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The semiclassical equations of motion are widely used to describe carrier transport in conducting materials.
Nevertheless, the substantial challenge of incorporating disorder systematically into the semiclassical model
persists, leading to quantitative inaccuracies and occasionally erroneous predictions for the expectation values
of physical observables. To address this issue, in this paper we provide a general prescription for reformulating
the semiclassical equations of motion for carriers in disordered conductors by taking the quantum mechanical
density matrix as the starting point. We focus on the case when only external electric fields are present, without
magnetic fields, and the disorder potential is spin independent. The density matrix approach allows averaging
over impurity configurations, and the trace of the velocity operator with the disorder-averaged density matrix
can be reinterpreted as the semiclassical velocity weighted by the Boltzmann distribution function. Through this
rationale the well-known intrinsic group and anomalous velocities are trivially recovered, while we demonstrate
the existence of an extrinsic velocity, namely, a disorder correction to the semiclassical velocity of Bloch
electrons, mediated by the interband matrix elements of the Berry connection. A similar correction is present in
the nonequilibrium expectation value of the spin operator, contributing to spin-orbit torques. To obtain agreement
with diagrammatic approaches, the scattering term in the Boltzmann equation must be corrected to first order in
the applied electric field, and the Boltzmann equation itself must be solved up to subleading order in the disorder
potential. Our prescription ensures that all vertex corrections present in diagrammatic treatments are taken into
account, and to illustrate this, we discuss model cases in topological insulators, including the anomalous Hall
effect as well as spin-orbit torques.
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I. INTRODUCTION

Carrier transport in extended conductors is an inherently
semiclassical phenomenon, requiring an effective single-
particle description as well as averaging over real space
and momentum space degrees of freedom. The semiclassical
model [1], which takes these ingredients as natural building
blocks, has been a staple of transport theory for the best part of
a century [2]. In recent years, aside from its well-established
application to the anomalous Hall effect and dynamics in
magnetic systems [3–7], it has frequently been used to de-
scribe transport in electric and magnetic fields in systems
with nontrivial topological textures [8–27], including non-
linear electromagnetic responses [28–33], and has recently

*d.culcer@unsw.edu.au

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

found substantial applications in computational approaches to
nonequilibrium physics [34–48]. In addition to its profound
physical insight, broad applicability, and relative simplicity,
the semiclassical method naturally accounts for topological
effects and enables a clear identification of Fermi surface and
Fermi sea contributions to transport [49–52].

The central idea of the semiclassical model is the sepa-
ration between the dynamics of individual carriers and the
carrier distribution. Carrier dynamics between collisions are
described by the semiclassical equations of motion, which
do not incorporate disorder, while collisions are taken into
account through the Boltzmann equation and affect solely the
distribution function, inducing changes in the occupation of
quantum states [2]. The semiclassical velocity, originally as-
sumed to be simply the band group velocity, is now known to
incorporate a transversal anomalous component linear in the
driving electric field and proportional to the Berry curvature
�m of a given band m [1,53]. Although written in terms of the
curvature for a single band, this anomalous velocity includes
interband coherence effects and is associated with band mix-
ing by an electric field [50]. The anomalous velocity lies at the
heart of the quantum Hall effect and of the intrinsic contribu-
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tion to the anomalous Hall effect, together with its quantized
counterpart. In recent years, however, it has been realized
that disorder itself leads to band-mixing effects which are not
captured by a naive solution to the Boltzmann equation and
are challenging to include in the conventional wave-packet
description. This is primarily because the standard treatment
of disorder involves averaging over configurations, and this
cannot be done at the level of the wave function. It is well
established that a naive application of the semiclassical model
to the anomalous and spin-Hall effects in disordered systems
makes inaccurate predictions [54–60] and that the simple re-
laxation time approximation applied solely to the Boltzmann
equation does not capture the full underlying physics of coher-
ent scattering off the random disorder potential. Indeed, the
role of disorder in the anomalous Hall effect [61–65] and its
relationship to semiclassical dynamics remains an intensely
researched topic [35,39,66–73].

Nevertheless, since transport is fundamentally semiclas-
sical, all transport-related quantities must be expressible in
semiclassical terms. The assumptions behind wave-packet dy-
namics and diagrammatic approaches are the same: External
fields are treated classically and are assumed to be slowly
varying in space, a separation is made between scattering
processes and the dynamics between scattering events, and
the calculation is performed in the regime εF τ/h̄ � 1, where
εF is the Fermi energy and τ is the momentum relaxation
time. Recent work has investigated strategies for incorporat-
ing the findings of diagrammatic linear response theory into
semiclassical dynamics. Sinitsyn and co-workers introduced
a spin-dependent coordinate shift into the position operator
and identified a side-jump velocity [74–76]. These quantities,
however, are difficult to work with, since a spin-dependent
position operator introduces complications in keeping track
of relevant contributions, as well as in the velocity operator.
Xiao, Niu, and co-workers showed that agreement is obtained
with diagrammatic approaches if all semiclassical quantities
are dressed by disorder, including a disorder-dressed Berry
curvature [77,78]. However, the wave-packet approach to
semiclassical transport is well defined only for the disorder-
free case and is challenging to extend to disordered systems
since averaging over disorder configurations cannot be done
for wave packets.

In light of the above, in this paper we formulate the semi-
classical equations of motion for Bloch electrons so as to
include disorder, starting from the quantum mechanical den-
sity matrix [50], in the process making a connection to Green’s
functions approaches. A strong motivation for our work is
the recent surge in applications of the semiclassical model
in computational studies of transport in topological materials
[34–48]. Our primary aim is to provide a straightforward
method to incorporate disorder into such computational strate-
gies once a model of disorder is chosen, together with a set of
self-contained equations serving this purpose. The use of the
density matrix to treat transport phenomena in the presence
of disorder has been well established since the seminal paper
by Luttinger [62]. Nevertheless, the nonequilibrium density
matrix in the presence of disorder is a formidable quantity,
and a straightforward application of Luttinger’s expressions
to realistic systems for explicit computations is not possible.
The main complexity in the methodology of Ref. [62] is

the attempt to isolate simultaneously the part of the density
matrix diagonal in both the wave vector and the band index.
On the other hand, taking the density matrix as the starting
point [79] allows one to average over disorder configurations,
something that cannot be done using a wave function. In this
paper, in contrast to Luttinger [62], we introduce the notion
of a disorder average from the outset and immediately de-
compose the reduced density matrix into a disorder-averaged
part and a fluctuating part. The disorder average restores
translational periodicity, and as a consequence the disorder-
averaged density matrix in a noninteracting system is diagonal
in wave vector in the crystal momentum representation. In
this way, the process of isolating the band-diagonal and wave-
vector-diagonal part of the density matrix becomes far more
transparent and tractable. By considering band-diagonal and
band-off-diagonal projections of the disorder-averaged den-
sity matrix we account for the role of spin-charge coupling
in the dynamical system [80]. We demonstrate that disorder
affects not only the state occupation but also the semiclassi-
cal equations of motion and that it generates a correction to
the velocity that accounts for band mixing mediated by the
Berry connection and disorder. This approach enables one to
distinguish disorder effects on the distribution function from
disorder effects on carrier dynamics; yet it entails a change in
one’s point of view so as to regard the semiclassical equations
as describing carrier propagation averaged over many disorder
scattering events. The carrier undergoes transitions between
bands as it scatters, and its trajectory can be determined by
averaging over impurity configurations. Whereas the equation
of motion for the wave vector k follows trivially from the time
derivative of the momentum operator, our central result is the
revised semiclassical equation of motion for the position of a
carrier in band m, with dispersion εm, propagating under the
action of an electric field E in the presence of disorder

