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Blackbody radiation shift in strontium lattice clocks revisited

Ch. Lisdat , S. Dörscher , I. Nosske , and U. Sterr
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

(Received 22 July 2021; accepted 8 November 2021; published 9 December 2021)

We reevaluate the blackbody radiation (BBR) induced ac-Stark shift of the strontium clock transition
(5s5p) 3P0-(5s2) 1S0 at 698 nm used as reference in optical lattice clocks and as secondary representation of the
SI unit “second.” At room temperature, this frequency shift is on the order of 5×10−15 of the transition frequency
and causes the largest correction in strontium lattice clocks. With the ongoing reduction of measurement
uncertainties of optical clocks, an assessment of the approximations made in the evaluation of the BBR shift
is advised. Our reevaluation leads to an increase of the BBR correction by 4×10−18 for clock operation
at 300 K, considerably larger than its present uncertainty of 1.6×10−18. Consistently describing accurately
known atomic properties with an atomic structure model, we reduce the fractional uncertainty of the atomic
response to 1×10−18 at 300 K, which allows operating Sr lattice clocks with an uncertainty of 1×10−18 at room
temperature.

DOI: 10.1103/PhysRevResearch.3.L042036

Strontium lattice clocks are among the most accurate opti-
cal clocks [1–4] and have reported fractional uncertainties of
only 2×10−18 [4]. However, knowledge of atomic response
to blackbody radiation (BBR) currently limits their fractional
uncertainty to about 1.6×10−18 when operating at room tem-
perature. The ac-Stark shift �νBBR(T ) of the clock reference
transition (5s5p) 3P0-(5s2) 1S0 caused by interaction of the
strontium atom with the BBR field of the environment [5]
typically leads to the largest correction that has to be applied
and thus plays an important role in the evaluation of the
uncertainty of strontium lattice clocks. In view of a possible
redefinition of the SI unit “second” [6], it is paramount to vali-
date candidate clocks at the highest possible level of accuracy
and to reconsider the evaluation of the respective uncertainty
budgets. Otherwise, undesired jumps in the scale unit of
international atomic time can later occur as has happened
in the case of caesium clocks by the inclusion of the BBR
correction [7,8].

To achieve clock uncertainties of 1×10−18, �νBBR(T ) has
to be determined to two parts in 104 in room temperature
Sr lattice clocks. Thus, the accurate evaluation of �νBBR

has been the subject of several investigations [9–12]. As
an alternative to an accurate experimental or theoretical de-
termination of the shift, the shift itself can be reduced by
interrogation of the atoms in a cold environment [13,14].

The BBR radiation shift �νBBR can be measured directly
by comparisons of optical clocks at different temperature
[13]. However, more accurate determinations currently rely on
measurements of the static polarizability difference �αstat of
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the clock states [9,15] and calculations based on the frequen-
cies and strengths of transitions that involve the clock states
[10,11,16]. The BBR shift can be written as

�νBBR(T ) = − 1

2h
�αstat〈E2〉T [1 + η(T )]

= �ν (stat)(T ) + �ν (dyn)(T ) (1)

with 〈E2〉T ≈ (8.319 V cm−1)2(T/300 K)4 the mean squared
electric field of the BBR of temperature T . The static con-
tribution �ν (stat) to the BBR shift results from the first term
of the sum and, for strontium, amounts to −2.13023(6) Hz at
T = 300 K [9] or −5×10−15 in fractional units. The dynamic
contribution �ν (dyn) originates from η(T ) [−148.7(7) mHz
or −3.5×10−16 at 300 K [11]]. While �αstat is known well
enough to reduce the uncertainty contribution from �ν (stat)

to 1.4×10−19 at 300 K, �ν (dyn) leads to a ten times larger
uncertainty.

�ν (dyn) is the difference of the dynamic level shifts δν
(dyn)
e,g

of the upper and lower clock state e and g, respectively. The
δν

(dyn)
i depend on the atomic Einstein coefficients Aki and the

transition frequencies νki through

δν
(dyn)
i (T ) = − 1

4π2

(
kBT

h

)3 ∑
k

2Jk + 1
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ν3
ik

G

(
hνik
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with the Boltzmann and Planck constants kB and h and the
angular momenta Ji,k of levels i, k. The function G(y) is given
by the integral [17]

G(y) =
∫ ∞

0

x3

exp(x) − 1

(
2y

y2 − x2
− 2

y

)
dx. (3)
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Often, this integral is approximated by a Taylor expansion in
1/y ∝ T up to order n [5,10,16]:

G(y) ≈ 2
n∑

k=3

(−1)k−1

4k

(2π )2k

y2k−3
B2k ≡ Gn(y) (4)

with the Bernoulli numbers B2k . This series leads to the
known expansion of the dynamic contribution in T 6, T 8, and
higher orders. However, the convergence radius of the Tay-
lor expansion of G in 1/y is zero, as shown analytically in
Appendix A.

