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We propose a measurement scheme to directly detect odd-frequency superconductivity via time- and angle-
resolved photoelectron fluctuation spectroscopy. The scheme includes two consecutive nonoverlapping probe
pulses applied to a superconducting sample. The photoemitted electrons are collected in a momentum-resolved
fashion. Correlations between signals with opposite momenta are analyzed. Remarkably, these correlations
are directly proportional to the absolute square of the time-ordered anomalous Green’s function of the su-
perconductor. This setup allows for the direct detection of the “hidden order parameter” of odd-frequency
pairing. We illustrate this general scheme by analyzing the signal for the prototypical case of a two-band
superconductor.
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Introduction. Odd-frequency superconductivity is a gen-
uinely dynamic state of matter. It is based on a pairing
mechanism in which the two electrons that form a Cooper
pair in the superconducting condensate have to correlate
with each other at unequal times. This is in contrast to the
even-frequency case when the superconducting pairing can
be nonvanishing at coinciding times. The most well-known
example of even-frequency superconductors are conventional
superconductors with s-wave spin singlet pairing. Odd-
frequency pairing was originally proposed by Berezinskii in
the context of helium-3 as a novel type of spin triplet pairing
[1]. Subsequently, it was realized by Balatsky and Abrahams
that odd-frequency pairing could also exist in a spin singlet
version [2], accompanied by other works that transferred the
odd-frequency pairing concept to solid-state platforms [3–7].
In the meantime, a number of review articles have emerged
that describe odd-frequency superconductivity from different
perspectives [8–11]. Moreover, certain experiments have been
interpreted as indirect evidence of odd-frequency pairing.
Among the well-known examples are the measurement of
a long-range supercurrent in Josephson junctions based on
Nb, containing the strong ferromagnetic material Co [12],
the observation of the polar Kerr effect in the heavy-fermion
superconductor UPt3 [13] (in combination with the theoretical
analysis performed in Refs. [14,15]), and the measurement
of an intrinsic paramagnetic Meissner effect in Au/Ho/Nb
trilayer systems [16]. Additionally, it has been argued that
signatures of odd-frequency pairing are visible in scanning
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tunneling spectra taken on top of magnetic impurities im-
mersed in a Pb/Si(111) monolayer [17]. Recent theoretical
proposals to detect odd-frequency pairing are, for instance,
based on measurements of a supercurrent running from a
Majorana scanning tunneling microscope tip to a supercon-
ducting substrate [18], transport properties through a quantum
spin Hall system in proximity to a s-wave superconductor
[19], the Josephson current on the surface of Weyl nodal loop
semimetals [20], or the Josephson junction current noise [21].

All these examples have in common (with the possible
exception of Ref. [21]) that they can only be regarded as an
indirect evidence for odd-frequency pairing for the following
reason. The defining property of odd-frequency pairing is
the mathematical (anti-)symmetry of the time-ordered anoma-
lous Green’s function (GF) F p,k

σ,σ ′ (t1, t2) ≡ 〈T cp,σ (t1)ck,σ ′ (t2)〉
(for fermionic annihilation operators with momenta p, k
and spins σ, σ ′, respectively) under the exchange of the
two time arguments t1 and t2. If F p,k

σ,σ ′ (t1, t2) has an odd-

frequency component, which we name F p,k
o,σ,σ ′ (t1, t2), then

the relation F p,k
o,σ,σ ′ (t1, t2) = −F p,k

o,σ,σ ′ (t2, t1) holds. In contrast,

for the even-frequency component F p,k
e,σ,σ ′ (t1, t2), the rela-

tion F p,k
e,σ,σ ′ (t1, t2) = F p,k

e,σ,σ ′ (t2, t1) holds. The odd component

F p,k
o,σ,σ ′ (t1, t2) can be regarded as the “hidden order parameter”

of odd-frequency pairing.
In this Letter, we suggest a feasible way to directly detect

the absolute square of the anomalous GF, i.e., |F p,k
σ,σ ′ (t1, t2)|2.