ṙm = 1

h̄

∂εm

∂k
+ e

h̄
E × �m + βm

k . (1)

We identify a new contribution to the velocity, which we term
the extrinsic velocity βm

k , defined as

βm
k = 1

2π h̄

∫ ∞

−∞
dε

〈[
U, GA

0 (ε)
[
U,R′]GR

0 (ε)
]〉mm

k , (2)

where R′ represents the interband Berry connection with
matrix elements R′mn

k = i〈um
k |∇kun

k〉m �=n and |um
k 〉 is the

lattice-periodic part of the Bloch wave function. The extrinsic
velocity βm

k is proportional to the disorder strength, which
is typically quantified by the impurity density ni, scattering
potential strength u2

0, or alternatively 1/τ , where τ is the
characteristic scattering time. Note that this correction to
the velocity is independent of the applied electric field. In the
semiclassical regime, in which εF τ/h̄ � 1, where εF is the
Fermi energy, this quantity is of first order in the small param-
eter h̄/(εF τ ). Nevertheless, to obtain its contribution to the
current, it is necessary to multiply it by the large change in the
Boltzmann distribution ∝ τ , such that the final result appears
to be formally independent of disorder, of order [h̄/(εF τ )]0.
The expression for βm

k is analogous to the customary scatter-
ing term in the Born approximation, except the distribution
function is replaced by the band-off-diagonal elements of the
Berry connection. Since only the band-off-diagonal elements
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of the Berry connection appear, βm
k is by construction gauge

covariant. In general, βm
k , being independent of applied fields,

can be thought of as a disorder-dependent correction to the
semiclassical band velocity, or a random interband walk on the
Fermi surface. We find that βm

k is nonzero in systems in which
time-reversal symmetry is broken by, e.g., a magnetization.
Whereas βm

k is similar to the side jump as defined in Ref.
[81], unlike Ref. [81], the present formalism does not employ
coordinate shifts, so that the formal and physical position
operators coincide. Furthermore, unlike Ref. [77], the Berry
curvature is the same as in the clean system, rather than being
dressed by disorder. Importantly, we show that the scattering
term in the Boltzmann equation, needed to determine the
effective distribution function, acquires a correction to first
order in the electric field, which is equivalent to a gradient
expansion in the electrostatic potential. In addition, the Boltz-
mann equation needs to be solved up to the subleading order
in the impurity strength, in order to incorporate processes
customarily termed skew scattering and side jump [63,64,82].
The method we present here also enables us to calculate spin
densities using the semiclassical model and obtain accurate
results for spin-orbit torques. In order to accomplish this the
bare spin expectation value needs to be supplemented with an
electric-field contribution, and we find an analogous quantity
to βm

k in the spin expectation value.
More generally, we present a prescription for mapping

steady-state expectation values onto the semiclassical model
by expressing traces purely in terms of the band-diagonal ele-
ments of the density matrix. Since in linear response theory all
expectation values are traced back to the equilibrium density
matrix, which is band diagonal, they can all be recast in terms
of semiclassical quantities. The band-diagonal elements of the
density matrix represent the Boltzmann distribution, which
can be evaluated from the much simpler Boltzmann equation.
In fact, we will argue briefly in the latter part of this paper
that linear response theories can be thought of as a family tree
with its roots in the quantum Liouville equation: The Kubo
approach is the integral formulation, and the quantum kinetic,
or quantum Boltzmann, approach is the integrodifferential
formulation, while the semiclassical model is an offshoot of
the latter, which arises as a result of an additional separa-
tion between the carrier dynamics and distribution. Sharing
a common origin, these methods yield equivalent results, and,
in particular, vertex corrections present in diagrammatic ap-
proaches have straightforward equivalents in the semiclassical
language. The blueprint presented in this paper can be used
in the future to incorporate electron-electron interactions into
computational approaches in a mean-field picture.

This paper builds on earlier work on the density ma-
trix theory of transport [50,83], which introduced the notion
of the impurity average and the description of electric and
magnetic fields within the density matrix framework. These
concepts are reviewed in part in Sec. III. The present paper,
which employs a similar methodology in order to construct
a disorder-averaged semiclassical model of transport, can be
regarded as the third paper in this sequence.

The outline of this paper is as follows. In Sec. II we intro-
duce the Hamiltonian and the model of disorder. In Sec. III
we review linear response theory based on the density ma-
trix and introduce the electric-field correction to the collision

term. The main equations in this section are the following:
Eq. (34), which provides a general relation to calculate the
complete subleading distribution function, namely, a distri-
bution function due to skew scattering plus an anomalous
distribution function due to an electric-field correction of the
collision integral, and Eq. (36) along with Eq. (38), which are
explicit expressions to solve the abovementioned subleading
function. Next, in Sec. IV we outline the general methodology
for deriving the semiclassical equations of motion from the
quantum kinetic equation and discuss also disorder effects
on spin expectation values. The main equations in this sec-
tion are Eqs. (47) and (61), which are explicit expressions to
compute the new extrinsic velocity and the new extrinsic spin
expectation value. In Sec. V we analyze the relation among
different linear response methodologies commonly used to
calculate transport coefficients. In Sec. VI we discuss at length
two model examples, the anomalous Hall effect and spin-orbit
torques in magnetic topological insulators. We end with a
summary and conclusions.

II. MODEL HAMILTONIAN

We consider a Hamiltonian of the form

H = H0 + V (r) + U (r), (3)

where H0 is the low-energy effective band Hamiltonian, in
principle assumed to include the Zeeman interaction with
an external magnetic field, V (r) is the electrostatic potential,
and U = U (r) represents the disorder scattering potential. We
emphasize that the Hamiltonian is always Hermitian. Non-
Hermitian systems were considered in Ref. [84].

We work in the crystal momentum representation |m, k〉 =
eik·r|um

k 〉. The matrix elements of a scalar disorder potential
U (r) are given by the equation

U mm′
kk′ = 〈

um
k

∣∣um′
k′

〉
Uq, (4)

where we have defined the Fourier transform of the spatial
function in d dimensions

Uq =
∫

dd rU (r)e−iq·r, (5)

with q = k − k′. The impurity average is defined by

〈U mm′
kk′ U n′n

k′k 〉 = 〈um
k |um′

k′ 〉〈un′
k′ |un

k〉〈UqU−q〉, (6)

with

〈UqU−q〉 =
∫∫

dd rdd r′〈U (r)U (r′)〉e−iq·(r−r′ ), (7)

where 〈· · · 〉 refers to an average over impurity configurations.
For concreteness we will use a model of disorder whose spa-
tial correlation function is defined as

〈U (r)〉 = 0, (8)

〈U (r)U (r′)〉 = u2
0δ(r − r′). (9)

Then, it follows that〈
U mm′

kk′ U n′n
k′k

〉 = u2
0

〈
um

k |um′
k′

〉〈
un′

k′ |un
k

〉
, (10)

where u2
0 is a parameter that takes into account the strength

of the disorder potential. One can also resort to a model that
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makes explicit reference to the impurity density, as described
in Ref. [50].

