conditions have been identified under which a
clear connection exists [26]. Rigorous examples are exactly
solvable models that exhibit ground states with distinct topo-
logical invariants [32–36]. Here a quench across the phase
boundaries always leads to DQPTs. Moreover, after starting
in symmetry broken phases, the respective order parameter
becomes zero at the times of the DQPTs [37–39]. Both phe-
nomena have been confirmed in experiments [40–44].

In contrast, the link of DQPTs with order parameter
dynamics and equilibrium phase transitions is much more
ambiguous for nonintegrable models [45–48]. Only recently,
such correspondences were found for quenches in a nonin-
tegrable spin-1 XXZ chain, with respect to the symmetry
protected topological Haldane phase and its nonlocal string
order parameter [49,50]. Such a model has also been experi-
mentally realized [51,52]. Further theoretical studies highlight
the essential role played by symmetries in the dynamics of
the string order parameter [53,54]. It is yet unclear if these
correspondences still hold when the symmetry is lowered or
the quench does not cross a topological phase boundary.

In order to investigate such a problem, in this paper, we
study a chain of bosons with on-site and nearest-neighbor
interactions [55–57]. Compared to the spin-1 XXZ chains, the
model is less symmetric; for instance, particle-hole symmetry
is missing. First, we consider quenches between topolog-
ically trivial phases. We find that strong nearest-neighbor
interaction quenches above a threshold V dyn

c can induce
DQPTs even when no topology is involved. We call these
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“interaction-driven” DQPTs. Near the threshold, the order
parameter develops nonanalytic signatures with temporal cor-
respondence to the DQPTs. Second, we investigate quenches
across topologically distinct phases starting from a Haldane
insulator state. Here, quenches that reduce the interaction
strength show no DQPTs on short timescales and no zeros of
the order parameter, whereas quenches to stronger interactions
do. The former, additionally, lead to a transient reduction of
the entanglement entropy. Finally, we show that the time of
the first DQPTs depends on the quench parameter roughly
in a power law fashion for both kinds of initial states, while
the detailed forms differ between the interaction-driven and
topological cases.

II. MODEL AND METHODS

We consider the one-dimensional extended Bose-Hubbard
model (EBHM) with on-site and nearest-neighbor interaction

Ĥ = −J
L−1∑
i=1

(â†
i âi+1 + H.c.)

+ U

2

L∑
i=1

n̂i(n̂i − 1) + V
L−1∑
i=1

n̂in̂i+1, (1)

where â†
i and âi are bosonic creation and annihilation op-

erators for site i and n̂i denotes the corresponding number
operator. Throughout the paper, we fix the filling factor to
N/L = 1, where N is the particle number and L is the sys-
tem size. The hopping strength is J = 1, setting energy and
time units.

This model has attracted considerable attention over the
past decades, resulting in a good understanding of its equilib-
rium phases [55,56,58–61]. These include a superfluid phase
for weak interactions, a Mott insulator (MI) for dominat-
ing U , a density wave (DW) phase for dominating V , and
the topologically nontrivial Haldane insulator (HI), which
occurs for intermediate parameters. We focus on the case
U = 5, where the MI-HI (HI-DW) transition lies at V eq

c1 ≈
2.95 (V eq

c2 ≈ 3.525) [59]. It is noted that other studies have
considered extensions of the model [62–66], which include
additional terms, such as density-assisted hopping or pair tun-
neling [67,68], that may appear in experimental platforms like
dipolar cold atoms. However, the part of the phase diagram
that is the focus of this paper is not qualitatively affected by
those terms [69,70].

We initialize the system in ground states corresponding
to the MI (Vi = 1.0) and HI (Vi = 3.25) phases and sub-
sequently drive it to nonequilibrium by a sudden change
of V from Vi to Vf. The ground states are calculated by
the density matrix renormalization group method, and the
time-dependent variational principle is employed for the time
evolution [71–73]. We have checked that the results are inde-
pendent of the boundary conditions [74]. Also we note that
the initial states are neither simple Fock states nor highly
symmetric states such as at the Affleck-Kennedy-Lieb-Tasaki
(AKLT) or Heisenberg points in the Haldane phase of spin-1
chains [49,53,54,75]. As shown below, the initial condition
sensibly affects the DQPTs.