If this anomalous GF had even- and odd-frequency compo-
nents then an exchange of the two time arguments would
result in two different signals, proportional to |F p,k

e,σ,σ ′ (t1, t2) ±
F p,k

o,σ,σ ′ (t1, t2)|2. This feature is the mathematical working prin-
ciple behind our detection scheme, which is physically based
on time- and angle-resolved photoelectron fluctuation spec-
troscopy.
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FIG. 1. Schematic of the setup. The superconducting sample is
subjected to two separate probe pulses A and B with their temporal
envelopes centered at times tA and tB, respectively. One possible
detection event is the following one: The electron emitted due to
pulse A has momentum p and is registered by detector 1, whereas the
electron with momentum p′ emitted due to the pulse B is registered
by detector 2.

Concretely, we envision a variation of an angle-resolved
photoemission spectroscopy (ARPES) setup as shown in
Fig. 1. In a static ARPES protocol, a probe photon beam ejects
photoelectrons, which are collected in a momentum-resolving
detector. This signal is proportional to the expectation value
of the photoelectron number with the wave-vector p. Here,
we instead consider two detectors and two short probe pulses
A and B. The two detectors can be viewed as being part
of a multihit detection scheme, which is able to detect two
photoelectrons with momenta p and p′ within a certain time
range [22]. This gives rise to correlation signals of the form
I (2)

p,σ ;p′,σ ′ = 〈np,σ np′,σ 〉. A similar setup—with a single probe
pulse—was analyzed by Stahl and Eckstein [23], who showed
that such correlation signals can probe the anomalous GF of
superconductors. In the single probe pulse case, however, it is
not possible to exchange the time arguments t1 and t2 of the
anomalous GF. As discussed above, this exchange is essential
to directly probe odd-frequency pairing and specified below.

Model. The Hamiltonian describing photoemission of elec-
trons due to the two probe pulses A and B can be written as

H =
∑

k,p,σ,σ ′
S∗

A(t )ei�At Mσ,σ ′
k,p a†

p,σ ′ck,σ

+S∗
B(t )ei�Bt Mσ,σ ′

k,p b†
pσ ′ck,σ + H.c., (1)

where ck,σ is an operator of an electron in the material with
momentum k and spin σ . Likewise, ap,σ ′ and bp,σ ′ are op-
erators of photoemitted electrons with momenta p and spins
σ ′ via pulse A and pulse B, respectively. The matrix element
Mσσ ′

k,p characterizes emission and is often approximated as

Mσσ ′
k,p = M0δk,pδσσ ′ . This approximation is valid if the emitted

electrons have the same momentum and spin as they have in
the material. The pulses A and B have temporal envelopes
SA(t ) and SB(t ) and frequencies �A and �B, respectively. It
is important that the pulses do not overlap. The Hamiltonian
of emitted electrons via pulse A is

Ha =
∑
p,σ

Epa†
p,σ ap,σ =

∑
p,σ

Epna
p,σ , (2)

and analogously for emitted electrons via pulse B. The spec-
trum of emitted electrons is Ep = p2/2m, where m is the bare
mass of an electron.

We consider a material that has superconducting pairing.
Hence, the Hamiltonian Hc is assumed to contain terms of
the kinetic energy of the electron, such as ξpc†

p,σ cp,σ , as well

as mean-field terms of the type �
p
σσ ′c

†
−p,σ ′c†

p,σ , where �
p
σσ ′

is the superconducting pairing potential. For now, we do not
specify Hc in more detail because different materials can have
different forms of the Hamiltonian that do not affect our gen-
eral considerations for the detection of odd-frequency pairing
significantly.

Photoemission signals. Following the standard description
of electron photoemission, we define the total population of
the emitted electrons with momentum p and spin σ as

I (1)
p,σ = 〈np,σ 〉t=∞ = 〈

S†(na
p,σ + nb

p,σ

)
S

〉
0, (3)

where the averaging 〈· · · 〉0 is over the initial state of
the system before applying pulses and in the absence of
emitted electrons. The evolution matrix is defined as S =
T exp[−i

∫ ∞
−∞ dτ H (τ )]. Since we are interested in the total

population, the final time is taken to be t = ∞. The statistical
correlations of photoemission events from all pulses are

I (2)
p,σ ;p′,σ ′ = 〈np,σ np′,σ ′ 〉t=∞. (4)

In the case p �= p′, I (2)
p,σ ;p′,σ ′ depends on a two-point GF with

respect to electrons in the material Gk2,k1,k
′
1,k

′
2

σ2,σ1,σ
′
2,σ

′
1
(τ2, τ1, τ

′
2, τ

′
1) =

〈T̄ [c†
k2,σ2

(τ2)c†
k1,σ1

(τ1)]T [ck′
1,σ

′
1
(τ ′

1)ck′
2,σ

′
2
(τ ′

2)]〉, where T̄ de-
notes antitime ordering, which comes from the expansion
of S† up to second order (see Appendix A for the detailed
derivation of the signal). This two-point GF can be simplified
via Wick’s theorem.

