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As a novel topological state, a higher-order topological insulator has attracted enormous interest, which in
d spatial dimensions has gapless boundary states at (d-n) dimensions (integer n is larger than 1). Until now,
merely few two-dimensional (2D) materials have been identified as higher-order topological insulators and their
experimental confirmations are still absent. Here we propose a universal strategy of antidot engineering to realize
second-order topological insulators (SOTIs) in 2D Dirac materials. Based on symmetry analysis, tight-binding
model, and first-principles calculations, we demonstrate SOTIs in antidot-decorated Xene (X=C, Si,and Ge) by
displaying its finite bulk quadrupole moment, weak topological edge states, and in-gap topological corner states.
An inherent connection is established for the existing various mechanisms of the SOTIs, including quadrupole
polarization, filling anomaly, and generalized Su-Schrieffer-Heeger model on a Kekulé lattice. The robustness of
topological corner states of the SOTIs against edge perturbations and bulk disorders is explicitly demonstrated,
rendering our strategy appealing to experimental realization of topological corner states.
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Introduction. Recently, a new type of topological insulator,
the two-dimensional second-order topological insulator (2D
SOTI), has been proposed and has attracted considerable at-
tention [1–18]. The 2D SOTI can exhibit 1D gapped edge
states and 0D in-gap corner states. However, very few 2D elec-
tronic materials have been reported to host SOTIs [9,10,12].
Experimental confirmation of the corner states of an SOTI in
electronic systems is still absent [15]. It is therefore of extreme
importance to find a generalized and experimentally achiev-
able proposal to produce SOTIs in 2D electronic materials.

Due to their rich and exotic properties, 2D Dirac mate-
rials such as Xenes (X = C, Si, and Ge) [19], carbon and
boron allotropes [20], and metal-organic frameworks [21],
etc. have been widely explored [19–27], and many of them
have been synthesized successfully in experiments [19,20,22–
24]. In the most typical case, the linear Dirac dispersion
can be interpreted coming from a pair of spinless pz-like
orbitals that reside separately on honeycomblike lattices
(planar or buckled). This feature can actually be employed
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to introduce higher-order topology in Dirac materials, which
is illustrated in Fig. 1. The pair of spinless pz-like orbitals
above can induce a connected elementary band representation
(EBR) [28–32] whose corresponding Wyckoff positions are
at the honeycomb lattice sites [29,30]. If we extend the cell
to a supercell such as a

√
3 × √

3 supercell [Fig. 1(a)], the
pristine lattice sites and orbitals on them will not be at the
maximal Wyckoff positions [29,30] of the supercells. Thus,
the equivalent and repeating pz-like orbitals will induce a
connected composite band representation (CBR) [29,30], cor-
responding to the folded energy bands [Fig. 1(b)]. As the
orbitals mentioned above are all at the nonmaximal Wyckoff
positions, the obtained CBR must equal a (direct) sum of some
EBRs whose corresponding Wyckoff positions are maximal
positions in the supercell. In addition, we can add a pertur-
bation that maintains the symmetry of honeycomblike lattices
but expands the primitive cell. The symmetry-preserving per-
turbation may split the connected CBR into some separated
EBRs. If the Fermi level (EF) resides in the band gap be-
tween these EBRs, the introduced perturbation will shift the
Wannier function centers (also charge centers) of the pristine
honeycomblike system and result in an obstructed atomic
limit (OAL) [29,30,33] [Fig. 1(a)], which may give rise to
symmetry-protected topological corner states [1,2,13,14]. In
Fig. 1(c) and Fig. 1(d), we consider the intersublattice in-
tervalley scattering as an example of symmetry-preserving
perturbations that can be characterized as a Kekulé-like hop-
ping texture in real space [Fig. 1(a)] [34]. By tuning the
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FIG. 1. (a) Lattice structure of a honeycomb lattice with a
Kekulé-like hopping texture. Thick and thin bonds represent the in-
tracellular (γ ) and intercellular (γ ′) hopping, respectively. The gray
rhombus is the unit cell that is identical to the

√
3 × √

3 supercell
of the pristine unit cell with six nonequivalent lattice sites (denoted
in magenta). The maximal Wyckoff positions in the supercell are
indicated in black, red, and cyan blue. The green and blue arrows
represent the shift of the Wannier function center of the occupied
bands from case (b) to case (c) and case (d), respectively. Energy
band structure of a honeycomb lattice with an alternating hopping
texture: (b) γ /γ ′ = 1.0, i.e., graphenelike case; (c) γ /γ ′ = 1.2, i.e.,
trivial case; and (d) γ /γ ′ = 0.8, i.e., nontrivial case. The Wannier
function centers of the occupied bands in cases (b), (c), and (d) are
at the positions labeled in magenta, black, and red, respectively. The
cases (c) and (d) are in two different OALs.

perturbation strength (difference in hopping amplitudes), two
different OALs are obtained (for details, see Supplemental
Material [35]). The case in Fig. 1(d) is in fact a SOTI.