III. QUANTITIES OF INTEREST

One way to generalize the notion of thermodynamic phase
transitions to the nonequilibrium case is to consider the rate
function

λL(t ) = − 1

L
ln | 〈ψ (0)|ψ (t )〉 |2 (2)

as a dynamical analog of the free energy density. Here,
the index L indicates the system size, |ψ (0)〉 is the initial
wavefunction, and |ψ (t )〉 = e−iĤt |ψ (0)〉 is the time-evolved
wavefunction of the system. DQPTs can be defined as nonan-
alytic points of this function in the thermodynamic limit [23],
which we denote by λ = limL→∞ λL.

Second, we study the time evolution of the order parame-
ters to quantify the relation of the time-evolved states to the
underlying ground state orders. For the MI and HI phases,
these are, respectively, described by the nonlocal string and
parity operators [55]

Ôz
string(i, j) = δn̂i

⎛
⎝ ∏

i<k< j

eiπδn̂k

⎞
⎠δn̂ j,

Ôz
parity(i, j) =

⎛
⎝ ∏

i<k< j

eiπδn̂k

⎞
⎠,

(3)

where δn̂i = n̂i − 1. Ôz
string is inspired by the string oper-

ators corresponding to the z component of spin-1 XXZ
chains, which can be considered as an effective model of
the EBHM under the mapping δni → Sz

i = −1, 0, 1. Order
parameters are defined as the long-distance limits, i.e., Oγ =
lim|i− j|→∞ 〈Ôγ (i, j)〉 for γ ∈ {string, parity}. Below, we use
i = L/4 and j = 3L/4.

We further propose another set of nonlocal operators that
correspond to the x components of the spin-1 operator as

Ôx
string(i, j) = 1

4

(
âi + â†

i

)⎛⎝ ∏
i<k< j

Ôk

⎞
⎠(â j + â†

j ),

Ôx
parity(i, j) =

⎛
⎝ ∏

i<k< j

Ôk

⎞
⎠,

(4)

where

Ôk = (−1) · P̂�2
k eiπSx

k P̂�2
k , eiπSx

k =
⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠,

(5)
and P̂�2

k is the projection onto site occupations nk � 2 [76].
In principle, the eigenvalues of Ôk should all be of modulus
1, because otherwise the long-distance limit of expectation
values of Eq. (4) will be either 0 or ∞ [77]. However, the
above definition always yields a zero-order parameter in the
presence of occupation numbers n > 2. This problem cannot
be mitigated by a straightforward generalization of Ôk to
n > 2, because there are no negative counterparts 2 − n < 0.
More details are given in Appendix A.
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FIG. 1. Time evolution of (a) the rate function, (b) the z parity order, (c) the renormalized x parity order, and (d) the projection to n � 2
particles per site. The initial state is in the MI phase (Vi = 1.0), and quenched to Vf in the MI (2.0), HI (3.25), and CDW (4.0,4.5,5.0,6.0)
phases. L = 270 is used. The inset in panel (c) shows the case Vf = 4.5 for system sizes L = 54, 80, 120, 180, 270. The axes are the same as
for panel (c). Panels [(e)–(h)] show the same observables for a finer grid of Vf around V dyn

c = 4.2 up to longer times with L = 120.