Following the description above, the fluctuations of the
correlations are defined as

�Ip,σ ;p′,σ ′ = I (2)
p,σ ;p′,σ ′ − I (1)

p,σ I (1)
p′,σ ′ . (5)

In the case of p′ = −p, the particle-number-conserving terms
of type 〈c†c〉0 cancel, and the signal directly depends on the
anomalous GF via

�Ip,σ ;−p,σ ′ =
∣∣∣∣
∫ ∞

−∞
dτ1dτ2�(p, τ1, τ2)F−p,p

σ ′,σ (τ1, τ2)

∣∣∣∣
2

, (6)

where �(p, τ1, τ2) is a function of pulse shapes, frequencies
of applied pulses, M0, and kinetic energy of emitted electrons
(see Appendix A).

We can deduce from Eq. (6) that, applying a single
pulse and detecting emitted electrons in the case of
Mk,p

σσ ′ = M0δk,pδσ,σ ′ , this does not enable us to obtain any sig-
nal stemming from odd-frequency pairing because in that case
�(p, τ1, τ2) = �(p, τ2, τ1) = M2

0 S∗(τ1)S∗(τ2)ei(�+Ep)(τ1+τ2 )
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is an even function with respect to an exchange of the two
time arguments. Therefore, the convolution with any odd
component of the anomalous GF F−p,p

σ ′,σ (τ1, τ2) vanishes.
Thus, in order to detect odd-frequency superconductivity,

we need to perform a time-resolved measurement, implying
�(p, τ1, τ2) �= �(p, τ2, τ1). To achieve this goal, we suggest
to apply two pulses A and B that do not overlap in time.
For pedagogical reasons, we first restrict ourselves to a spe-
cific process: Detector 1 measures all electrons emitted via
pulse A with momentum p and spin σ , whereas detector
2 measures all electrons emitted via pulse B with momen-
tum −p and spin σ ′. In this specific detection scheme, we
only need to analyze the term �Iab

p,σ ;−p,σ ′ = 〈na
p,σ nb

−p,σ ′ 〉t=∞ −
〈na

p,σ 〉t=∞〈nb
−p,σ ′ 〉t=∞ with

�(p, τ1, τ2) = M2
0 S∗

B(τ1)S∗
A(τ2)ei[�Aτ2+�Bτ1+Ep(τ1+τ2 )]. (7)

As the pulses A and B are separated in time, the inequality
�(p, τ1, τ2) �= �(p, τ2, τ1) holds if the two photons in pulses
A and B are distinguishable, for instance, by energy (or any
other means).

The temporal envelopes SA(t ) and SB(t ) are likely to be
close to Gaussian shape in real experiments. For simplic-
ity, we assume them to be infinitely short δ functions, i.e.,
SA(t ) = S0δ(t − tA) and SB(t ) = S0δ(t − tB) [24]. In this case,
the signal is

�Iab
p,σ ;−p,σ ′ = (S0M0)4|F−p,p

σ ′,σ (tB, tA)|2. (8)

Evidently, it can serve as a direct probe to odd-frequency
superconductivity: If F has an odd component Fo and an even
component Fe then an exchange of the two time arguments in
Eq. (8) allows us to probe |Fe + Fo|2 and |Fe − Fo|2.

Depending on the characteristics of the materials and
detection schemes, we have to take additional terms into
account. For instance, we have to sum over spin degrees of
freedom if the detection scheme is not spin-resolved. More-
over, we have to sum over terms, such as �Iaa, �Ibb, and
�Iba if they happen to yield a finite signal, and both detectors
are able to detect photoelectrons of any of the two types A
and B. In the example discussed below, the terms �Iaa and
�Ibb do not depend on the time difference and produce just
a constant shift of the overall signal, whereas the term �Iba

yields an identical signal to �Iab.
Two-band superconductor. Below, we demonstrate how our

proposal works within a model of a two-band superconductor
developed by Parhizgar and Black-Schaffer [25]. It should
be kept in mind that our proposal is generally applicable to
any odd-frequency superconductor. The demonstration with
respect to the two-band superconductor is just an example
in which many features can be understood analytically. The
number of bands matter for the detection scheme. In the
two-band case, the energy difference between the bands can
be employed to distinguish the two probe pulses. In the
single-band case, this is not an option. Then, other degrees
of freedom (e.g., spin) have to be taken into account for this
purpose.