In the particular case of the strontium atom, the (5s5p) 3P0

and (5s4d ) 3D1 states are coupled by a low energy transi-
tion at about 2.6 μm. The contribution from this transition
dominates the dynamic contributions δν

(dyn)
e and �ν (dyn). Its

approximation requires more terms in Eq. (4) than the other
transitions. In the most recent calculation that is currently the
basis for correcting all Sr lattice clocks, Safronova et al. [10]
used three terms up to T 10 for this transition. Approximating
Eq. (3) to this order was sufficiently accurate at the time of
the publication. Given the improved knowledge of Einstein
coefficients [11] and the overall improvements on strontium
lattice clocks, this approximation has to be reconsidered.

We find that the difference between the exact values of G at
T = 300 K as derived from Eq. (3) and its approximation with
three terms [Eq. (4)] amounts to 1.4% for the 2.6 μm 3P0 and
3D1 transition in strontium. Since this transition is responsible
for 98% of δν

(dyn)
e [10], the presently accepted dynamic contri-

bution �ν (dyn)(300 K) of −148.7 mHz [11] must be reduced
by about the same fraction. In consequence, the frequency
of a strontium lattice clock operated at room temperature
and corrected for the BBR shift using the value from [11]
is currently low by 2.0 mHz, which amounts to 4.7×10−18

in fractional units. This difference exceeds the uncertainty
of the most accurate strontium lattice clocks [4,11] by more
than 2σ .

Extending the power series in Eq. (4) does not improve
the result in the case of strontium because the expansion does
not allow for a sufficiently accurate approximation of Eq. (3)
at 300 K for the 2.6 μm transition. |1 − Gn/G| is plotted in
Fig. 1 for this transition as well as the corresponding transition
(6s5d ) 3D1-(6s6p) 3P0 at 1.4 μm in Yb. We conclude that a
Taylor expansion of G is not viable for the 2.6 μm transi-
tion in strontium at T = 300 K. For the other transitions, an
approximation of G(y) with low n is sufficiently accurate in
terms of the present clock uncertainty. Numerically integrated
values of G of the 2.6 μm transition for different temperatures
are provided as open data [18].

When we calculate the dynamic contribution �ν (dyn) from
the contributions given in Ref. [10] but replace the Taylor
expansion by the accurate numerical value of the integral
for the (5s4d ) 3D1-(5s5p) 3P0 contribution from Eqs. (2) and
(3) using the Einstein coefficient and branching ratios for
the decay channels of the 3D1 level [11], we find �ν (dyn) =
−150.7 mHz. The uncertainty of this value is dominated by
the uncertainty of the 3D1 lifetime and thus equal to the uncer-
tainty of 0.7 mHz stated in Ref. [11]. Note that the accurate
variation of �νBBR with temperature T can be derived simi-
larly to the approach in [12] from the parameters given in [10],

FIG. 1. Convergence of the Taylor expansion of G(y) [Eq. (4)]
for y = 18.4 and 34.5, corresponding to T = 300 K and the energet-
ically lowest transitions 3P0-3D1 in strontium (squares) and ytterbium
(dots), respectively. Note that (1 − Gn/G) changes its sign for the
case of strontium.

Eq. (2) with ν and A of the transition 3D1-3P0, and the tabulated
values for G [18].

