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Self-pulsing in driven-dissipative photonic Bose-Hubbard dimers
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We report on the observation of nonlinear dynamics in driven-dissipative Bose-Hubbard dimers using a pair of
coupled fiber ring resonators coherently driven by a single laser beam. We comprehensively explore the optical
switching arising when scanning the detuning of the undriven cavity and demonstrate the key role played by the
driven cavity detuning in the nonlinear regime. By driving the photonic dimer out of equilibrium, we observe the
occurrence of robust self-switching oscillations.
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The spontaneous emergence of sustained periodic oscilla-
tions is a fascinating and ubiquitous phenomenon arising in
nonlinear systems. It is associated with the breaking of trans-
lational symmetry in time and is encountered in various fields
as diverse as chemistry, biology, mechanical engineering, or
astrophysics to cite only a few [1,2].

Since the seminal works of Lotka [3] and Volterra [4] a
century ago in the context of chemistry and population dy-
namics in biology, respectively, it is now well known that such
undamped oscillations may arise in nonlinear systems with
coupled variables under continuous driving. An important
example is the generation of infinite trains of pulses in the
FitzHugh-Nagumo model of nerve membranes [5]. In optics,
we can cite, for instance, self-pulsing in second-harmonic
generation [6], in lasers between coupled longitudinal modes
[7] or with continuous injected signal [8] or, more recently,
between counterpropagating beams in a single Kerr ring
resonator [9]. Rhythmogenesis refers to the emergence of
oscillations from the coupling between two or more subsys-
tems that show only steady states when uncoupled [10]. In
this context, the driven-dissipative Bose-Hubbard (DDBH)
model plays an essential role in physics, as it provides a
canonical description of the dynamics between interacting
bosons for open quantum systems [11]. In its simplest real-
ization, only two macroscopic phase coherent wave functions
are coupled to form a Bose-Hubbard dimer, also referred
to as a bosonic Josephson junction. These junctions have
been initially investigated with superconductors separated by
a thin insulator [12] and with coupled reservoirs of super-
fluid helium [13]. Later, it was realized that they can be
implemented with weakly coupled Bose-Einstein condensates
in a macroscopic double-well potential [14] and in photonic
systems with coupled semiconductor microcavities hosting
polariton excitation [15]. However, besides Josephson effects,
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owing to their intrinsic nonlinearity, other striking phenomena
such as anharmonic oscillations or macroscopic quantum self-
trapping emerge in these latter systems [14–17]. Interestingly,
under continuous excitation, it was theoretically predicted
that sustained oscillations may take place in DDBH systems.
This was shown not only for microcavity polaritons [17] but
also for nonlinear optical cavities with two [18,19] or more
[20–22] coupled cavities. It is, however, only very recently
that evidence of such self-pulsing was reported with polari-
tons, through its indirect spectral signature [23]. Moreover,
coupled ring resonators host rich nonlinear dynamics and
have recently attracted a lot of attention for frequency-comb
generation in microresonators (see, e.g., Refs. [24–29]).

In this Research Letter, we report the observation of the
spontaneous emergence of sustained oscillations induced by
nonlinear self-interactions, between light beams propagating
in two linearly coupled Kerr resonators. We consider asym-
metrically excited photonic DDBH dimers [see Figs. 1(a)
and 1(b)], in which the two cavity detunings [�L,R; see also
Eq. (1)] are distinct. We note that tuning these values is
analogous to changing the single-particle energy of the two
quantum states in bosonic Josephson junctions [15,30]. Here,
the dimer is realized with passive fiber cavities. In contrast
to other implementations of DDBH dimers, the detunings
can easily be independently set or scanned without linear or
nonlinear couplings between them. This is leveraged to shed
light on the role played by the respective detunings in the
emergence of self-pulsing.

The dynamics of the slowly varying envelope of the intra-
cavity fields in coupled Kerr ring resonators can be described
by a set of two coupled Lugiato-Lefever equations [8,27]. In
single rings with normal dispersion, modulation instability
occurs in a narrow range of parameters beyond the bistabil-
ity threshold [31]. In addition, different works have recently
shown that in coupled resonators, the local dispersion, in-
duced by mode coupling, changes the instability spectrum and
allows for the generation of stable localized patterns [24–26].
In our experiment, we carefully adjust the two cavity lengths
to avoid such instability by ensuring that they both have the
same free spectral range (FSR). The temporal walk-off as
well as the group velocity dispersion are thus neglected in
the model. Under these simplifications, the dynamics of the
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FIG. 1. (a) Schematic of an asymmetrically excited photonic
dimer: The two resonators (L, R) are coupled (with normalized
coupling strength C) and excited by an input beam coupled to the left
resonator. (b) Detuning diagram, by analogy with the energy-level
diagram of diatomic molecules. The coupling induces a resonance
splitting giving rise to bondinglike (B) and antibondinglike (AB)
modes. The resonance splitting is 2�′ =