The Hamiltonian of a two-band superconductor in the basis
ψ†

p = (c†
1,p,↑, c†

2,p,↑, c1,−p,↓, c2,−p,↓)T can be written as

Hc = (ξ+τ0 + ξ−τz + ξ12τx )γz + (δ+τ0 + δ−τz )γx, (9)

where τ0,x,z are Pauli matrices in band space (1,2) and
γx,z in particle-hole space [26]. The bands are assumed
to be connected by the hybridization ξ12, and ξ± = (ξ1 ±
ξ2)/2, where ξ1(2) = m1(2) p2 − μ − (−1)1(2)δμ/2. The super-
conducting pairing is spin singlet in each band with the
order parameters δ1(2) = δ+ + (−)δ−. F in frequency space
has been derived in Ref. [25]. We need to transfer them to
time representation by contour integration with the choice
of the poles as ∓ε+ ± iη and ∓ε− ± iη with η → +0 (see
the detailed derivation for the time representation of F in
Appendix B). After Fourier transformation, we obtain for the
time difference t > 0,

F p,−p
e,↑↓ (t )

= i

ε2− − ε2+

{(
e−iε+t

ε+
− e−iε−t

ε−

)

×
[
ξ12(δ+ξ+ − δ−ξ−)τx − α+

4
(τ0 + τz )−α−

4
(τ0 − τz )

]

+1

2
(δ+τ0 + δ−τz )(ε+e−iε+t − ε−e−iε−t )

}
, (10)

F p,−p
o,↑↓ (t ) = (e−iε+t − e−iε−t )δ−ξ12

ε2+ − ε2−
τy, (11)

where α± = (ξ+ ∓ ξ−)2(δ+ ± δ−) + (δ+ ∓ δ−)(ξ 2
12 +

δ2
+ − δ2

−) and ε2
± = ξ 2

+ + ξ 2
− + ξ 2

12 + δ2
+ + δ2

− ±
2
√

(δ+δ− + ξ+ξ−)2 + ξ 2
12(δ2− + ξ 2+).

From Eq. (11), it follows that the applied pulses must ad-
dress different electron bands. Otherwise, the signal from the
odd-frequency pairing does not contribute to the photoelec-
tron fluctuation signal. This requirement should be feasible
if the gap between the bands is much wider than the pulse
width. Then, we can adjust �A = Ep + E1,exit , where E1,exit

constitutes the energy necessary for an electron stemming
from band 1 to reach the vacuum energy level, and, likewise,
�B = Ep + E2,exit for an electron stemming from band 2.

Photoelectron fluctuations for two-band model. In Fig. 2,
we plot the dependence of the full signal, �Iab

p,−p/Ĩ =
(1/2)[|F−p,p

↑↓ (tB − tA, 2, 1)|2 + |F−p,p
↓↑ (tB − tA, 2, 1)|2] with

Ĩ = 2(S0M0)4 as well as its odd- (|Fo|2) and even-frequency
(|Fe|2) components with respect to the dimensionless
momentum p/p̃ for (a) shorter and (b) longer time differences
between the pulses, tB − tA. For this model, the following
symmetry holds Fσ,σ ′ = −F−σ,−σ ′ . Therefore, the two terms
in �Iab

p,−p are identical. We define the units of energy in
such a way that m1 p̃2 = 1. Time differences are shown in
units of inverse energy. We use the following parameters:
m2 p̃2 = 0.5, δ+ = 0.03, δ− = 0.02, ξ12 = 0.05, μ =
0.3, δμ = −0.2, which correspond to two electronlike
bands. In Fig. 2(a), the signal consists of two peaks because
the contribution from the even-frequency part is dominating
over the odd-frequency one. However, in Fig. 2(b), the
signal becomes close to a single peak as the odd-frequency
contribution starts to dominate. For tB − tA → 0, the
contribution from the odd-frequency part is vanishing as
it should. This analysis demonstrates that the content of the
odd- and the even-frequency contributions to superconducting
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(a)

(b)

FIG. 2. Momentum dependence of odd (red), even (blue), and
full signal (black) for the model of a two-band superconductor for
(a) tB − tA = 10 and (b) tB − tA = 40. The odd part of the signal has
one peak, whereas the even part has two peaks.

pairing can vary as a function of the time argument of the
anomalous GF as well as the momenta that appear in it. Note
that given momenta fix the corresponding energy. The plots
shown in Figs. 2(a) and 2(b) are model-dependent, but we
expect that similar features appear in other models as well as
real materials.