III. QUANTUM KINETIC EQUATION

In this section we give a brief presentation of the quantum
kinetic equation in somewhat different language from that
used in Ref. [50]. We note that similar density-matrix-based
approaches have been used recently to describe carrier dynam-
ics in the semiclassical regime [51,52]. The starting point is
the quantum Liouville equation for the single-particle density
operator ρ, namely,

∂ρ

∂t
+ i

h̄
[H, ρ] = 0. (11)

For the sake of convenience, we introduce at this stage the free
retarded Green’s function

GR
0 (t ) = −iθ (t )e−itH0/h̄. (12)

In the frequency domain,

GR
0 (ε) = − i

h̄

∫ ∞

0
dte−iH0t/h̄eiεt/h̄e−ηt , (13)

where we introduced the factor e−ηt to ensure convergence.
The advanced Green’s function follows by Hermitian conju-
gation.

A. Kinetic equation in equilibrium

For the sake of simplicity, let us for now ignore the ef-
fect of the driving electric field in the kinetic equation. We
decompose the density matrix as ρ = 〈ρ〉 + g0, where 〈ρ〉 is
averaged over disorder configurations, while g0 is the fluc-
tuating part. Applying this decomposition to the quantum
Liouville equation [50], we obtain for the disorder-averaged
part in equilibrium

∂〈ρ〉
∂t

+ i

h̄
[H0, 〈ρ〉] + i

h̄
〈[U, g0]〉 = 0, (14)

while for the fluctuating part g0 we find

∂g0

∂t
+ i

h̄
[H0, g0] + i

h̄
[U, g0] − i

h̄
〈[U, g0]〉 = − i

h̄
[U, 〈ρ〉].

(15)
In order to solve the kinetic equation for 〈ρ〉, we first solve
Eq. (15) for g0, and then we use it in Eq. (14). In the first
Born approximation [50] we neglect the last two terms on the
left-hand side of Eq. (15). We are left with

∂g0

∂t
+ i

h̄
[H0, g0] = − i

h̄
[U, 〈ρ〉]. (16)

Solving for the fluctuating part g0,

g0 = − i

h̄

∫ ∞

0
dt ′[e−iH0t ′/h̄UeiH0t ′/h̄, 〈ρ(t )〉]. (17)

In terms of Green’s functions, g0 can be expressed as

g0 = 1

2π i

∫ ∞

0
dε

[
GR

0 (ε)UGA
0 (ε), 〈ρ(t )〉]. (18)

This solution is substituted into Eq. (14). We arrive at the
equation

∂〈ρ〉
∂t

+ i

h̄
[H0, 〈ρ〉] + J (〈ρ〉) = 0, (19)

with the collision integral J (〈ρ〉) defined as

J (〈ρ〉) = i

h̄
〈[U, g0]〉. (20)

B. Adding an electric field

Let us now consider the effect of the driving electrostatic
potential up to linear order. For simplicity we take this po-
tential to have the form V (r) = eE · r, implying a uniform
electric field, which corresponds to the overwhelming ma-
jority of experimental setups. The case of inhomogeneous
systems, including systems in inhomogeneous electric fields,
entails additional subtleties which we postpone for later con-
sideration [85–88]. Adding an electric field to the Hamiltonian
implies a correction to the function g, which can then be
written as g = g0 + gE , where g0 was found in the previous
section, and

∂gE

∂t
+ i

h̄
[H0, gE ] = − i

h̄
[V, g0]. (21)

The notation gE reflects the fact that eventually it is the electric
field that appears in the final expressions, rather than the
electrostatic potential. For gE we find explicitly

gE = − i

h̄

∫ ∞

0
dt ′′e−iH0t ′′/h̄[V, g0(t − t ′′)]eiH0t ′′/h̄. (22)

The function gE is off diagonal in the momentum as well as in
the band index. We solve Eq. (22) by introducing Markovian
approximation which reads g0(t − t ′′) ≈ g0(t ), whereupon in
the frequency domain we obtain

gE = 1

2π i

∫ ∞

0
dεGR

0 (ε)[V, g0]GA
0 (ε), (23)

and in the commutator, we should use Eq. (18) as a functional
of the equilibrium distribution function f0(ε) to fulfill the
linear response.

The kinetic equation for the disorder-averaged density ma-
trix 〈ρ〉 is now modified to

∂〈ρ〉
∂t

+ i

h̄
[H0, 〈ρ〉] + J0(〈ρ〉) = − i

h̄
[V, 〈ρ〉] − JE (〈ρ〉),

(24)
with the collision integral JE (〈ρ〉) defined as

JE (〈ρ〉) = i

h̄
〈[U, gE ]〉. (25)

Equation (24) is one of the main results of this work. In con-
trast to Luttinger’s approach [62], we have taken the impurity
average of the (reduced) density matrix first and reduced the
quantum Liouville equation to a tractable kinetic equation
for the disorder-averaged density matrix. Since the impurity
average restores translational periodicity (in a noninteracting
system), this enables us to work with only the k-diagonal part
of the density matrix, which significantly reduces the compu-
tational effort. The most important feature is the presence of
the electric-field correction to the collision integral equation
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(25), which was not discussed in Ref. [50]. We note also
that Eq. (23) was used in a different but equivalent form in
a previous paper [89] in order to calculate side-jump effects in
a system with extrinsic spin-orbit coupling. In this paper, we
will focus on systems with intrinsic spin-obit coupling.

As we show below, the electric-field correction to the colli-
sion integral in Eq. (25) with the off-diagonal density function
as given in Eq. (23) will provide results in agreement with pre-
vious calculations based on diagrammatic perturbation theory
[68,90]. The Markovian approximation is indispensable here
in order to obtain agreement with diagrammatic approaches.
Specifically, Eq. (22) can be solved using two similar ap-
proximations. One is the Markovian approximation, which is
tantamount to setting g0(t − t ′′) → g0(t ); the alternative is to
evolve g0 in time from t − t ′′ to t using the band Hamiltonian
H0 of the clean system. Only the Markovian approximation
leads to exact agreement with diagrammatic results.

C. Kinetic equation and linear response

When Eq. (24) is expressed in the crystal momentum rep-
resentation, we obtain the quantum kinetic equation [83]

∂ fk

∂t
+ i

h̄
[H0k, fk] + J0( fk) = eE

h̄
· D fk

Dk
− JE ( fk). (26)

We have written the matrix elements of 〈ρ〉 in this represen-
tation as fk. We refer to fk henceforth as the density matrix,
noting that it has matrix elements connecting different bands,
although the band index n has not been written explicitly. The
covariant derivative D fk

Dk = ∂ fk

∂k − i[Rk, fk].
To solve Eq. (26), the density matrix is separated into a

band-diagonal and a band-off-diagonal part; namely, we write
fk = nk + Sk. The band-diagonal term nk represents the frac-
tion of carriers in a specific band and is essentially the solution
of the ordinary Boltzmann equation, while Sk contains the
effect of interband coherence, or band mixing. All our effort
in recovering the semiclassical theory consists of eliminating
Sk. The effective Boltzmann equation that we shall derive is
simply what is obtained for nk once all references to Sk have
been eliminated. Fortunately, as we recapitulate below, the

solution for Sk in an electric field is relatively simple, making
it straightforward to express expectation values in terms of nk

alone.
The equilibrium density matrix is band diagonal, its ele-

ments represented by the Fermi-Dirac distribution for each
band nFD(εm

k ). In an electric field one may expand to linear
order f mn

k = nFD(εm
k )δmn + f mn

Ek , with corresponding expres-
sions for nEk and SEk. The kinetic equation is split into two
coupled equations for nEk and SEk, whose solution, based on
an expansion in the small parameter h̄/(εF τ ), is explained
in detail in Ref. [50]. It was shown that nEk starts at order
−1 in this small parameter, since it is proportional to the
scattering time τ , while SEk starts at order 0. Consequently,
the subleading correction to nEk, referred to as n(0)

Ek , is also
required.