To achieve this general strategy in real materials, we pro-
pose that antidot engineering, constructing regularly spaced
holes in the materials [36,37], is a powerful route to induce
higher-order topology in 2D Dirac materials. It is a type of
experimentally realized functional means in 2D honeycomb-
like Dirac materials [38–41]. We theoretically predict the
2D-Xene (X = C, Si, and Ge) antidot lattices (XALs) as an
excellent material platform for 2D SOTIs with large band
gaps (up to ∼1.78 eV), in which the shape and arrangement
of the holes are similar to those of the experimentally de-
signed system [39]; 2D SOTIs in the proposed XALs can
be rationalized well not only by nonzero quadrupole polar-
ization [1,2] and the filling anomaly of the OAL [13,14] but
also by the 2D generalized Su-Schrieffer-Heeger models {the
Kekulé distorted hexagonal lattice (KDHL) model [9]}. The
inherent connections between various underlying SOTI mech-
anisms are established in the XALs. Using first-principles and
tight-binding (TB) model calculations along with symmetry
analysis, we show a spinless charge fractionalization of e/2 at
the corner states, protected by the C6 or 3̄ [C3 + inversion(I )]
symmetry, as well as weak topological edge states emerging in
the XAL band gap. The finite-size effect and the robustness of

these corner states against edge perturbations and bulk disor-
ders are explicitly demonstrated. Our results will facilitate the
experimental characterization of the SOTI phase in 2D-Xene
and suggest that antidot engineering could be a promising
strategy to introduce higher-order topology to the 2D Dirac
materials.

Results and Discussion. The proposed XAL is simply a
triangular array of hexagonal holes in the Xene (X = C, Si,
and Ge) sheet, as illustrated in Fig. 2(a). Similar antidot
lattices in graphene and silicene have been fabricated in ex-
periments [38–41]. The edge X (X = C, Si, and Ge) atoms
of the holes are passivated by hydrogen atoms. Each type
of the XAL is denoted by the hole radius R and the wall
width W as [R, W]. The R is calculated by Nremoved = 6R2

(Nremoved is the number of the removed X atoms in one lat-
tice cell). As an example, Fig. 2(a) shows the [R, W] = [1,
2] graphene antidot lattice (GrAL). The previous work has
shown that, only with even W, the patterning of periodic holes
of R = 1 can open a substantial band gap around the EF in
the GrAL [42] and silicene antidot lattice (SiAL) [37]. Thus,
XALs with R = 1 and W = 2, 4, 6, 8 are discussed in this
letter. The GrAL and SiAL/germanene antidot lattice (GeAL)
have P6/mmm (No. 191) and P-31m (No. 162) space groups,
respectively. The lattice constants of the XALs obtained from
the first-principles calculations are nearly unchanged com-
pared with those of the corresponding Xene supercells (see
Supplemental Material [35]). The trend is consistent with
previous work [34,36,37].

For XALs with R = 1 and even W, the patterning of peri-
odic holes will result in a smaller Brillouin zone (BZ) than that
of pristine Xene in such a way that both points K and K’ are
translated into the origin (� point) within the new “folded”
BZ. Figure 2(b) shows the example of the first BZs for the
1 × 1 Xene and the [R = 1, W = 2] XAL. The latter has the
same first BZ of