In Fig. 3, we plot the dependence of the full signal
�Iab

p,−p as well as its even and odd components with re-
spect to the time difference between the pulses tB − tA at
a given momentum. Negative time difference tB − tA means
that the order of the pulses is exchanged. Thus, we ob-
tain the signal �Iab

p,−p/Ĩ = |F−p,p
o,↑,↓ (tB − tA, 2, 1) + F−p,p

e,↑,↓ (tB −
tA, 2, 1)|2 for tB > tA and �Iab

p,−p/Ĩ = |F p,−p
o,↓,↑ (tA − tB, 1, 2) +

F p,−p
e,↓,↑ (tA − tB, 1, 2)|2 for tA > tB. We stress that for the given

two-band model the exchange of spin and momentum in-
dices does not change �Iab

p,−p. Only the exchange of band
indices provides an additional minus sign due to Fo(1, 2) =
−Fo(2, 1), yielding different signals for tB − tA > 0 and tB −
tA < 0.

Note that Fig. 3 illustrates our main result. It shows that
the coexistence of even- and odd-frequency pairing results
in an asymmetry of the photoelectron fluctuation signal with
respect to the exchange of the two pulses. This result is by
no means specific to the two-band model under consideration.
All it needs for the asymmetry in the photoelectron fluctuation
signal to appear is a significant contribution of even- and

FIG. 3. Time dependence of odd (red), even (blue), and full
signal (black) for the model of a two-band superconductor at p =
pmax + δp, δp/ p̃ = 0.04. The full signal is different for a different
ordering of pulses A and B since they address different bands. The
odd component changes its sign with the order of the band indices,
whereas the even one does not.

odd-frequency pairing amplitudes at a certain momentum. A
variety of materials fulfills this criterion. Examples thereof
are as follows: MgB2 [27], Rashba wires on superconducting
substrates [28,29], Sr2RuO4 [30], iron-pnictide superconduc-
tors [31], doped Bi2Se3 [32,33], UPt3 [15], dilute magnetic
superconductors [34], and superconducting Weyl semimetals
[35,36].

Experimental issues. Our proposal for detecting time-
nonlocal pairing via photoelectron fluctuation spectroscopy is
based on the following key ingredients: (i) two short probe
pulses that both photoemit electrons and do not overlap in
time; (ii) probe photon energies that differ by the energetic
separation of the bands in a given multiband superconductor
[37]; (iii) a detector that measures multihit signals of pho-
toelectrons at opposite momenta. Point (i) is related to the
time resolution of state-of-the-art ARPES setups, set by the
minimal duration of laser pulses on the order of a few tens
of femtoseconds [38]. Point (ii) puts a practical limitation
on the energetic separation required in the multiband super-
conductor. In a probe pulse of short duration, the Heisenberg
uncertainty principle imposes a finite energy bandwidth of a
photon pulse via δt δE � h̄ ≈ 658 meV fs. For a probe dura-
tion as short as 30 fs, this imposes a requirement that the bands
are separated by 20 meV or more at the relevant probe mo-
mentum points near the Fermi momentum. We note that this
criterion is fulfilled in a variety of multiband superconductors,
such as iron pnictides [31] or Sr2RuO4 [39]. Conditions (i)
and (ii) suggest that probe photon energies and probe du-
rations need to be carefully adjusted to the superconductor
under consideration. Point (iii) poses a practical challenge to
photoelectron detector technologies that are presently avail-
able [40]. A similar measurement where a single pulse
ejects two photoelectrons (double photoemission) has been
demonstrated [41–44]. For our proposal of angle-resolved
photoelectron fluctuation spectroscopy, the development of
momentum microscopes with multichannel detectors that al-
low to measure multihit signals appears promising [22].