To leading order in h̄/(εF τ ), the diagonal part reads

[
J0

(
n(−1)

E

)]m

k = eE
h̄

· ∂nFD
(
εm

k

)
∂k

, (27)

where the Born approximation collision integral is

[J0(nE )]m
k = 2π

h̄

∑
m′,k′

〈
U mm′

kk′ U m′m
k′k

〉(
nm

Ek − nm′
Ek′

)
δ
(
εm

k − εm′
k′

)
.

(28)

The solution of Eq. (27) is in general rather complicated
[91]. For a system with isotropic dispersion it reduces to the
simple form

nm(−1)
Ek = τm

p

eE
h̄

· ∂εm
k

∂k

∂nFD
(
εm

k

)
∂εm

k

, (29)

where the transport time τm
p is defined as

1

τm
p

= 2π

h̄

∑
m′,k′

〈
U mm′

kk′ U m′m
k′k

〉
[1 − cos(θk′ − θk)]δ

(
εm

k − εm′
k′

)
.

(30)
The solution for S(0)

Ek takes the simple form [50]

S(0)mm′
Ek = h̄(D + D′)mm′

Ek

i
(
εm

k − εm′
k − iη

) (31)

with the intrinsic and anomalous driving terms [50]

Dmm′
Ek = ie

h̄
E · Rmm′

k

[
nFD

(
εm

k

) − nFD
(
εm′

k

)]
, (32)

D′mm′
Ek = −π

h̄

∑
m′′,k′

〈
U mm′′

kk′ U m′′m′
k′k

〉{(
nm′

Ek − nm′′
Ek′

)
δ(εm′k − εm′′k′ ) + (

nm
Ek − nm′′

Ek′
)
δ(εm′′k′ − εmk)

}
. (33)

Since SEk starts at zeroth order in the parameter h̄/(εF τ ),
we also require the subleading term n(0)

Ek , which is found from
the equation[

J0
(
n(0)

E

)]m

k = −[
Jsk

(
n(−1)

E

)]m

k − [JE (nFD)]m
k , (34)

where the right-hand side acts as the driving term, whose
constituents will be explained shortly. Solving this equa-
tion will yield two different contributions to the subleading
diagonal density matrix n(0)

Ek , which we write as n(0)
Ek =

n(sk)
Ek + n(sj)

Ek . Although both n(sj)
Ek and n(sk)

Ek are of zeroth

order in h̄/(εF τ ), they are parametrically different with
respect to magnetization and Fermi energy, as we will
see later on. We can solve for these two terms separately
as follows.

The contribution n(sk)
Ek stems from D′ and is associated with

skew scattering in the semiclassical theory. It is solved in an
analogous manner to Eq. (27); namely, the driving term is
found by substituting Eq. (31) into a collision integral of the
form of Eq. (28), obtaining

J0
[
n(sk)

E

] = −[
Jsk

(
n(−1)

E

)]m

k , (35)
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which can be solved for n(sk)
Ek using the standard techniques of

Boltzmann theory [91]. The driving term in this equation can
be written explicitly as a function of the leading-order density
matrix n(−1)

Ek as

[
Jsk

(
n(−1)

E

)]m

k = 2π2

h̄

∑
m′m′′nk′k′′

Im

[〈
U mm′′

kk′ U m′m
k′k

〉〈
U m′′n

k′k′′ U nm′
k′′k′

〉
(
εm′′

k′ − εm′
k′

)
]{(

nm′(−1)
Ek′ − nn(−1)

Ek′′
)
δ
(
εm′

k′ − εn
k′′

) + (
nm′′(−1)

Ek′ − nn(−1)
Ek′′

)
δ
(
εn

k′′ − εm′′
k′

)}

× δ
(
εm′′

k′ − εm
k

) − 2π2

h̄

∑
m′m′′nk′k′′

Im

[〈
U m′′m′

kk′ U m′m
k′k

〉〈
U mn

kk′′U nm′′
k′′k

〉
(
εm

k − εm′′
k

)
]

× {(
nm′′(−1)

Ek − nn(−1)
Ek′′

)
δ
(
εm′′

k − εn
k′′

) + (
nm(−1)

Ek − nn(−1)
Ek′′

)
δ
(
εn

k′′ − εm
k

)}
δ
(
εm′

k′ − εm′′
k

)
, (36)

and we recall that n(−1)
Ek was found in Eq. (29).

The second contribution to the driving term in Eq. (34) is due to the electric-field correction of the collision integral JE acting
on the equilibrium distribution function. Since this contribution is associated with side-jump scattering in the semiclassical
theory, we will refer to it as n(sj)

Ek . To determine n(sj)
Ek , we need to solve the equation

J0
[
n(sj)

E

]m

k = −[JE (nFD)]m
k . (37)

In the crystal momentum representation the electric-field correction to the collision integral takes the form

[JE (nFD)]m
k = 2π

h̄

∂nFD(εm
k )

∂εm
k

eE ·
∑
m′k′

〈U mm′
kk′ U m′m

k′k 〉[Rm′m′
k′ − Rmm

k

]
δ
(
εm′

k′ − εm
k

)

+ 2π

h̄

∂nFD(εm
k )

∂εm
k

eE ·
∑
m′k′

Im
{〈[

(∇k + ∇k′ )U mm′
kk′

]
U m′m

k′k

〉}
δ
(
εm′

k′ − εm
k

)
, (38)

where the derivatives act only on U mm′
kk′ . This equation should

be compared with the side-jump velocity calculated from a
coordinate shift introduced in Ref. [81]. The balance between
two collision integrals, as stated in Eq. (37), provides the
necessary information to calculate a new subleading density
function n(sj)

E that in the semiclassical language [92] is inter-
preted as an anomalous distribution due to coordinate shift of
the scattered particle after many collisions.