√
12 × √

12 supercells of Xene.
As shown in Fig. 2(c), one observes a direct band gap of

∼1.78 eV at the � point and a twofold degenerate conduction
band minimum and valence band maximum forming at the
folded Dirac points. Similar band gaps also appear in other
GrALs, SiALs, and GeALs in Fig. S1 in the Supplemental
Material [35]. The opening of the energy gap in the XALs
is mainly due to the mixing of Dirac points at K and K’
as well as the intersublattice intervalley scattering [34]. As
shown in densities of the states (DOSs) in Fig. 2(c), the
low-energy bands of GrAL mainly consist of pz orbitals that
have the same constituents as the Dirac states of the pristine
graphene, implying that these come from the Dirac states of
the pristine graphene. Similar low-energy band structures can
also be found in SiAL and GeAL {Figs. S1(a) and S1(b) in the
Supplemental Material [35]}. Since the spin-orbit coupling is
very small in the low-energy bands for the XALs [Fig. S1(a) in
the Supplemental Material], it is neglected in the calculations
and the system can be effectively treated as spinless in the sub-
sequent analysis. Because of the similar electronic structures
of these XALs near the EF, we will focus on the [R = 1, W =
2] GrAL in following.

As displayed in Fig. 2(d), the relatively flat edge state ap-
pears in the middle of the band gap of the semi-infinite plane
of the GrAL along the armchair edge, which also emerges
in the SiAL and the GeAL [Figs. S2(a) and S2(d) in the
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FIG. 2. (a) Crystal structure of the [R = 1, W = 2] GrAL. The brown and orange balls stand for C and H atoms, respectively. (b) BZs. The
�b1,2 and �bA

1,2 are reciprocal vectors for the 1 × 1 Xene and the [R = 1, W = 2] XAL, respectively. (c) Bulk electronic band structure and DOSs
of the [R = 1, W = 2] GrAL. The curves in the left panel correspond to the bands without spin-orbit coupling. (d) The projected spectra for
the armchair edge of a semi-infinite sheet of the [R = 1, W = 2] GrAL shown in (e). (e) The semi-infinite sheet of the GrAL with an armchair
edge. (f) The total charge densities of the [R = 1, W = 2] GrAL THVBs with an isosurface value of 0.003 e · Å−3. The C6-symmetric unit
cell of the GrAL is illustrated in a gray hexagon and its maximal Wyckoff positions are labeled in black, red, and cyan blue, respectively. The
equivalent KDHL model for low low-energy bands of the GrAL is shown in black solid and dotted lines.

Supplemental Material], demonstrating that the XALs are not
traditional topological insulators. The topological edge or cor-
ner states of a set of occupied bands (without strong or fragile
topology) can be understood by analysis of the connectivity
of the band representations to find the EBRs, which are a
set of subbands induced from placing a certain orbital at a
given Wyckoff position [28–32]. We calculated the irreducible
representations of the little group at the high-symmetry k
points for the occupied bands of the [R = 1, W = 2] GrAL
(Table SII in the Supplemental Material [35]) and marked
the irreducible representations of the three highest valence
bands (THVBs) (plotted in red) in Fig. 2(c), respectively.
The results show that the set of the THVBs corresponds to
an EBR, whose corresponding localized Wannier centers are
at Wyckoff positions of 3c (c − c′′) [red dots in Fig. 2(f)].
The difference between the Wannier function centers of the
THVBs and the atomic sites demonstrates that the THVBs are
in the OAL [29,30]. Thus the set of bands possess symmetric
and localized Wannier functions residing on a different Wyck-
off position than the basis orbitals. The origin of the edge
states can be attributed to the OAL. Intuitively, if one cuts the
GrAL along the line through any of the Wyckoff positions 3c,
exposed Wannier functions will form edge states. For every
k‖ [the k-points in the 1D BZ of the semi-infinite sheet], the
corresponding Zak phase of the low-energy bulk bands along
the direction perpendicular to the edge is numerically evalu-
ated to be π , dictating the presence of 1D edge states [43], in
agreement with the analysis above.

To clearly show the Wannier center of the THVBs, their to-
tal charge densities (

∑
nk |ψnk|2, n ∈ THVBs and k ∈ BZ) are

shown in Fig. 2(f). The charge-density centers, also the Wan-
nier centers of the THVBs, reside on the Wyckoff positions

3c, consistent with the results above. The charge densities
of the THVBs in the GrAL present a regular, approximately
planar structure and are very similar to those of the SiAL
and GeAL [Fig. S3 in the Supplemental Material]. More
interestingly, this type of charge-density distribution can be
effectively treated as the hopping amplitudes of a KDHL
model, whose planar honeycomb-lattice sites are located on
the edge C atoms of the holes, as shown in Fig. 2(f). Due to the
different charge-density distributions between the hexagonal
sublattices, the effective intracellular hopping (γ , dot line) is
distinct from the intercellular hopping (γ ′, solid line). The
previous work has revealed that the KDHL model is in a topo-
logical quadrupole phase when |γ | < |γ ′| and can support a
flat edge state in the armchair case [5–7], which also emerges
in our XALs. Later, we shall see that the low-energy electronic
structure of the XAL is equivalent to that in a nontrivial
KDHL model [|γ | < |γ ′|, the case in Fig. 1(d)].