Summary. In conclusion, we have suggested a measure-
ment scheme based on time- and angle-resolved photoelectron

L042034-4
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fluctuation spectroscopy for the direct detection of odd-
frequency superconductivity, a long-standing problem in the
field of unconventional superconductivity. We have applied

our scheme to a two-band superconductor, analyzed the
corresponding signal, and suggested a way to extract the odd-
frequency part of it.
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APPENDIX A: DERIVATION OF THE SIGNAL IN AN EXPERIMENT WITH TWO PROBE PULSES

The derivation for the case of a single pulse was discussed in Ref. [23]. Here, we describe our derivation for the two
nonoverlapping pulses. The Hamiltonian describing interactions between the pulses and the studied material is

H =
∑

k,p,σ,σ ′
SA(t )∗ei�At Mσ,σ ′

k,p a†
pσ ′ck,σ + SB(t )∗ei�Bt Mσ,σ ′

k,p b†
pσ ′ck,σ + H.c. (A1)

The pulse envelope functions SA(t ) and SB(t ) have finite widths and no overlap. Therefore, we assume that 〈ap,σ b†
p,σ 〉0 =

〈bp,σ a†
p,σ 〉0 = 0. Hence, the vacuum state of emitted electrons can be described as a product of vacuum states for electrons

emitted via pulse A and electrons emitted via pulse B: |0〉emit = |0〉a|0〉b.
The total population of the outgoing state is

I (1)
p,σ = 〈

na
p,σ + nb

p,σ

〉
t=∞. (A2)

The statistical correlation of photoemission events is

I (2)
p,σ ;p′,σ ′ = 〈(

na
p,σ + nb

p,σ

)(
na

p′,σ ′ + nb
p′,σ ′

)〉t=∞. (A3)

In terms of the time-evolution matrix, S = T exp [−i
∫ ∞
−∞ H (τ )dτ ] with T denoting time ordering, we obtain

I (1)
p,σ = 〈

S†
(
na

p,σ + nb
p,σ

)
S

〉
0

= 〈
S†

a na
p,σSa

〉
0 + 〈

S†
b nb

p,σSb
〉
0, (A4)

I (2)
p,σ ;p′,σ ′ = 〈

S†(na
p,σ + nb

p,σ

)(
na

p′,σ ′ + nb
p′,σ ′

)
S

〉
0

= 〈
S†(na

p,σ na
p′,σ ′ + na

p,σ nb
p′,σ ′ + nb

p,σ na
p′,σ ′ + nb

p,σ nb
p′,σ ′

)
S

〉
0. (A5)

The first and the last terms in I (2)
p,σ ;p′,σ ′ are the same as in Ref. [23]. Therefore, we will consider only the second and the third

terms here. For the case of pulse B being later than pulse A, the second term is

I (2),ab
p,σ ;p′,σ ′ = 1

4

〈 ∫ ∞

−∞
dτ1dτ2T̄ [H (τ1)H (τ2)]na

pσ nb
p′σ ′

∫ ∞

−∞
dτ ′

1dτ ′
2T [H (τ ′

1)H (τ ′
2)]

〉
0

=
∫ ∞

−∞
dτ1dτ2dτ ′

1dτ ′
2

∑
k1, p1, σ1, γ1,

k′
1, p′

1, σ
′
1, γ

′
1,

k2, p2, σ2, γ2,

k′
2, p′

2, σ
′
2, γ

′
2

Mσ2,γ2

k2,p2
Mσ1,γ1

k1,p1
M

σ ′
1,γ

′
1

k′
1,p′

1
M

σ ′
2,γ

′
2

k′
2,p′

2
〈c†

k2,σ2
c†

k1,σ1
ck′

1,σ
′
1
ck′

2,σ
′
2
〉0

× SB(τ1)e−i�Bτ1 SA(τ2)e−i�Aτ2 SB(τ ′
1)∗ei�Bτ ′

1 S∗
A(τ ′

2)ei�Aτ ′
2〈bp1γ1 b†

p′σ ′ 〉〈bp′σ ′b†
p′

1γ
′
1
〉〈ap2γ2 a†

pσ 〉〈apσ a†
p′

2γ
′
2
〉

=
∫ ∞

−∞
dτ1dτ2dτ ′

1dτ ′
2M4

0

× SB(τ1)SA(τ2)S∗
B(τ ′

1)S∗
A(τ ′

2)e−i�Bτ1−i�Aτ2+i�Bτ ′
1+i�Aτ ′

2+iEp′ (τ ′
1−τ1 )+iEp(τ ′

2−τ2 )〈c†
p,σ (τ2)c†

p′,σ ′ (τ1)cp′,σ ′ (τ ′
1)cp,σ (τ ′

2)〉0.(A6)