However, this approach does not make the best use of the
experimental information we have on the strontium atom and
their interconnection provided by the atomic structure. As
mentioned above, an accurate value for the static polarizabil-
ity difference �αstat of the states (5s5p) 3P0 and (5s2) 1S0 is
available [9]; the static (5s2) 1S0 polarizability is also known
from experiment [24] and theory [5,25,26] (an overview is
found in [27]). While Porsev and Derevianko [5] include
experimental information, Refs. [25,26] rely on theory only.
The latter results have a small uncertainty but deviate consid-
erably. Measurements of the scalar ac-Stark shift cancellation
(“magic”) wavelength at 813 nm [28,29] and 390 nm [30] ex-
ist as well as a determination of the derivative of the dynamic
polarizability difference of the clock states at 813 nm [31].
The tune-out frequency near the 689 nm intercombination
line, at which the ground state polarizability vanishes, and
the polarizability of the 3P0 state at this frequency have been
reported [32]. In addition, the differential polarizability of
the clock reference transition at 698 nm has been measured,
but the values differ strongly [33–35]. Furthermore, Thomas-
Reiche-Kuhn sum rules introduce additional constraints [36].
These quantities are all closely related to the atomic tran-
sition frequencies νik and Einstein coefficients Aki and can
be calculated in a similar way as δν

(dyn)
i using the dynamic

polarizabilities α(ν) of the clock states

αi(ν) = αcore
i + ε0c3

(2π )3

∑
k

2Jk + 1

2Ji + 1

Aki

ν2
ik

(
ν2

ik − ν2
) . (5)

We use the transitions listed in Tables I and II to calculate
�νBBR and the above-mentioned quantities and adjust selected
Aki coefficients to best describe the experimental data. Ad-
ditionally, we add ionic core polarizabilities αcore

i for each
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TABLE I. Lines connecting to the (5s2) 1S0 level. Accurate transition energies are derived from atomic data bases [23]. Lines used in the
fit are marked by F (for details, see the main text, Appendix B, and open data [18]).

Upper level Wavelength Aki (s−1) Reference

(5s5p) 3P1 689 nm 4.699(7) ×104 [11] F
(5s5p) 1P1 461 nm 1.9001(14) ×108 [19] F
(5s6p) 1P1 293 nm 1.9(3) ×106 [20]
(5s7p) 1P1 257 nm 5.3(6) ×106 [20]
(5s8p) 1P1 236 nm 1.8(3) ×107 [20]
(5s9p) 1P1 231 nm 1.15(17) ×107 [20]
(5s10p) 1P1 228 nm 6.6(8) ×106 [20]
(5s11p) 1P1 225 nm 3.7(4) ×106 [20]
(5s12p) 1P1 224 nm 2.4(3) ×106 [20]
(5s13p) 1P1 223 nm 1.57(19) ×106 [20]
(5s14p) 1P1 222 nm 1.17(14) ×106 [20]
(5s15p) 1P1 221 nm 8.5(10) ×105 [20]
(4d5p) 1P1 243 nm 1.7(3) ×107 [20]
Rydberg and ≈218 nm ≈1.65 ×108 Estimated F
cont. 1P1 from [21,22]

state including corrections due to the presence of the two
valence electrons [10]. The source code is derived from the
one used in Ref. [9]. Where available [10,11,19,20], we use
data for the fine-structure transitions. Otherwise [39,40], we
calculate the required Aki assuming LS coupling and including
a scaling of the Einstein coefficients by the ratio of the actual
and the fine-structure-free transition frequencies to the power
of 3.

During the fit, the variation of the Einstein coefficients
of the lower levels (5s5p) 3P1, (5s5p) 1P1, (5s6s) 3S1, and
(5s4d ) 3D1 were constrained by including their uncertainties
in the fit routine. For the higher lying levels, the fitted Aki

should be interpreted as effective adjustment of the mani-
fold of neighboring levels. For the 1S0 static polarizability,
we chose the experimental value [24] because results from
Refs. [25,26] are discrepant and Ref. [5] heavily relies on the
experimental determination of the lifetime of the lowest 1P1

state, which is included independently in our analysis. The
polarizability difference at the clock transition [33–35] is not
included in the fit because the observations are in disagree-
ment, too. The fit constraints are summarized in Table III
and visualized in Fig. 2. We believe that this fit procedure
most efficiently combines the available information and the
constraints imposed by the atomic structure to minimize the
uncertainty in the determination of �ν (dyn).

Running the fit with all constraining data in Table III
ended resulted in a χ2 ≈ 37 (see Appendix B for detailed
fit results), indicating that the data set is not consistent.
Dropping the Thomas-Reiche-Kuhn sums from the list of
constraints reduces the χ2 to seven. Similar reductions are
observed if data from Ref. [32] is omitted or, in addition to the
Thomas-Reiche-Kuhn sum, also the blue magic wavelength is
excluded. In the latter two fits, we reduced the number of fit
parameters to six and seven, respectively (Appendix B). The

TABLE II. Lines connecting to the (5s5p) 3P0 level. Accurate transition energies are derived from atomic data bases [23]. Lines used in
the fit are marked by F (for details, see the main text, Appendix B, and open data [18]). If no fine-structure-resolved data are available (e), the
respective Aki are estimated (see text).