We now investigate the corner states of the XAL, a hall-
mark of a 2D SOTI. To illustrate the corner charges, we
build open flakes (see Fig. 3 and Figs. S2 and S4) for the
XALs. In Fig. 3, we present results for the GrAL flake
as a representative of the XAL flakes. The appearance of
the corner-localized midgap states indicates the existence
of the fractional corner charges in the materials. As dis-
played in Fig. 3(a), approximately sixfold degenerate states
(blue circles) appear around the EF, whose charge distribu-
tions are all localized around the corners of the flake atoms
[Fig. 3(b)]. Since only half of the corner states are occu-
pied [Fig. 3(a)], an average spinless corner charge e/2 is
obtained. The slight energy splitting of the in-gap corner states
can be ascribed to the finite size effect [10,11] of the flake
built.
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FIG. 3. (a) Discrete energy levels of the hexagonal-shaped [R =
1, W = 2] GrAL flake shown in (b). Six in-gap topological corner
states are shown in blue circles. (b) One hexagonal-shaped [R = 1,
W = 2] GrAL flake, in which the charge distribution of the six in-gap
states is also shown. The isosurface value is set as 0.002 e · Å−3. The
charge distributions are localized at the six corners.

The fractional quantization of the corner charge of 2D
SOTIs protected by crystal symmetry has been attributed to
the mismatched requirements for the number of occupied
electrons which need to simultaneously satisfy irreconcil-
able charge neutrality and the crystal symmetry, named as
“filling anomaly” [13,14]. For spinless or spinful OAL with
time-reversal symmetry (T ), the topological invariants or
the symmetry indicators constructed by Benalcazar et al.
and Schindler et al. can be employed to identify the filling
anomaly arising from corners [13,14]. As defined in their
work, the GrAL belongs to the C6 group and the SiAL and
GeAL belong to the 3̄ group. For the spinless case, the
topological invariants of the C6 and 3̄ groups are χ (6) =
{[M (2)

1 ], [K (3)
1 ]} and χ

(3)
I = {[MI

−], [K (3)
1 ]}, respectively [13].

The invariant [MI
−], for example, indicates the difference in

the number of eigenstates in the occupied bands manifold
of the inversion operation (I) indicated by the superscript

corresponding to eigenvalue −1 (odd parity) at M and �. The
obtained χ (6) = (2, 0) and χ

(3)
I = (2, 0) mean that the GrAL

is in the h(6)
3c primitive generator class, and the SiAL and

GeAL correspond to the h(3̄)
3c primitive generator class [the

corresponding Wyckoff positions 3c are shown in Fig. 2(f)].
These two primitive generators have the same charge fraction-
alization and polarization, implying no net dipole in the plane
and the corner charge fractionalization with e/2 (e) in each π

3
sector for the spinless (spinful) cases, in agreement with the
above DFT results.

In a 2D system with both I and T symmetries, the bulk
dipole moment can be determined by checking the parities at
time-reversal-invariant momenta (TRIMs) as [7]

pi = 1

2

(∑
n

2pn
i modulo2

)
, pn

i = 1

2
qn

i

(−1)qn
i = ηn(M )

ηn(�)
, (1)

where i = 1 or 2 denotes the direction of the reciprocal lattice
vector, ηn(k) is the parity of the nth band at k-point below the
EF, and qn

i equals either 0 or 1.
The bulk quadrupole moment can be calculated as

qi j = 1

2

(∑
n

2pn
i pn

jmodulo2

)
. (2)

For the occupied bands of the [R = 1, W = 2] XAL, the
obtained bulk dipole and quadrupole moments are (p1, p2) =
(0, 0) and q12 = 1

2 , respectively, the same as the results
obtained from the primitive generators above. The corner

FIG. 4. The band structures calculated from the TB model for a [R = 1, W = 2] XAL with a pz orbital per X atom site. The hopping
parameters for each case are (a) t1/t2 = 1, (b) t1/t2 = 1.05, (c) t1/t2 = 1.6, and (d) t1/t2 = 2.1. The calculated parities at TRIM are indicated
by a red plus sign for even parity and a black minus sign for odd parity. Panels (e) and (f) show low-energy spectra and electronic densities
of the six zero-energy states of a finite armchair-terminated [R = 1, W = 2] XAL flake for the cases of (b) and (d), respectively. The six
zero-energy states are marked in red in spectra and their electronic densities are marked in red with color scale proportional to the normalized
square modulus |ψi|2 of the eigenstates.