A simple solution consists in using the following projection
string operator:

P̂(i, j) =
⎛
⎝ ∏

i<k< j

P̂�2
k

⎞
⎠. (6)

As shown in Appendix A, P̂(i, j) exhibits the same asymptotic
decay length ξ as the x component operators of Eq. (4), i.e.,

P̂(i, j) ∼ Ôx
γ (i, j) ∼ e−ξ |i− j| (7)

for γ ∈ {string, parity}. Hence, we obtain well-defined order
parameters

Õx
γ = lim

|i− j|→∞
〈Ôx

γ (i, j)〉
〈P̂(i, j)〉 . (8)

As the operators in Eq. (4) are off-diagonal in the Fock
basis, these order parameters represent a new type of long-
range phase coherence. Finally, we define the local projection
P�2 ≡ 〈P̂�2

k 〉 at the center of the chain, k = L/2.

IV. RESULTS

We now turn to the numerical results. Fig. 1 shows
the time evolution of the system initialized in an MI
ground state (Vi = 1.0) and quenched to V . As depicted in
Fig. 1(a), the rate function develops pronounced kinks when
Vf is above certain threshold values. For the first maximum
of the rate function we find V dyn

c ≈ 4.2 (see Fig. 4), for
the second one V dyn

c ≈ 3.6. Both cases represent interaction-
driven DQPTs, as the critical interaction strengths to observe
DQPTs are not related to the topological MI-HI transition at
V eq

c1 ≈ 2.95. The former, V dyn
c ≈ 4.2, is also far away from the

HI-CDW phase boundary at V eq
c2 ≈ 3.525.

The corresponding dynamics of Oz
parity, Õx

parity, and P�2 are
shown in Figs. 1(b) and 1(c), respectively. These observables
remain close to their initial values when Vf is in the MI
region (Vf = 2.0). On the other hand, especially the parity
order parameters decay by several orders of magnitude, if the
phase boundary is crossed, i.e., Vf � V eq

c1 ≈ 2.95. Even more
interestingly, when Vf is just above the threshold value of the
DQPTs, V dyn

c ≈ 4.2, the parity order parameters show minima
at the time of the first kink of the rate function. For Õx

parity the
minimum is especially sharp. After the second kink, when λ

drops to lower values again, the order parameters as well as
P�2 show revivals. For larger Vf, there is no longer such a clear
temporal relation. As shown in Appendix C, we confirmed
similar behavior of the parity order parameters in a spin-1
chain.

In Figs. 1(e)–1(h), we provide a finer parameter grid
around the threshold value Vf 
 V dyn

c for longer times up to
t/J = 4 with L = 120. Note the correspondence between the
cases Vf = 4.5 and 5.0 on the left and right side of Fig. 1. The
finer grid clearly demonstrates the relation between the time
evolution of the rate function [Fig. 1(e)] and that of the order
parameters [Figs. 1(f)–1(h)] close to Vf = V dyn

c . The nonlocal
order parameters Oz

parity and Õx
parity develop a pronounced min-

imum for values of Vf when the first maximum of λ becomes
nonanalytic, i.e., at a dynamical quantum phase transition
(DQPT). Moreover, we see that λ has pairs of DQPTs and
downturns between two such pairs. The above mentioned re-
vivals of Oz

parity, Õx
parity and P�2 occur during these downturns

of λ. On the other hand, one can see that at Vf = 5.0 > V dyn
c

the close connection between the minimum of Õx
parity and the

first DQPT breaks down. Contrarily, for the DQPTs for a
quench starting from the topologically nontrivial HI phase
(shown below), the temporal correspondence between the rate
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FIG. 2. Finite-size scaling of dλL/dt for (a) Vf = 4.0 and
(b) Vf = 5.0, with the initial state in the MI phase (Vi = 1.0). Shaded
regions indicate where the rate function depends sensitively on L.

function and the order parameters persists for any quench, not
just near V dyn

c .
Interestingly, a finite-size analysis reveals that Õx

parity actu-
ally vanishes for all Vf after a certain time as shown in the inset
of Fig. 1(c), where the time is marked by a vertical blue line.
This means that the correlation function 〈Ôx

parity(i, j)〉 decays

more rapidly with |i − j| than the projection string 〈P̂(i, j)〉,
and the quench destroys the corresponding long-range phase
coherence. The time evolution shown in Fig. 1(c), therefore,
indicates only short-range correlations. By contrast, in the
spin-1 model, Ox

parity does not vanish in the thermodynamic
limit (see Appendix C).