Upper level Wavelength Aki (s−1) Reference

(5s6s) 3S1 679 nm 7.7(4) ×106 [37,38] F
(5s7s) 3S1 433 nm 3.1(2) ×106 [20]
(5s8s) 3S1 378 nm 9.34 ×105 [39] e
(5s9s) 3S1 355 nm 5.14 ×105 [39] e
(5s10s) 3S1 344 nm 3.14 ×105 [39] e
(5p2) 3P1 474 nm 3.9(3) ×107 [20]
(4d2) 3P1 330 nm 4.93 ×107 [40] e
(5s4d ) 3D1 2603 nm 2.731(13) ×105 [10,11] F
(5s5d ) 3D1 483 nm 3.3(2) ×107 [20] F
(5s6d ) 3D1 394 nm 1.43 ×107 [41] F
(5s7d ) 3D1 363 nm 8.02 ×106 [39] e
(5s8d ) 3D1 348 nm 4.81 ×106 [39] e
(5s9d ) 3D1 339 nm 3.11 ×106 [39] e
Rydberg and cont. 3S1 ≈316 nm 1.8 ×106 [21]
Rydberg and cont. 3D1 ≈316 nm 4.2 ×107 [21] F
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TABLE III. Constraints used for the improved determination of the dynamic BBR shift. Er = h2/(2mλ2) is the photon recoil energy at the
magic lattice wavelength λ for an atom of mass m.

Property Literature value Reference

A(5s5p 1P1 → 5s2 1S0) at 461 nm 1.9001(14) ×108 s−1 [19]
A(5s5p 3P1 → 5s2 1S0) at 689 nm 4.699(7) ×104 s−1 [11]
A(5s4d 3D1 → 5s5p 3P0 ) at 2.6 μm 2.731(13) × 105 s−1 [10,11]
A(5s6s 3S1 → 5s5p 3P0) at 679 nm 7.7(4) × 106 s−1 [37,38]
α(5s2 1S0, ν → 0) 3.07(24) × 10−39 C m2/V [24]
�α(5s5p 3P0 -5s2 1S0, ν → 0) 4.07873(11) × 10−39 C m2/V [9]
Magic frequency near 813 nm 368554.725(3) GHz [28]
d�α/dν at 813 nm magic frequency 1.735(13) × 10−5 Hz/(Er MHz) [31]
Magic frequency near 390 nm 768 917(18) GHz [30]
Tune-out frequency νto near 689 nm 434972.130(10) GHz [32]
α(5s5p 3P0, ν = νto ) 2.564(13) × 10−38 C m2/V [32]
5s2 1S0 Thomas-Reiche-Kuhn sum 2.0(1) [36]
5s5p 3P0 Thomas-Reiche-Kuhn sum 2.0(1) [36]

variation of the fitted Aki remains in an acceptable range in all
fits.

To determine the uncertainty of �ν (dyn) in each fit, we
vary input parameters constraining the fit within their uncer-
tainties by a Monte Carlo algorithm and rerun the fit. All
parameters are treated as uncorrelated. The results from all
four fits agree well within their uncertainties (Appendix B).
Since we cannot identify a preferable fit, we calculate the
weighted mean with the reciprocal squared uncertainties as
weights. The uncertainty is calculated under the assump-
tion of fully correlated data [42], i.e., as weighted mean
using the same weights as above. We find �ν (dyn)(300 K) =
−150.51(43) mHz, which is consistent with our result above
but at an uncertainty that is reduced by a factor of 1.6. The

FIG. 2. Frequency-dependent ac-Stark shift of the clock states
(5s2) 1S0 and (5s5p) 3P0. Annotations indicate where experimental
data constrain the fit. MWL: magic wavelength.

uncertainty is also below the previously reported uncertainty
of �ν (dyn)(300 K) = −148.7(7) mHz [11,12]. Both values do
not agree within their uncertainty for the reasons discussed
earlier. The difference between both corrections is larger
than the lowest uncertainties reported for strontium lattice
clocks [4,11]. Our reevaluation agrees with the experimen-
tal investigation of the BBR shift using cryogenic strontium
lattice clocks [13] within the reported uncertainties. The au-
thors report �ν (dyn)(300 K) = −148.0(26) mHz. Our result is
slightly discrepant with our earlier work [9], which resulted in
�ν (dyn)(300 K) = −147.6(23) mHz. At the time, the accurate
measurement of the 5s4d 3D1 Einstein coefficient [10,11] was
not yet available. Its currently known value is about 2% larger
than the fit result in [9], which explains the change of �ν (dyn).