IV. RECOVERING THE SEMICLASSICAL THEORY

In this section we decompose the kinetic equation into
a part representing carrier dynamics and a part repre-
senting the distribution, which is found from a modified
Boltzmann equation. Since the equation of motion for the
carrier wave vector, yielding h̄k̇ = −eE, follows immedi-
ately from the operator commutator [p,V (r)], the bulk of
our effort is devoted to finding the disorder-averaged ve-
locity, which will yield the time evolution of the carrier
position ṙn. The prescription for recovering the semiclas-
sical theory from the quantum kinetic equation proceeds
as follows:

(i) Determine the velocity expectation value as the oper-
ator trace Tr(ṙ f ), where ṙ = i

h̄ [H, r] represents the matrix
elements of the velocity operator. In the crystal momentum
representation these are given by the covariant derivative ṙ =
1
h̄

DH
Dk .
(ii) Reduce the trace to a form in which only band-diagonal

elements of the density matrix appear. These will contain
either the equilibrium Fermi-Dirac distribution n0k or the cor-
rection to the band-diagonal part nEk, which we recall has
three constituents: nEk = n(−1)

Ek + n(sk)
Ek + n(s j)

Ek .
(iii) The result follows a natural separation into a con-

tribution associated with the equation of motion ṙn and one
associated with the Boltzmann equation.

(iv) For the spin density, we follow similar steps; namely,
we take the trace of the spin operator in the Bloch basis with
the averaged density matrix. We will also find an extrinsic
spin matrix element that accounts for spin rotations during
scattering events.

The Hamiltonian is H = H0 + V (r) + U (r), and since the
last two terms commute with the position operator, they do
not contribute to the velocity operator. The band Hamiltonian
yields

Tr(ṙ f ) → Tr
{ i

h̄
[H0, r] f

}
= 1

h̄

∑
m′,m,k

[
∂εm′

k

∂k
δm,m′ + i

(
εm

k − εm′
k

)
Rmm′

k

]
f m′m
k (39)

=
∑
m,k

vm
k

[
n(−1)m

Ek + n(0)mm
Ek

] + i

h̄

∑
m′,m,k

(
εm

k − εm′
k

)
Rmm′

k S(0)m′m
Ek , (40)
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with the Berry connection Rmm′
k = i〈um

k |∇kum′
k 〉. The first term

gives the usual group velocity vm
k = ∇kε

m
k /h̄, which is diago-

nal, while the second term gives a contribution due to band
mixing and is purely off diagonal. We will concentrate on
the second factor or band-mixing velocity. The off-diagonal
density matrix is composed of two terms: an intrinsic one and
an extrinsic one. Let us first consider the intrinsic one. It is

Tr{ṙ f }int = −
∑

m′,m,k

Rmm′
k Dm′m

Ek . (41)

After replacing the driving term Dm′m
Ek by exchanging m →

m′ in the first term, and summing over intermediate states,
the intrinsic contribution can be written as the average of the
transverse velocity

Tr{ṙ f }int = e

h̄

∑
m,k

E × �m
k nFD

(
εm

k

)
(42)

with the Berry curvature


m
k,z = i

[〈
∂um

k

∂kx

∣∣∣∂um
k

∂ky

〉
−

〈
∂um

k

∂ky

∣∣∣∂um
k

∂kx

〉]
. (43)

The extrinsic contribution reads

Tr{ṙ f }ext =
∑
n,m,k

Rnm
k [J ( f )]mn

k . (44)

After some algebra it can be written as

Tr{ṙ f }ext = 〈β〉 =
∑
m,k

n(−1)m
Ek βm

k , (45)

with the function βm
k formally defined as

βm
k = 1

2π h̄

∫ ∞

−∞
dε

〈[
U, GA

0 (ε)[U,R′]GR
0 (ε)

]〉mm

k , (46)

where the prime in R′ indicates that only the band-off-
diagonal matrix elements of the Berry connection enter. In
Eq. (45) we have written directly the electric-field-dependent
correction to the distribution function, since Eq. (44) makes
it obvious that this contribution vanishes when f is replaced
by the equilibrium distribution nFD. This is because, for scalar
scattering as studied in this paper, the equilibrium distribution
causes the entire collision integral to vanish. For computa-
tional evaluations it will be useful to list the explicit equation
for βm

k :

βm
k = π

h̄

∑
n,m′,k′

{[
R′mn

k

〈
U nm′

k,k′ U m′m
k′,k

〉 + 〈
U mm′

k,k′ U m′n
k′,k

〉
R′nm

k

]
δ
(
εm

k − εm′
k′

) − [〈
U mn

k,k′U m′m
k′,k

〉
R′nm′

k′ + 〈
U mm′

k,k′ U nm
k′,k

〉
R′m′n

k′
]
δ
(
εn

k′ − εm
k

)}
. (47)

Note that βm
k is proportional to the disorder strength quantified

here by u2
0, making it first order in h̄/(εF τ ). It represents

a disorder-dependent correction to the semiclassical band
velocity, which is independent of the applied electric field.
Physically, βm

k represents the average value of the random
changes in the carrier velocity that occur every time the carrier
is scattered between bands. Since βm

k has units of velocity and
depends on the disorder potential, we will refer to it as the
extrinsic velocity. Given that βm

k is formally of first order in
h̄/(εF τ ), we are only interested in its product with the leading
term in the distribution function, n(−1)

Ek , so that its overall
contribution to the current is formally zeroth order in disorder.
Moreover, with n(−1)

Ek representing a Fermi surface contribu-
tion, the net effect of βm

k can be thought of as a random
interband walk on the Fermi surface. Interestingly, βn has the
same mathematical form as the Born approximation scattering
term J0, except the band-off-diagonal elements of R appear
instead of nk. The presence of only the band-off-diagonal
matrix elements of R ensures that βm

k is gauge covariant. In
the examples we study below we find that βm

k is nonzero in
systems in which time-reversal symmetry is broken by, e.g.,
a magnetization. It is similar to the side jump appearing in
Ref. [81], although we stress that our approach makes no
reference to any coordinate shifts, the formal position operator
is identical to the physical position operator, and the Berry
curvature appearing in the semiclassical equations of motion
below is the curvature for the clean system.

Philosophically, the approach we have adopted in this pa-
per entails a change in one’s point of view, according to

which the semiclassical equations now describe carrier prop-
agation averaged over many disorder scattering events. The
carrier undergoes transitions between bands as it scatters, and
its trajectory can be determined by averaging over impurity
configurations.

Since all contributions to the current density are now ex-
pressed in terms of the distribution function (the equilibrium
as well as the leading and subleading terms in an electric
field), we are able to write the semiclassical equations of
motion as

ṙm = 1

h̄

∂εm
k

∂k
− k̇m × �m

k + βm
k , (48)

h̄k̇m = −eE. (49)

The distribution function is found from the Boltzmann
equation, with the caveat that we require both the leading-
and subleading-order terms in the disorder strength. The
procedure is as follows. First the leading-order term in the
distribution function n(−1)

Ek is found from

J0
[
n(−1)

E

]m

k = eE
h̄

· ∂nFD
(
εm

k

)
∂k

, (50)

while the subleading correction n(0)
E is given by

J0
[
n(0)

E

]m

k = −[
JE (nFD)

]m

k − Jsk
[
n(−1)

E

]m

k , (51)
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where the left-hand side is the quantity to be found and the
right-hand side plays the role of a driving term. Finally, we

are able to write the full expectation value of the current in
terms of semiclassical quantities

〈 j〉 = (−e)
∑
mk

{
1

h̄

∂εm
k

∂k

[
n(−1)m

Ek + n(sk)m
Ek + n(s j)m

Ek

] +
(

eE
h̄

× �m
k

)
nFD

(
εm

k

) + βm
k n(−1)m

Ek

}
. (52)