In order to confirm that λL develops nonanalytic features
at certain critical times t∗, we analyze the system-size de-
pendence of dλL/dt in Fig. 2. For Vf = 4.0 [Fig. 2(a)], the
first maximum around t ≈ 0.8 is smooth, while the second
one converges slowly in L towards a sharp jump. For the
stronger quench to Vf = 5.0 [Fig. 2(b)], dλL/dt changes signs
at critical times t∗/J ≈ 0.55 and 1.05. With increasing L,
the regions around the jumps showing strong system-size
dependencies diminish, while within those regions there is a
strong dependence on the specific system size. For example,
for Vf = 5.0 at t∗/J ≈ 0.55, there are large spikes in dλL/dt
only for L = 54 and 180.

Next, let us turn to the case where the system is initialized
in the HI phase (Fig. 3). We always find DQPTs when V is
quenched to a larger value across the HI-CDW boundary, as
shown in Fig. 3(a). Thus, we have V dyn

c = V eq
c2 . On the other

hand, for quenches across the MI-HI boundary to Vf < V eq
c1 ,

depicted in Fig. 3(b), there are no kinks on the given timescale.
While it is possible that DQPTs occur at later times, we
certainly see that the first few maxima of λ are smooth. This
result is in contrast to Ref. [49], which always found kinks
at the maxima of λ for a spin-1 XXZ chain initialized to
the AKLT state within the Haldane phase. The discrepancy
can be traced back to the lower symmetry of our initial state.
As shown in Appendix C, a spin-1 chain initialized in a less
symmetrical state but still in the Haldane phase shows smooth
first maxima of λ for corresponding quenches.

The dynamics of the renormalized x string order parameter
Õx

string are depicted in Fig. 3(c). We find zeros of Õx
string in close

FIG. 3. Time evolution of (a), (b) the rate function for quenches
to larger and lower Vf’s, respectively, (c) the x string order, and (d) the
entanglement entropy. The initial state is in the HI phase (Vi = 3.25),
and quenched to Vf in the MI (0.0,1.0,2.0) and CDW (4.0,5.0,6.0)
phases. L = 600 is used for λ, for all other observables L = 270.
The inset of panel (d) shows the projection to n � 2 per site.

temporal relation to the kinks of the rate function. Similar re-
sults were obtained for the spin-1 chains [49]. In the presented
time range, the zeros appear only when V is increased, but not
when V is lowered. However, a longer time simulation up to
t/J = 4.0 for a quench from HI to MI shows a zero of Õx

string,
indicating the existence of DQPTs (see Appendix B).

As another interesting property of the time-evolving state,
we consider the entanglement entropy S about the central
bond, which we depict in Fig. 3(d). While it shows the typical
approximately linear increase at later times, the short-time
behavior depends on whether we lower or increase the inter-
action V . The entanglement entropy increases monotonically
for increased V also at short times. A decreased V , on the
other hand, leads to a decrease of entanglement in the sys-
tem at short times. The weaker the quench, the stronger
is the suppression of the entanglement. As shown in the
inset of Fig. 3(d), the projections to n � 2 increase when
the entanglement entropy decreases, because of the lowered
nearest-neighbor repulsion. The entanglement entropy of the
ground state is lower in the MI phase along the parameters
considered [58]. Thus, we infer that at short times the suppres-
sion of higher occupations reduces the entanglement entropy.
Other possible observables, such as the doublon density, are
likely to behave similarly. The following increase of the en-
tanglement entropy is due to a slower build up of long-range
correlations.