L042044-4



HIGHER-ORDER TOPOLOGICAL INSULATORS IN … PHYSICAL REVIEW RESEARCH 3, L042044 (2021)

states of the XAL are therefore caused solely by the
quadrupole moment, a topological invariant characterizing the
2D SOTI [1,2].

Note that the results from the total occupied bands of the
XAL studied above, for both of the quadrupole moments
and the primitive generators, are consistent with the results
calculated with only its effective low-energy part (THVBs).
Thus, the bulk nontrivial topology is determined solely by
the low-energy spectra of the XAL. To deeply understand the
low-energy physics of the XAL, a TB Hamiltonian with a pz

orbital per X atom site is constructed as

H = t1
∑
〈i, j〉

i or j ∈ edge of holes

C†
i Cj + t2

∑
〈i, j〉

i, j /∈ edge of holes

C†
i Cj + H.c.,

(3)

where t1 (t2) [shown in Fig. 2(f)] denotes the hopping be-
tween the edge atoms of the holes (the other atoms) and
their nearest neighbors in the XAL, respectively. Consider-
ing the difference in the charge densities of the low-energy
bands located around the edge atoms of the holes and other
atoms in the XAL [Fig. 2(f)], we can distinguish clearly t1
from t2. Figures 4(a)–4(d) show the bands calculated by the
TB model with t1/t2 = 1, 1.05, 1.6, and 2.1, respectively. As
shown in Figs. 4(a)–4(d), the increase of the t1/t2 results in
the inversion of the low-energy valence bands around the
M and K points. Especially for t1/t2 = 1.05, the low-energy
dispersion features and the parities (and also band represen-
tations, not labeled) at the TRIMs [Fig. 4(b)] are the same
as those of the GrAL [Fig. 2(c)]. In Fig. 4(c), the fourth va-
lence band moves upward and twists with the second valence
band, and it eventually crosses entirely the third valence band
with t1/t2 = 2.1 [Fig. 4(d)]. By checking the connectivity and
parities of THVBs, the TB model with t1/t2 = 2.1 produces
similar low-energy bands to those of the nontrivial KDHL
model [Fig. 1(d)]. During the band evolution from Fig. 4(a)
to Fig. 4(d), the bulk band gap is always open, indicating the
bulk topology unchanged and equivalent to that of the non-
trivial KDHL model. This equivalence could also be indicated
by nonvanishing midgap corner states during the evolution
[Figs. 4(e) and 4(f)], which have the identical spatial distri-
bution and quantized fractional charge as the corner states of
the nontrivial KDHL model [5,44]. The above analysis of the
corner states demonstrates that the low-energy dispersions of
XAL, equivalent to the KDHL model, could be comprehended
in the OAL and have quantized bulk quadrupole polarization,
thus establishing an inherent connection between these three
mechanisms.

A set of THVBs of [R = 1, W = 2] XAL supports a
disconnected 3D EBR [29] {Bilbao notation [45]: B2g ↑ G(3)
for the GrAL, Ag ↑ G(3) for the SiAL and GeAL}, which can
be decomposed into a 2D representation set and a 1D repre-
sentation set. This means that the two parts of the THVBs of
the XAL can evolve separately below the EF to keep the bulk
topology invariant. The consistency of EBR decomposability
for the low-energy bands in the XAL is derived from the
common Dirac states and antidot patterns in Xene and this
makes the nontrivial bulk topology of the XAL robust against
the wall width of the XAL, whose enhancement causes the 1D

FIG. 5. Panels (a) and (b) show the charge distributions of the
six in-gap corner states of the hexagonal-shaped [R = 1, W = 2]
GrAL with defects at the center and edge, respectively. The defects
are generated by filling one hole in the flakes with six carbon atoms,
which are denoted by black color. Panel (c) displays the discrete
energy levels for the six corner states of the hexagonal-shaped flakes
with varying sizes in the TB models, in which the parameters are
fixed at t1/t2 = 1.05. The flake size, denoted as L, is represented by
the number of holes along one edge of the flake. Panel (d) depicts
the electronic densities of the six corner states of the L = 6 flake,
which is proportional to the normalized square modulus |ψi|2 of the
eigenstates.

representation set of the XAL THVBs to evolve away from
EF and toward deeper energies [see Figs. S1(c)–S1(h) in the
Supplemental Material].