Thus, in order to recover the quantum mechanical result for
coherent scattering off an external potential, one needs to
consider disorder-induced changes both in the distribution
function, up to order zero in the disorder potential, and in
the carrier dynamics, in the form of an extrinsic velocity. We
have shown that disorder affects not only the state occupation
but also the semiclassical equations of motion, generating
a correction to the velocity that accounts for band mixing
mediated by disorder, in addition to the intrinsic band-mixing
effects mediated by the Berry curvature. Referring to Sec. III
and recalling that the semiclassical theory was derived by
eliminating Sk, we note that the coupling between nk and Sk

represents spin-charge coupling, which essentially involves a
feedback effect of spin dynamics onto charge dynamics. This
is to be expected in spin-orbit coupled systems, to which our
theory finds a direct application: On the one hand, as the
particle accelerates, its wave vector changes, bringing with it
a spin rotation; on the other hand, spin rotations in turn cause
changes in the wave vector and therefore in the trajectory of
the particle. In the future, by adding spatial dependence ex-
plicitly, the full equations describing coupled spin and charge
diffusion can be derived, in analogy with Ref. [80]. We em-
phasize, finally, that since the denominator in Sk involves the
energy difference between bands, the bands are assumed to
be nondegenerate (although the energy difference can be very
small). The case of fully degenerate bands requires further
development.

Let us consider the expectation value of the spin operator
in the presence of an electric field

Tr{s f } =
∑
m,k

smm
k nm

Ek +
∑
n,m,k

snm
k Smn

Ek , (53)

where snm
k represent the matrix elements of the spin operator.

Writing explicitly the off-diagonal terms of the density ma-
trix in the average of the spin operator, we can separate the
intrinsic and extrinsic contributions as

〈s〉int =
∑
n,m,k

h̄snm

i
(
εm

k − εn
k

) Dmn
Ek, (54)

〈s〉ext =
∑
n,m,k

h̄snm
k

i
(
εm

k − εn
k

) D′mn
Ek . (55)

If we define the quantity

T nm
k = h̄

i
(
εn

k − εm
k

) snm
k , (56)

the intrinsic contribution can be rewritten as

〈s〉int = ie

h̄

∑
m,k

[T k, E · R′
k]mnFD

(
εm

k

)
,

where we only have to take off-diagonal components inside
the commutator. This enables us to define an intrinsic spin
expectation value as

sint
k = ie

h̄
[T k, E · R′

k]m. (57)

The extrinsic part can be written as

〈s〉ext =
∑
n,m,k

T nm
k

[
J0

(
n(−1)

E

)]mn

k . (58)

This is mathematically analogous to the expression for the
extrinsic velocity equation (44), and using a similar manip-
ulation, we can reexpress it as

〈s〉ext
bm =

∑
m,k

n(−1)m
Ek γmm

k , (59)

where n(−1)
Ek is the leading-order distribution function and we

introduce the new extrinsic spin γm
k given by

γm
k = 1

2π h̄

∫ ∞

−∞
dε

〈[
U, GA

0 (ε)[U,T ]GR
0 (ε)

]〉mm

k . (60)

In exact analogy with βm
k , since the Born approximation scat-

tering term vanishes when the distribution function is replaced
by the Fermi-Dirac distribution, γm

k also vanishes in equi-
librium in the presence of scalar scattering. This quantity
represents spin rotations during scattering events. Again, the
quantity T only has interband matrix elements. Explicitly, γm

k
is evaluated as

γmm
k = π

h̄

∑
n,m′,k′

{[
T m,n

k

〈
U nm′

k,k′ U m′m
k′,k

〉 + 〈
U mm′

k,k′ U m′n
k′,k

〉
T n,m

k

]
δ
(
εm

k − εm′
k′

)

− [〈
U mn

k,k′U m′m
k′,k

〉
T n,m′

k′ + 〈
U mm′

k,k′ U nm
k′,k

〉
T m′,n

k′
]
δ
(
εn

k′ − εm
k

)}
. (61)
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In analogy to the above, we can write a modified intraband spin matrix element as

smm → smm
k + ie

h̄
[T k, E · R′

k]m + γm
k . (62)

The first factor is the bare matrix element of the spin operator in band m, while the remaining two represent nonequilibrium
corrections, the first being intrinsic and the second extrinsic. We note that γk and βk are mathematically very similar and both
contribute at the Fermi energy. The intrinsic contribution to the spin density from the Fermi sea appears in the second term in
Eq. (62). The full semiclassical expression for the spin density is given by

〈s〉 =
∑
mk

{
sm

k

[
nFD

(
εm

k

) + n(−1)m
Ek + n(sk)m

Ek + n(s j)m
Ek

] + ie

h̄
[T k, E · R′

k]mnFD
(
εm

k

) + γm
k n(−1)m

Ek

}
. (63)

V. LINEAR RESPONSE FAMILY TREE

In closing the methodological discussion we remark briefly
on the relationships between the various linear response the-
ories. The most common strategy for solving Eq. (11) in an
electric field is via Kubo linear response theory, which is
discussed in detail in many textbooks [93]; hence we only
dwell upon its fundamental aspects. Briefly, the Hamiltonian
is decomposed as H = (H0 + U ) + V , and the nonequilib-
rium part of the density matrix is likewise singled out as
ρ = ρ0 + ρE . Then in linear response one can write

∂ρE

∂t
+ i

h̄
[H0 + U, ρE ] = − i

h̄
[V, ρ0]. (64)

This equation is solved immediately to yield

ρE = 1

2π i

∫ ∞

0
dε[GR(ε)V GA(ε), ρ0], (65)

where GR, GA are the retarded and advanced Green’s func-
tions, respectively, for the disordered system

GR(ε) = − i

h̄

∫ ∞

0
dte−i(H0+U )t/h̄eiεt/h̄e−ηt . (66)

We refrain from writing out the energy dependence in full.
Note that the Green’s functions have not been averaged over
disorder configurations at this stage. To obtain the customary
Kubo formula, one must trace over the velocity operator and
average over impurity configurations

〈 j〉 = − e

2π i

∫ ∞

0
dε tr 〈v[GRV GA, ρ0]〉. (67)

The procedure is standard, so we do not cover it here in detail;
the purpose of this description is illustrative. The important
point to notice is that the Kubo formula is the integral ap-
proach to solving the Liouville equation, whereas the kinetic
equation we follow in this paper represents the differential
approach, or integrodifferential in view of the complex scat-
tering term. The Keldysh theory follows a similar path, and
although it takes as its starting point a series of Green’s
functions, its ultimate origin lies in the quantum Liouville
equation. The Keldysh theory is formally nonlocal in time,
although in the vast majority of practical applications the non-
locality is removed and the Keldysh Green’s function, which
is analogous to the density matrix employed in this paper,
depends only on the difference in time variables. Thus, for the
purposes of the present comparison, the quantum Boltzmann
equation derived in the Keldysh theory is indistinguishable

from the quantum kinetic equation derived from the density
matrix. The Kubo formula, Keldysh theory, and quantum
kinetic equation may be regarded as holistic approaches, in
which both the carrier dynamics and the carrier distribution
are accounted for in the density matrix (or Keldysh Green’s
function), and the net result is the expectation value of a
physical observable. In contrast, the semiclassical theory in-
volves a separation between the carrier dynamics and carrier
distribution, which can help to build an intuitive picture of
the underlying physics. The relationship between the different
approaches is summarized in the family tree of Fig. 1. The
most important observation in this context is the common
origin of all linear response theories, which reinforces the
expectation that they should all lead to the same results.