The dynamic contribution �νBBR can in principle be cal-
culated for arbitrary temperatures with parameters as given
in Tables I–III and Eq. (2). However, this is inconvenient
in practice. Moreover, it is difficult to give a single set of
parameters that reproduces the averaged dynamic contribution
we have determined. Therefore, we calculate the temperature
dependence of �νBBR for the four fit results and determine
their weighted average. The result is provided as open data
[18]. For convenience in practical use, we fit these data in the
temperature range from 50 to 350 K by the polynomial

�ν (dyn) ≈ η6

(
T

300 K

)6

+ η8

(
T

300 K

)8

+ η10

(
T

300 K

)10

,

(6)
which covers the likely operation range of strontium lattice
clocks. With the coefficients

η6 = −0.12998 Hz,

η8 = −0.01211 Hz,

η10 = −0.00844 Hz, (7)

it reproduces the input �ν (dyn)(T ) with residuals smaller than
the uncertainty of �νBBR (Fig. 3).

In conclusion, we have demonstrated that approximating
the dynamic BBR correction in strontium lattice clocks by its
Taylor expansion produces errors that are beyond the required
level of accuracy. The resulting dynamic BBR correction
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FIG. 3. Residuals of the polynomial Eq. (6) fitted to the cal-
culated �ν (dyn)(T ) (dots). The light-shaded region shows the
1σ -confidence interval of �ν (dyn), and the darker area that of �ν (stat).

differs from the correct value by twice the uncertainty of the
most accurate strontium lattice clocks. With comprehensive
modeling of the spectroscopic data and structure of strontium,
we can lower the uncertainty of �ν (dyn) and thus reduce the
achievable uncertainty of room temperature strontium lattice
clocks to 1×10−18. For practical use, we provide a simple
interpolation formula to determine the BBR correction in a
temperature range from 50 to 350 K.

In order to further reduce the uncertainty of �ν (dyn)(T ),
a more consistent description of the atomic structure and the
various observations is called for. Additional accurate deter-
minations of Einstein coefficients and other atomic parameters

will be necessary. Lastly, higher-order multipole transitions—
specifically, magnetic-dipole (M1) transitions—contribute to
the BBR shift at the level of 6×10−20 [5] and will need to be
taken into account if the uncertainty is reduced by about an
order of magnitude from the present uncertainty.

Note added. Recently, Park et al. [43] report an experi-
mental determination of the ratio α(5s2 1S0)/α(5s5p 3P0) =
1.1885(10) at 914.332 nm and a theoretical estimate of
1.18(1). From our fits, we find a value of 1.179, which is in
reasonable agreement with their results.
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APPENDIX A: CONVERGENCE RADIUS

In Eq. (4) of the main text the function G(y) is approxi-
mated by a series G∞. This series can be written as a power
series in z = 1/y2:

G∞(y) = 2z−3/2
∞∑

k=3

(−1)k−1(2π )2k

4k
B2kzk . (A1)

TABLE IV. Summary of the fits and derived parameters to determine �ν (dyn). When the literature value of an atomic property was used to
constrain the fit by the given uncertainty, we report the resulting deviation from the literature value in units of that uncertainty σ . When these
values were fitted without constraints, we report the fitted value. Dashes mark parameters that were not used as fit parameters. Er = h2/(2mλ2)
is the photon recoil energy at the magic lattice wavelength λ for an atom of mass m.

Property Fit 1 Fit 2 Fit 3 Fit 4 Literature value ref.