Finally, we discuss time t∗ of the first maxima in λ and
quench-induced heating �E/L with respect to the quenched
interaction (see Fig. 4). We have checked that the latter is
converged in the system size despite the open boundary con-
dition. Here, �E = 〈ψ (t )|Hf|ψ (t )〉 − E f

0 is the energy of the
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FIG. 4. Time t∗ of the first maxima of λ (left axes, black sym-
bols) and energy density relative to the ground state of the quenched
Hamiltonian (right axes, green symbols) are plotted against Vf . Full
circles correspond to kinks, and empty circles to smooth maxima.
Panels (a) and (b) correspond to initial states in the MI or HI phase
(see Figs. 1 and 3, respectively. Solid vertical lines indicate the MI-HI
and HI-CDW transitions, while the dashed line in (b) shows Vi. The
red dashed lines are power law fits, (a) t∗ ≈ 0.56 · (Vf − 3.92)−0.26

and (b) t∗ ≈ (Vf − Vi )−1.2.

time-evolving state relative to the ground state of the
quenched Hamiltonian Hf. Since the system is isolated, the
energy is constant for t > 0.

The induced energy densities (green) behave approxi-
mately linearly for Vf � V eq

c2 for initial states in the MI
[Fig. 4(a)] and HI [Fig. 4(b)] phases, as well as for Vf � V eq

c2
for an initial HI state. The values and the slope are larger
for the initial state in the MI phase. This larger slope is a
consequence of a higher doublon density in the HI phase,
which reduces the extra energy due to a given increase of Vf.

Next, we look at the times t∗ of the first maximum of λ,
which is either smooth (empty circles) or nonanalytic (full
circles). For both kinds of initial states, t∗ attains a maximum
at the threshold value V dyn

c , where the nonanalyticities start to
appear. As Vf increases beyond V dyn

c , the time t∗ decays in a
power law manner, as indicated by the fits in Fig. 4 (dashed-
red lines). Heuristically, such power laws can be understood
in terms of the width of the spectra of |ψi〉 with respect to
the eigenstates of Hf (see Appendix D), which broaden as
the quenches become stronger. Interestingly, starting from an
HI state leads to an apparent divergence of the extrapolation
of the power law at Vi, t∗ ∼ (Vf − Vi )−1.2. Such an approx-
imate power law with a divergence at the initial parameter
is typical of DQPTs in noninteracting topological systems
[23,24,78,79]. Thus, the present results further underpin the
topological nature of quenches starting from the HI phase. On
the other hand, for the interaction-driven DQPTs, which occur
with initial states in the MI phase, t∗ is not well approximated
by a simple power law in (Vf − Vi ).

V. CONCLUSIONS

In this paper we have analyzed the dynamics of the
extended Bose-Hubbard model after sudden interaction
quenches. We have contrasted initial states in the Mott and
Haldane insulator phases. In case of the Mott insulator,
DQPTs are induced by sufficiently strong quenches. These
DQPTs bear no correspondence to the equilibrium phase
boundaries and no relation to topology. Near the threshold
quench value, non-analytic signatures of the parity order

parameter accompany the DQPTs. Starting from the Haldane
insulator, we find DQPTs and zeros of the string order pa-
rameter for quenches to larger nearest-neighbor interactions,
generalizing previous results on spin-1 chains. While, for
quenches to lower interactions, the short time behavior differs
from a previous study [49], we expect that DQPTs occur
for longer times. The discrepancy is attributed to different
symmetries of initial states. Finally, we have shown that the
timescales of DQPTs depend on the quench parameter in
a power law manner, and its precise form differs between
two types of DQPTs—either topological or interaction-driven.
Experimental tests of these results by ultracold atoms could
be feasible in the near future. On the theoretical side, further
study of the timescales of the dynamics or the influence of ad-
ditional terms such as density-assisted tunneling are intriguing
open problems.
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APPENDIX A: RENORMALIZED x-STRING AND
x-PARITY ORDER PARAMETERS FOR THE EXTENDED