The symbol T̄ denotes antitime ordering due to the fact that we used S†. The last equality sign was taken assuming Mσ,σ ′
k,p =

M0δk,pδσ,σ ′ . Now, we can reintroduce time ordering and obtain a two-point Green’s function,

Gp,p′,p′,p
σ,σ ′,σ ′,σ (τ2, τ1, τ

′
1, τ

′
2) = 〈T̄ [c†

p,σ (τ2)c†
p′,σ ′ (τ1)]T [cp′,σ ′ (τ ′

1)cp,σ (τ ′
2)]〉0. (A7)
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FIG. 4. The contour for integration over frequency.

We can expand it using Wick’s theorem,

Gp,p′,p′,p
σ,σ ′,σ ′,σ (τ2, τ1, τ

′
1, τ

′
2) = 〈T̄ [c†

p,σ (τ2)c†
p′,σ ′ (τ1)]T [cp′,σ ′ (τ ′

1)cp,σ (τ ′
2)]〉0

= 〈T̄ [c†
p,σ (τ2)c†

p′,σ ′ (τ1)]〉0〈T [cp′,σ ′ (τ ′
1)cp,σ (τ ′

2)]〉0

−〈c†
p,σ (τ2)cp′,σ ′ (τ ′

1)〉0〈c†
p′,σ ′ (τ1)cp,σ (τ ′

2)〉0

+〈c†
p,σ (τ2)cp,σ (τ ′

2)〉0〈c†
p′,σ ′ (τ1)cp′,σ ′ (τ ′

1)〉0. (A8)

If the Hamiltonian describing our material does not contain terms proportional to c†
p,σ cp′,σ ′ for p �= p′ and σ �= σ ′, which is often

the case for a clean material, the second term is zero in the case of p′ = −p. The last term is a product of two one-point Green’s
functions.

Thus, for the fluctuations �Iab
p,σ ;−p,σ ′ = I (2),ab

p,σ ;−p,σ ′ − I (1),a
p,σ I (1),b

−p,σ ′ = 〈na
p,σ nb

−p,σ ′ 〉t=∞ − 〈na
p,σ 〉t=∞〈nb

−p,σ ′ 〉t=∞, we obtain

�Iab
p,σ ;−p,σ ′ =

∣∣∣∣∣
∫ ∞

−∞
dτ1dτ2M2

0 S∗
B(τ1)S∗

A(τ2)ei�Bτ1+i�Aτ2+iEp(τ1+τ2 )〈T c−p,σ ′ (τ1)cp,σ (τ2)〉0

∣∣∣∣∣
2

. (A9)

In the case of a single pulse, the signal has the same form (with all indices A and B being absent) [23], even though the derivation
is slightly different due to the fact that all emitted electrons have the same vacuum state. In Eqs. (6) and (7) and the related
discussion in the main text, we present the above equation.

In case of δ-function-shaped envelopes of pulses, SA(t ) = S0δ(t − tA), SB(t ) = S0δ(t − tB), the signal is simplified into

�Iab
p,σ ;−p,σ ′ = M4

0 S4
0〈c−p,σ ′ (tB)cp,σ (tA)〉0 = M4

0 S4
0 |F−p,p

σ ′,σ (tB, tA)|2. (A10)

This is Eq. (8) from the main text. If operators c have an additional index, e.g., a band index, the anomalous Green’s function
also acquires indices. In the main text, we consider an example of a two-band superconductor when pulse A affects band 1 and
pulse B affects band 2. Therefore, the signal is

�Iab
p,σ ;−p,σ ′ = M4

0 S4
0〈c2,−p,σ ′ (tB)c1,p,σ (tA)〉0 = M4

0 S4
0 |F−p,p

σ ′,σ (tB, tA, 2, 1)|2. (A11)

The fact that the pulses address different bands provides interesting results for the dependence of the signal on the time difference
between pulses, see Fig. 3 of the main text.

APPENDIX B: TIME DEPENDENCE OF ANOMALOUS GREEN’S FUNCTIONS OF A TWO-BAND SUPERCONDUCTOR

In this Appendix, we present the way we perform the Fourier transformation of the anomalous Green’s functions, even and
odd, for a model of a two-band superconductor described in Ref. [25].