Dynamic contribution �ν (dyn)(300 K) −150.61(44) mHz −150.33(51) mHz −150.63(36) mHz −150.32(51) mHz −148.7(7) mHz [11]

χ2 of fit 36.6 7.0 8.5 7.0

A(5s5p 1P1 → 5s2 1S0 ) at 461 nm 0.471σ −0.01σ 0.01σ −0.01σ 1.9001(14) ×108 s−1 [19]

A(5s5p 3P1 → 5s2 1S0 ) at 689 nm 0.795σ 0.177σ – 0.181σ 4.699(7) ×104 s−1 [11]

Aeff (1P1 continuum → 5s2 1S0 ) 2.42 × 108 s−1 2.53 × 108 s−1 4.76 × 108 s−1 2.53 × 108 s−1 1.65 × 108 s−1 [21,22]

A(5s4d 3D1 → 5s5p 3P0 ) at 2.6 μm −0.554σ −0.938σ −0.644σ −0.950σ 2.731(13) × 105 s−1 [10,11]

A(5s6s 3S1 → 5s5p 3P0 ) at 679 nm 1.607σ 1.671σ −0.170σ 1.669σ 7.7(4) × 106 s−1 [37,38]

A(5s5d 3D1 → 5s5p 3P0 ) at 483 nm 2.89 × 107 s−1 2.66 × 107 s−1 4.76 × 107 s−1 2.73 × 107 s−1 3.3(2) × 107 s−1 [20]

A(5s6d 3D1 → 5s5p 3P0 ) at 394 nm 1.86 × 107 s−1 1.92 × 107 s−1 – – 1.43 × 107 s−1 [20]

Aeff (3D1 continuum → 3P0 ) 1.47 × 108 s−1 1.62 × 108 s−1 2.75 × 108 s−1 1.70 × 108 s−1 4.2 × 107 s−1 [21,22]

α(5s2 1S0, ν → 0) 1.47σ 1.50σ 0.83σ 1.50σ 3.07(24) × 10−39 C m2/V [24]

�α(5s5p 3P0 -5s2 1S0, ν → 0) −2.19 × 10−3σ −4.66 × 10−3σ −3.70 × 10−3σ −4.72 × 10−3σ 4.07873(11) × 10−39 C m2/V [9]

Magic frequency near 813 nm −1 × 10−6σ 2 × 10−6σ 1 × 10−6σ 2 × 10−6σ 368554.725(3) GHz [28]

d�α/dν at 813 nm magic frequency 1.31σ 0.79σ 0.04σ 0.80σ 1.735(13) × 10−5 Hz/(Er MHz) [31]

Magic frequency near 390 nm 0.001σ 2 × 10−4σ −0.04σ 766695 GHz 768917(18) GHz [30]

Tune-out frequency νto near 689 nm 0.04σ −0.009σ 434927 GHz −0.009σ 434972.130(10) GHz [32]

α(5s5p 3P0, ν = νto ) 1.07σ 0.64σ 2.37 × 10−38 C m2/V 0.64σ 2.564(13) × 10−38 C m2/V [32]

5s2 1S0 Thomas-Reiche-Kuhn sum 5.1σ 2.5 0.95σ 2.5 2.0(1) [36]

5s5p 3P0 Thomas-Reiche-Kuhn sum 1.3σ 2.2 −2.54σ 2.2 2.0(1) [36]

Light shift at clock transition −26.2 Hz cm2/W −26.2 Hz cm2/W −24.1 Hz cm2/W −26.3 Hz cm2/W
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The radius of convergence r of a power series

f (z) =
∞∑

k=0

akzk (A2)

can be calculated by the ratio test

r = lim
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣. (A3)

Using the asymptotic behavior of the Bernoulli numbers
[44], Eq. 24.11.1,

B2k ∼ (−1)k+12(2k)!

(2π )2k
, (A4)

we thus obtain

r = lim
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣ = lim
k→∞

1

2k(2k + 1)
= 0. (A5)

APPENDIX B: FIT RESULTS

Adjusted parameters and output data of the fits discussed
in the main text are summarized in Table IV. Fit results are
reported as a deviation from the literature value in units of its
uncertainty σ for quantities that are used to constrain the fit
procedure. Derived atomic properties and Einstein coefficients
A that are adjusted without direct constraints are reported as
their numerical values.

Fit 1 uses all data discussed in the main text in the fit.
Fit 2 does not use the Thomas-Reiche-Kuhn sum rule. Fit
3 excludes tune-out data from [32]. Fit 4 uses only fit con-
straints at low transition energies and therefore drops the
blue magic wavelength and Thomas-Reiche-Kuhn sum rule
as constraints.
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