BOSE-HUBBARD MODEL

We show that the renormalized order parameters, which are
introduced in Eqs. (4)–(8) of the main text, provide a well de-
fined way of determining the phase diagram. In Fig. 5(a), both
the x and z components of the order parameters, Oz

string,parity

and Õx
string,parity, are depicted as a function of V for increas-

ing system sizes. Even though there is no SU(2) symmetry
in the extended Bose-Hubbard model (EBHM) due to the
lack of particle-hole symmetry, the order parameters of both
components clearly distinguish the different phases. The Mott
insulator (MI) is characterized by nonvanishing parity order
parameters, while in the Haldane insulator (HI) phase, the
string order parameters take finite values.

Contrary to the renormalized x components, the bare
x components of the order parameters are insufficient to dis-
tinguish different phases. In Fig. 5(b), we show the correlation
functions 〈Ôx

string,parity(r)〉 and the projection string operator

〈P̂(r)〉 over the distance r = |i − j| between two sites for
selected points in the MI (full lines) and HI (dashed lines)
phase diagram. All correlation functions decay exponentially,
as in Eq. (7) of the main text. For the projection string P̂(r) =∏

i<k<i+r P̂�2
k the decay length is given by

ξ = − log P�2. (A1)

Since we defined P�2 = 〈P̂�2
L/2〉, the projection to n � 2 con-

tributes the same factor for each site. In the MI phase, the
decay length of 〈Ôx

parity(r)〉 is equal to ξ , whereas in the
HI phase it is smaller than ξ . Therefore, in the MI phase, the
decay of 〈Ôx

parity(r)〉 is exclusively due to the projections in
Eq. (5) of the main text, and we consider the system to have
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FIG. 5. (a) Phase diagram and the corresponding order parameters for the extended Bose-Hubbard model. Usual z-component order
parameters and renormalized x-component order parameters as a function of V . For each, we show system sizes L = 54, 80, 120, 180,
increasing from thin to thick lines. The dashed-vertical lines mark the phase boundaries according to Ref. [59]. (b) x-string and x-parity
correlation functions without renormalization factor as a function of r, as well as the projection string P̂(r). Dashed lines correspond to
V = 2.5 (MI) and solid lines to V = 3.2 (HI).

x-parity order in the renormalized sense. For 〈Ôx
string(r)〉, the

decay length is given by the projection in the HI phase, while
it decays faster due to its own fluctuations in the MI phase.

Naturally, it is desirable to have a definition of x-parity and
x-string order that does not rely on projections. However, this
is not trivial. Note that the x operators are mainly products of

Ôk = |2〉 〈0| + |1〉 〈1| + |0〉 〈2| , (A2)

acting on each site k, by analogy to eiπ Ŝx
k [see Eq. (5) of the

main text]. A straightforward generalization to n > 2, would
require terms like |2 − n〉 〈n| with 2 − n < 0. Another simple
ansatz, adding the terms |n〉 〈n| for n > 2, also fails. Here the
reason is nonlocality. Because the filling factor is n = 1, every
site with n > 2 requires that there are more sites with n = 0
than with n = 2. The application of

∏
k (Ôk + ∑

nk>2 |nk〉 〈nk|)
would then change the total particle number and therefore
yield an expectation value of zero, if any site has n > 2.

In conclusion, on the one hand, such operators may exist
that correspond to the x-string and x-parity operators of spin-1
chains without prescriptions of projections. On the other hand,
it is unclear whether these operators can be expressed simply
as products of local operators.

APPENDIX B: LONG-TIME DYNAMICS FOR THE HI-MI
QUENCH

In order to show that DQPTs likely exist for HI to
MI quenches, we show the results of a simulation up
to t/J = 5 with Vi = 3.25 and Vf = 1.0 in Fig. 6. While
the finite size effects are too strong to reveal a kink
of λ, there is clearly a zero of Õx

string close to t/J =
4. This indicates that DQPTs occur also for the HI-MI
quench in long-time simulations. Furthermore, as in the
inset of Fig. 2(c) of the main text, we see that the or-
der parameter vanishes in the thermodynamic limit after a
certain time.