As shown in Fig. S4 in the Supplemental Material, we
calculate the corner states for several GrAL and SiAL flakes
with various sizes, wall width, and edge shape. All the flakes
have nontrivial corner states, indicating the robustness of the
XAL corner states.

To further test the robustness of the XAL corner states
against bulk disorder, we constructed two flakes with defects
at the center and edge, respectively. As shown in Figs. 5(a)
and 5(b), the bulk disorders have no influence on the charge
distributions of the corner states, which demonstrates the ro-
bustness of the XAL corner states against low-density bulk
disorders. To validate the finite-size effect of the topological
corner states, we built three different sizes of flakes for the TB
model, the results of which are plotted in Figs. 5(c) and 5(d).
As the flake size increases (from L = 4 to L = 6), the en-
ergy splitting of the in-gap topological corner states becomes
smaller and smaller, while the charge distribution of corner
states remains consistent, which clearly exhibits the finite-size
effect.

In summary, we show that antidot engineering is an effec-
tive means of implementing the large band-gap SOTI in 2D
Xene. The bulk quadrupole moment, the primitive generators,
and the TB model yield identical results for the spatial dis-
tribution and the quantized fractional charge of corner states
in the XAL, respectively. This consistency demonstrates an
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inherent relevance of the higher-order topological mecha-
nisms of the nonzero quadrupole polarization, the filling
anomaly, and the 2D generalized Su-Schrieffer-Heeger model.
These results demonstrate the feasibility of the universal pro-
posal for realizing SOTIs in 2D Dirac materials by introducing
symmetry-preserving perturbations that extend the unit cell.

Our work creates an experimentally accessible path to design
novel SOTIs with robust corner states.

Acknowledgments. This work was supported by National
Natural Science Foundation of China under No. 11904101,
No. 11874117, and No. 11604134 and the Natural Science
Foundation of Shanghai under No. 21ZR1408200.

[1] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[2] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[3] Z. Song, Z. Fang, and C. Fang, (d-2)-Dimensional Edge States
of Rotation Symmetry Protected Topological States, Phys. Rev.
Lett. 119, 246402 (2017).

[4] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[5] T. Mizoguchi, H. Araki, and Y. Hatsugai, Higher-order topo-
logical phase in a honeycomb-lattice model with anti-kekulé
distortion, J. Phys. Soc. Jpn. 88, 104703 (2019).

[6] F. Liu, M. Yamamoto, and K. Wakabayashi, Topological edge
states of honeycomb lattices with zero berry curvature, J. Phys.
Soc. Jpn. 86, 123707 (2017).

[7] F. Liu, H.-Y. Deng, and K. Wakabayashi, Helical Topologi-
cal Edge States in a Quadrupole Phase, Phys. Rev. Lett. 122,
086804 (2019).

[8] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[9] S. K. Radha and W. R. L. Lambrecht, Buckled honeycomb
antimony: Higher order topological insulator and its relation to
the kekulé lattice, Phys. Rev. B 102, 115104 (2020).

[10] X.-L. Sheng, C. Chen, H. Liu, Z. Chen, Z.-M. Yu, Y. X. Zhao,
and S. A. Yang, Two-Dimensional Second-Order Topological
Insulator in Graphdiyne, Phys. Rev. Lett. 123, 256402 (2019).

[11] B. Liu, G. Zhao, Z. Liu, and Z. Wang, Two-dimensional
quadrupole topological insulator in γ -graphyne, Nano Lett. 19,
6492 (2019).

[12] M. J. Park, Y. Kim, G. Y. Cho, and S. B. Lee, Higher-Order
Topological Insulator in Twisted Bilayer Graphene, Phys. Rev.
Lett. 123, 216803 (2019).

[13] W. A. Benalcazar, T. Li, and T. L. Hughes, Quantization of frac-
tional corner charge in cn-symmetric higher-order topological
crystalline insulators, Phys. Rev. B 99, 245151 (2019).
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