VI. APPLICATIONS

We now turn to applications of the theory, which are in-
tended to illustrate the way the extrinsic velocity, extrinsic
spin terms, and additional scattering terms in the Boltzmann
equation appear in the explicit evaluations of physical ob-
servables for model systems. In particular, we emphasize the
relationship between these various contributions and the anal-
ogous quantities appearing in diagrammatic theories, which
enables us to reconcile the semiclassical and diagrammatic
results. Our focus will be on topological insulators [94], where
we discuss the anomalous Hall effect as well as spin-orbit
torques, and compare the semiclassical results with previous
work.

A. Anomalous Hall effect in topological insulators

In this section we calculate the anomalous Hall conductiv-
ity in topological insulators. The anomalous Hall conductivity

FIG. 1. Family tree of linear response theories.
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is basically expressed in terms of four contributions: an in-
trinsic contribution that takes into account the whole Fermi
sea of the system, an extrinsic contribution due to the extrinsic
velocity βm

k at the Fermi surface, a side-jump-like contribution
at the Fermi energy due to an electric-field correction to the
collision integral, and a skew scattering contribution.

The Hamiltonian that describes low-energy excitations in
the surface of three-dimensional (3D) topological insulators
reads

H = h̄vF (kxσy − kyσx ) + Mσz, (68)

where vF is the effective Fermi velocity and σi are Pauli
matrices, while M is the magnetization. The eigenvalues are

ε±
k = ±

√
h̄2v2

F k2 + M2, where ± labels the conduction or
valence band, and the eigenstates are

|u±
k 〉 = 1√

2

(
e−iθk

√
1 ± ξk

±i
√

1 ∓ ξk

)
, (69)

with a parameter ξk = M/λk with λk =
√

h̄2v2
F k2 + M2 and

θk = arctan(ky/kx ).
From the eigenstates we determine the Berry connection

vector Rmm′
k = i〈um

k |∇kum′
k 〉. We decompose this vector into

a diagonal and an off-diagonal contribution, namely, Rk =
Rd

k + Rod
k , with

Rd
k = θ̂

2k
(σ0 + ξkσz ), (70)

Rod
k = h̄vF

2λk
(σx θ̂ − ξkσyk̂). (71)

We have defined a unit vector parallel to momentum k̂ =
(cos θk, sin θk) and a unit vector perpendicular to momentum
θ̂ = (− sin θk, cos θk). Also, these vectors are related as θ̂ =
ẑ × k̂.

Let us start by calculating the intrinsic contribution to the
Hall conductivity. It reads

σ int
yx = e2

h̄

∑
m,k


m
k,znFD

(
εm

k

)
. (72)

Explicit evaluation for a topological insulator gives the Berry
curvature


±
k,z = ∓ξk

(
1 − ξ 2

k

)
2k2

. (73)

After a straightforward integration we find the intrinsic con-
tribution to the Hall conductivity to be

σ int
yx = e2

4π h̄

M

εF
. (74)

The extrinsic velocity makes the following contribution to the
anomalous Hall conductivity:

σ ext
yx = − e

Ex

∑
m,k

n(−1)m
Ek βm

k,y. (75)

The leading-order correction to the distribution function is
n(−1)m

Ek = −eτtrE · vm
k δ(εm

k − εF ) with the transport time given

by the expression

1

τtr
= 1

2τ

(
1 + 3ξ 2

k

)
, (76)

with the scattering time defined as 1/τ = πu2
0ρ(εk)/h̄ and the

density of states ρ(εk) = λk/2π h̄2v2
F . The diagonal velocity

is vx = vF (1 − ξ 2
k )1/2 cos θk, and the extrinsic velocity in the

conduction band takes the form

β = σ0
1

τ

h̄vF

λk
ξk

(
1 − ξ 2

k

)1/2
θ̂. (77)

The extrinsic velocity is a transverse velocity since it is
proportional to the unit vector θ̂. After explicit integration we
arrive at the expression

σ ext
yx = e2

2π h̄

M

εF

(
1 − ξ 2

F

)
(
1 + 3ξ 2

F

) . (78)

Notice that n(−1)m
Ek is inversely proportional to the impurity

density, while the extrinsic velocity β is proportional to the
impurity density. As a result, the overall effect in Eq. (75) is
independent of disorder. The extrinsic velocity βm

k comprises
the effect of disorder on carrier dynamics, namely, it can
be interpreted as an effective velocity of the electron after
many collisions, in contrast to the group velocity, which is a
velocity between collisions. In this sense our extrinsic velocity
can be associated with the side-jump velocity encountered in
previous semiclassical results [92] but with the difference that
βm

k is entirely due to band mixing mediated by the off-diagonal
components of the Berry connection vector and that it is
constructed from a collision integral without introducing any
quantity related to coordinate shift.

As we discussed earlier, there are also two contributions to
the anomalous Hall conductivity related to two different diag-
onal subleading density matrix functions. Let us first calculate
the anomalous Hall conductivity related to the term n(sj)

Ek in the
distribution function. It reads

σ sj
yx = − e

Ex

∑
k

v++
k,y n(sj)++

Ek . (79)

The diagonal velocity reads

v++
k,y = vF

(
1 − ξ 2

k

)1/2
sin θk, (80)

while the correction to the distribution function is

n(sj)++
Ek = 2

h̄vF

λk
ξkδ(εF − ε+

k )

(
1 − ξ 2

k

)1/2(
1 + 3ξ 2

k

) eE · θ̂. (81)

Replacing all elements, we find for the conductivity

σ sj
yx = e2

2π h̄

M

εF

(
1 − ξ 2

F

)
(
1 + 3ξ 2

F

) . (82)

This term doubles the contribution in Eq. (78) due to the
extrinsic velocity, although in this case the effect of disorder
is completely captured by n(sj)

Ek .
In previous semiclassical studies an anomalous distribution

function was introduced as a result of a coordinate shift [92].
In contrast, we have derived n(sj)

Ek from Eq. (37) without any
need for introducing a coordinate shift.
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The contribution to the anomalous Hall conductivity re-
lated to the skew scattering correction to the distribution
function, n(sk)

Ek , reads

σ sk
yx = − e

Ex

∑
k

[
v++

k,y n(sk)++
Ek + v−−

k,y n(sk)−−
Ek

]
. (83)

The diagonal velocities are v±±
k,y = ±vF (1 − ξ 2

k )1/2 sin θk, and

n(sk)
Ek = 3

2

h̄vF

λk
ξk

(
1 − ξ 2

F

)3/2

(
1 + 3ξ 2

F

)2 δ(εF − ε+
k )eE · θ̂σz. (84)

After integration we obtain

σ sk
yx = e2

2π h̄

M

εF

3
(
1 − ξ 2

F

)2

2
(
1 + 3ξ 2

F

)2 . (85)

Adding all the contributions to the Hall conductivity, we get
the final expression

σyx = 4e2

2π h̄

M

εF

[
1 + ξ 2

F(
1 + 3ξ 2

F

)2

]
, (86)

in exact agreement with previous results using the non-
crossing approximation and diagrammatic perturbation theory
[68,75,76,82,92,95]. We note that in Ref. [96] the term JE was
not evaluated explicitly for the scalar part of the scattering
potential. When this is done, the result agrees with Eq. (86).