APPENDIX C: PHASE DIAGRAM AND DYNAMICS OF
SPIN-1 XXZ CHAINS

A spin-1 XXZ chain with Hamiltonian

HXXZ = J
L−1∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + D
L−1∑
i=1

(
Sz

i

)2

+�

L∑
i=1

Sz
i Sz

i+1 (C1)

can serve as an effective model for the extended
Bose-Hubbard model, when the on-site interaction U is
large. As a benchmark for how well the effective description
works, we show a phase diagram and the corresponding order
parameters in Fig. 7. String and parity order parameters for

FIG. 6. Dynamics of (a) the rate function λ, and (b) the x-string
correlation function after a Quench from HI (Vi = 3.25) to MI (Vf =
0.0) for L = 54, 80, 120.
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FIG. 7. Order parameters of the spin-1 chain as a function of V
for D = 1.25 and system sizes L = 40, 80, 160, increasing from thin
to thick lines.

the spin-1 chain are given by

Oα
string = lim

|i− j|→∞
Sα

i

∏
i<k< j

eiπSα
k Sα

j ,

Oα
parity = lim

|i− j|→∞

∏
i<k< j

eiπSα
k ,

(C2)

where α = x, z. There is a rough correspondence D → 1/4U
and � → 1/2V , when J = 1 in both models, and if one re-
places a†

i → S−
i . Thus, from U = 5 in the bosonic model, we

obtain D = 1.25. Along this line, one moves from the large-D
phase (corresponding to MI) for small � through the Haldane
phase into the Neel phase (corresponding to CDW) for large
�. The phase transition points are at �

eq
c1 = 1.3 ± 0.1 and

�
eq
c1 = 1.9 ± 0.1. Qualitatively, we have a very good agree-

ment between the models, while numerical values obviously
differ.

Finally let us briefly touch on the signs before J in the
two models. (Here, we always take J to be positive.) We take
the sign before J in the EBHM negative, while in Eq. (C1)
it is positive as in Ref. [49]. However, the difference is not
essential. We have checked the case of an XXZ chain with the
negative sign and found that—both for static and dynamical
properties—the only difference is a staggered sign (−1)|i− j|
that has to be included into the string and parity correlation
functions. Therefore, the results are basically unaffected by
the sign. A related discussion can be found in Ref. [80], dis-
tinguishing the Haldane phases with opposite signs as being
protected by different symmetries. While for the positive sign
the symmetry is a regular lattice inversion symmetry, for the
negative sign this symmetry needs to be slightly modified.

Let us also compare the dynamics of the EBHM to the
spin-1 model. We fix J = 1 and D = 1.25. As an analog to
the initial MI ground state we choose �i = 0.5 in the large-D
phase (see Fig. 8), and for the initial HI ground state we
choose �i = 1.6 (see Fig. 9). These initial values are based
on Fig. 7.

After starting in the large-D phase, we find the same kind
of DQPTs as in the EBHM when the quench is strong. The
threshold for DQPTs, 1.4 < �th < 2.0, does not coincide
with the phase transition points �

eq
c1 and �

eq
c2 [see Fig. 8(a)].

More importantly, as shown in Fig. 8(c), a sharp minimum
of Ox

parity appears at �f = �th at the same time as the first
kink of the rate function λ. For �f > �th, e.g., �f = 3.0, this

FIG. 8. Time evolution of (a) the rate function, (b) and (c) the
parity order parameters, and (d) the entanglement entropy in a spin-1
XXZ chain starting from an initial state in the large-D phase (�i =
0.5). The inset of panel (c) shows the system size dependence of
Ox

parity for �f = 2.0.