To obtain anomalous Green’s functions in time representation, we need to calculate
∫ ∞
−∞ F (ω)eiωt dω, however, this integral

has divergencies at ±ε±, see Eqs. (5) and (6) in Ref. [25]. Therefore, we employ the circling of the poles analogously to the
Landau theorem [45,46]. As the Landau theorem applies to a single type of fermions, whereas we have two bands and, thus, a
combination of their contributions into the Green’s function, we use it for the denominators respective to different eigenbands,

D = (ω2 − ε2
−)(ω2 − ε2

+) = (ω − ε− + iη)(ω + ε− − iη)(ω − ε+ + iη)(ω + ε+ − iη). (B1)

Thus, the poles are at ω1,2 = ∓ε+ ± iη and ω3,4 = ∓ε− ± iη. Then, we define the contour in the complex plane � = {ω, iω′},
see Fig. 4.
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The contour has radius R and is defined for the upper half plane. We obtain∫
C

F (�)ei�t d� =
∫ R

−R
F (�)ei�t d� +

∫
CR

F (�)ei�t d� = 2π i
∑
ω1,ω3

res[Fei�t ]. (B2)

Let us evaluate the second integral (see, e.g., Ref. [47]). First of all, for large enough |�| > R0,

F (�) = �−2[1 + O(1/�)]. (B3)

We can also find such R1 � R0 that at all |�| � R1 we have |1 + O(1/�)| � 2, i.e., |F (�)| � 2|�|−2. Moreover,

|ei�t | = |ei(ω+iω′ )t | = e−ω′t = e−tR sin φ. (B4)

This equality holds for t > 0. Note that sin φ � 2
π
φ for φ ∈ [0, π/2]. Thus, for R � R1 we have∣∣∣∣

∫
CR

F (�)ei�t d�

∣∣∣∣ �
∫

CR

2|�|−2e−tR sin φ|d�|

� 2R−2R
∫ π

0
e−τR sin φdφ

� 2R−2R2
∫ π/2

0
e−2τRφ/π dφ � 2R−2 π

τ
→R→∞ 0. (B5)

In such a way we obtain ∫ ∞

−∞
F (�)ei�t d� = 2π i

∑
ω1,ω3

res[Fei�t ]. (B6)

Next we calculate the residues. As these are simply poles of the first order, we obtain for the even component of the signal Fe,

resω1 [Fe(�)ei�t ] = eiω1t

(ω1 − ε+)(ω2
1 − ε2−)

(
(δ+ + δ−)ω2

1 − α+ 2ξ12(δ+ξ+ − δ−ξ−)
2ξ12(δ+ξ+ − δ−ξ−) (δ+ − δ−)ω2

1 − α−

)
, (B7)

resω3 [Fe(�)ei�t ] = eiω3t

(ω3 − ε−)(ω2
3 − ε2+)

(
(δ+ + δ−)ω2

3 − α+ 2ξ12(δ+ξ+ − δ−ξ−)
2ξ12(δ+ξ+ − δ−ξ−) (δ+ − δ−)ω2

3 − α−

)
. (B8)

Then, we take a limit η → 0 and obtain

Fe(t ) = 1

2π

∫ ∞

−∞
Fe(�)ei�t d�

= i

2(ε2− − ε2+)

[
e−iε+t

ε+

(
(δ+ + δ−)ε2

+ − α+ 2ξ12(δ+ξ+ − δ−ξ−)
2ξ12(δ+ξ+ − δ−ξ−) (δ+ − δ−)ε2

+ − α−

)

− e−iε−t

ε−

(
(δ+ + δ−)ε2

− − α+ 2ξ12(δ+ξ+ − δ−ξ−)
2ξ12(δ+ξ+ − δ−ξ−) (δ+ − δ−)ε2

− − α−

)]
. (B9)

Analogously, for the odd component Fo(t ), we obtain

Fo(t ) = 1

2π

∫ ∞

−∞
Fo(�)ei�t d� = i(e−iε+t − e−iε−t )

ε2+ − ε2−

(
0 −δ−ξ12

δ−ξ12 0

)
. (B10)

Note that Eqs. (B9) and (B10) correspond to Eqs. (10) and (11) of the main text. We simplify the indices of the anomalous
Green’s functions here for ease of notation, keeping only time and even/odd notation.
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