B. Spin density and spin-orbit torques in topological insulators

In this section we determine the spin density and spin-orbit
torques in topological insulators with an out-of-plane magne-
tization described by the effective Hamiltonian equation (68).
As for the conductivity, the spin density has five contributions:
a dominant contribution from the Fermi surface leading to
the Edelstein effect [97], an intrinsic contribution from the
Fermi sea, a contribution due to the extrinsic spin expectation
value γm

k at the Fermi surface, a side-jump-like contribution
at the Fermi energy due to the electric-field correction to the
collision integral, and a skew scattering contribution.

The leading-order contribution to the spin density is

〈s〉Edel =
∑
m,k

smm
k n(−1)m

Ek . (87)

Using n(−1)m
Ek = −eτtrE · vm

k δ(εm
k − εF ) and

s±±
k,x = ∓(

1 − ξ 2
k

)1/2
sin θk, (88)

s±±
k,y = ±(

1 − ξ 2
k

)1/2
cos θk, (89)

the Edelstein effect contribution to the spin density is

〈s〉Edel = eτE × ẑvF ρ(εF )
1 − ξ 2

F

1 + 3ξ 2
F

. (90)

The fraction of the spin density weighted by the intrinsic
driving term reads

〈s〉int = ieE
h̄

·
∑
nmk

(
T mn

k Rnm
k − Rmn

k T nm
k

)
nFD

(
εm

k

)
. (91)

The dot product is between the electric field and the Berry
connection vector. With the Berry connection

R+−
k,x = − h̄vF

2λk
(sin θk − iξk cos θk), (92)

R+−
k,y = h̄vF

2λ
(cos θk + iξk sin θk) (93)

and the off-diagonal spin expectation values

s−+
k,x = (ξk sin θ + i cos θ ), (94)

s−+
k,y = −(ξk cos θ − i sin θ ) (95)

we get the intrinsic correction to the spin density

〈s〉int = eMh̄vF ρ(εF )

2ε2
F

E. (96)

The extrinsic correction is defined as

〈s〉ext =
∑
m,k

n(−1)m
Ek γm

k , (97)

γ++
k = −σ0

1

τ

h̄

λk
ξk

(
1 − ξ 2

k

)1/2
k̂, (98)

yielding

〈s〉ext = eh̄vF ρ(εF )M

ε2
F

1 − ξ 2
F

1 + 3ξ 2
F

E. (99)

This extrinsic contribution to the spin density is the counter-
part of the extrinsic velocity contribution in the anomalous
Hall effect. The extrinsic spin γm

k as defined in Eq. (60) is
an interband coherence effect mediated by an effective off-
diagonal spin operator defined in Eq. (56).

The side-jump contribution is given by

〈sx〉sj =
∑

k

s++
k,x n(sj)++

Ek . (100)

Using the spin expectation values above and the density func-
tion given by Eq. (81), we find that the side-jump contribution
to the spin density reads

〈s〉sj = eh̄vF ρ(εF )M

ε2
F

(
1 − ξ 2

F

)
(
1 + 3ξ 2

F

) E. (101)

This term doubles the contribution of Eq. (99). This is the
counterpart of the anomalous distribution function introduced
in the semiclassical theory [92] and also calculated in Eq. (82)
for the anomalous Hall conductivity.

The skew scattering contribution takes the form

〈s〉skew =
∑

k

[
s++

k,x n(sk)++
Ek + s−−

k n(sk)−−
Ek

]
. (102)

Using the diagonal spin expectation values and the distribu-
tion function found in Eq. (84), we find for the skew scattering
contribution to the spin density

〈s〉sk = eh̄ρ(εF )vF ξF

λF

3
(
1 − ξ 2

F

)2

2
(
1 + 3ξ 2

F

)2 E. (103)

This is the counterpart of the skew scattering term in the
anomalous Hall conductivity calculated in Eq. (85).
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Finally, the total spin density of the system then reads

〈s〉 = −eτvF ρ(εF )

(
1 − ξ 2

F

)
(
1 + 3ξ 2

F

) ẑ × E

+ 4eh̄vF ρ(εF )
M

ε2
F

(
1 + ξ 2

F

)
(
1 + 3ξ 2

F

)2 E. (104)

The spin-orbit torque is defined as τ = (2M/h̄)m × 〈s〉, where
m is a unit vector in the direction of magnetization that we
took here as m = ẑ. Restoring the factor of h̄/2 in the spin
matrix elements and substituting the density of states ρ(εF ) =
εF /2π h̄2v2

F , the spin-orbit torque is finally given by

τ = −eτεF Mρ(εF )

2π h̄2vF

(
1 − ξ 2

F

)
(
1 + 3ξ 2

F

)m × (ẑ × E )

+ 2e

π h̄vF

M2

εF

(
1 + ξ 2

F

)
(
1 + 3ξ 2

F

)2 m × E, (105)

in agreement with previous results [90,98]. A peculiarity of
topological insulators is that the velocity operator is directly
related to the spin operator as v̂ = −vF ẑ × σ. Then the current
density is 〈 j〉 = −e〈v̂〉, which implies that the anomalous Hall
conductivity and the spin density are related by σyx = Jy/Ex =
evF 〈sx〉. This fact can indeed be verified from Eqs. (86) and
(104).

VII. CONCLUSIONS AND OUTLOOK

We have demonstrated that the semiclassical dynamics of
electrons in disordered solids can be determined using linear
response theory by taking the density matrix and quantum
Liouville equation as the starting point. This results in a
disorder-dependent correction to the semiclassical equation
of motion for the carrier position, which we have termed
the extrinsic velocity βm

k and which accounts for the effect

of disorder on the carrier velocity after many collisions. In
analogy to the extrinsic velocity, an extrinsic correction to the
spin expectation value γm

k is also present, which accounts for
spin rotations during scattering events. This is accompanied
by an intrinsic, electric-field-dependent nonequilibrium cor-
rection to the spin expectation value, which is analogous to
the anomalous velocity present in the semiclassical equations
of motion. At the same time, the Boltzmann equation must
be solved up to subleading order in the disorder strength.
The collision integral in the Boltzmann equation includes an
electric-field-dependent correction which is analogous to the
side-jump scattering term, as well as an additional correction
analogous to the skew scattering term in systems with intrinsic
spin-orbit interactions. We have applied this theory to describe
the anomalous Hall effect and spin-orbit torques in topo-
logical insulators, obtaining exact agreement with quantum
mechanical results using the Kubo formula.

The general prescription we have formulated in this paper
can be straightforwardly generalized to include extrinsic spin-
orbit and magnetic impurity scattering, as well as magnetic
fields, which, however, require more effort since the descrip-
tion relies on the Wigner function. Our prescription paves the
way towards a systematic semiclassical picture encompassing
a host of effects that conventionally lie beyond the purview of
semiclassical theory: spin relaxation, disorder effects beyond
the Born approximation, such as weak localization, electron-
electron interactions in the mean-field approximation, Kondo
physics in magnetic systems, and the nonlinear electromag-
netic response.
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