FIG. 9. Time evolution of (a) the rate function, (b) and (c) the
string order parameters, and (d) the entanglement entropy in a spin-
1 XXZ chain starting from an initial state in the Haldane phase
(�i = 1.6).
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FIG. 10. Overlaps of the ground state for Vi = 1.0 with the eigenstates for various Vf as a function of the energy eigenvalues. The system
size is L = 10 and the peaks are represented as Lorentzians of width η = 0.1. Exact diagonalization and open boundary conditions are used.

minimum of Ox
parity occurs at later times than the first kink of

λ. The finite size dependence of Ox
parity is depicted in the inset

of Fig. 8(c). In contrast to the projected x-parity operator of
the EBHM in the main text, it converges in the system size.

Lastly, the dynamics starting from a state in the Haldane
phase is shown in Fig. 9. We find qualitative agreement with
the EBHM in the main text. In particular, as can be seen
from Fig. 9(b) for quenches towards smaller �’s, there are
no DQPTs on the time scale of the simulation, while the rate

function does show several smooth maxima. This confirms
that the present initial state, which has a lower symmetry than
the ground state of the Heisenberg model (J = 1, D = 0, V =
1), has a significant influence on the timescales of DQPTs.

APPENDIX D: SPECTRUM

In order to show how the energy is brought into the system
by a quench, we have a closer look at the energy spectrum

FIG. 11. Overlaps of the ground state for Vi = 3.25 with the eigenstates for various Vf as a function of the energy eigenvalues. The system
size is L = 10 and the peaks are represented as Lorentzians of width η = 0.1. Exact diagonalization and open boundary conditions are used.
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of the initial state |ψi〉 with respect to the post-quench
Hamiltonian Hf, i.e.,

|ψi〉 =
∑

j

c j

∣∣E f
j

〉
, (D1)

where Hf |E f
j〉 = E f

j |E f
j〉. In the continuum limit, the overlap

of the time evolved and the initial wave function can be
written as

〈ψ (t )|ψi〉 =
∫

dε p(ε)e−iεt . (D2)

The distribution p(ε) is given by

p(ε) =
∑

j

|c j |2δ
(
ε − E f

j

)
. (D3)

As this is difficult to obtain in the continuum limit, we have
calculated the overlap amplitudes c j by full diagonalization
for L = 10, and approximated δ(ε − E f

j ) by a Lorentzian of
width η = 0.1. Figures 10 and 11 show these spectra for
Vi = 1.0 and Vi = 3.25, respectively, for various Vf with the
open boundary condition. As Vf increases, the means gradu-
ally shift to higher values and the distributions become wider.
For Vf = 6, we see a clear signature of a gap formation in the
spectrum. We checked that the same happens for the periodic
boundary condition, where, due to the momentum conserva-

tion, the number of eigenstates with a finite overlap with |ψi〉
is roughly decreased by 1/L, and the peaks are more sparsely
distributed.

A heuristic model that neglects the intricacies of the actual
spectra is given by a box with mean E and width �E ,

pE ,�E (ε) = 1

�E
�

(
ε −

[
E − �E

2

])
�

([
E + �E

2

]
− ε

)
.

(D4)
The corresponding Fourier transform is the Loschmidt-
amplitude,

〈ψ (t )|ψ (0)〉 =
∫ ∞

−∞
pE ,�E (ε)e−iεt dt

=
∫ E+�E/2

E−�E/2

1

�E
e−iεt dt ∼ sin(�Et )

�Et
. (D5)

One can see that the times of its zeros scale as t∗ ∼ (�E )−1.
Thus we have a most rudimentary example of how the width
of p(ε) controls the times of DQPTs in a power law fashion.
As the width of the more complicated spectrum of the EBHM
increases for stronger quenches (see Figs. 10 and 11), and the
critical times t∗ of the EBHM follow approximate power laws
as a function of the quench parameter (see Fig. 4 of the main
text), the spectrum of the EBHM likely controls the times of
DQPTs in a similar way as pE ,�E (ε) in the above toy model.
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