√
4C2 + (�L − �R )2, with

�L,R being the detunings from the driving laser. (c) and (d) Real part
of the intracavity field amplitudes as a function of the detunings for
C = 5 [computed from Eq. (1) in the linear regime]. The fields are
in phase (B mode) and out of phase (AB mode) for �L,R > 0 and
�L,R < 0, respectively.

system is governed by the DDBH dimer model [24,32–34]. In
dimensionless variables, it reads

dψL,R

dt
= [−1 − i�L,R + i|ψL,R|2]ψL,R

+ iCψR,L + SL,R,

where the time t = t ′κ/TR with t ′ being the laboratory time,
TR being the round-trip time, and κ being the cavity loss coef-
ficient (excluding the inter-resonator coupling). The detunings
from the closest (single cavity) resonances are � j = δ j/κ =
(mj2π − ϕ j )/κ ( j = L, R), where ϕ j is the round-trip linear
phase shift and mj is an integer number. C = √

θ12/κ , with θ12

being the transmission coefficient of the coupler between the
cavities. Finally, ψ j = Aj

√
γ L/κ , SL = i

√
Ppγ Lθp/κ3, and

SR = 0, where Aj are the field amplitudes normalized such
that the intracavity powers (expressed in watts) are given by
|Aj |2 = Pj , Pp is the driving power, θp is the transmission
coefficient of the input coupler, γ is the nonlinear parameter
of the waveguide, and L is the length of the resonators.

In the linear regime, the coupling splits the resonance,
leading to an avoided crossing and the excitation of hybrid
modes of the dimer, which is schematically shown in Fig. 1(b).
In analogy to molecular physics, the resonance for positive
(negative) detunings �L,R corresponds to the excitation of the
bondinglike (antibondinglike) modes of the dimer for which
the fields in the coupled cavities are in phase (out of phase)
as seen in Figs. 1(c) and 1(d) for C = 5 [15]. In the nonlinear
regime, the on-site self-interaction gives rise to an intensity-
dependent shift of the resonance and to dynamical insta-
bilities through the nonlinear scattering towards the hybrid
modes [17].

The experimental investigation of the nonlinear dynam-
ics of DDBH dimers is performed with two fiber cavities

coupled by a 95/5 coupler. Each resonator is composed of
about L = 250 m of optical fiber (1.14 μs round-trip time)
with a net normal dispersion. The two cavity detunings can
be independently stabilized by means of piezoelectric fiber
stretchers. The left cavity is synchronously driven through
a 90/10 coupler by flat-top 470-ps pulses generated from a
narrow-linewidth distributed feedback laser. This prevents the
buildup of the Brillouin scattering radiation and lowers the
intracavity average power needed to reach the self-pulsing
regime. The intracavity powers (∝ |ψL,R|2) are simultane-
ously measured on an oscilloscope at the cavity drop ports (see
Supplemental Material for a schematic of the full setup [35]).
The loss in each cavity has been experimentally estimated to
be 2κ ∼ 40 %, leading to C = 1.08.

Equation (1) has three independent parameters for a spe-
cific coupling C (the two detunings �L,R and the pump
amplitude SL) which determine a three-dimensional param-
eter space. To theoretically investigate the nonlinear regime,
we fix, as in the experiment, the driven cavity detuning �L

and compute the different attractors of the system and their
stability in the (�R, SL) parameter space. We note that despite
their apparent complexity, the corresponding nonlinear reso-
nances can easily be interpreted in this subspace. We carried
out the bifurcation analysis of Eq. (1) following a numerical
path-continuation approach using AUTO-07P [36].

First, we consider �L = 1.75 to show how the bistability
comes up in coupled systems. This value is indeed just above
the bistability detuning threshold (

√
3) for single resonators

[37]. The theoretical and experimental linear responses of
the dimer are reported in Figs. 2(b) and 2(c). By increasing
SL, optical bistability is initially encountered in a narrow
�R detuning range between the saddle-node bifurcation lines
SN1 and SN2 in the phase diagram shown in Fig. 2(a). The
theoretical resonances at SL = 1.5 are plotted in Fig. 2(d)
and compared with the experimental transmissions reported
in Fig. 2(e). We observe a hysteresis cycle on the left side of
the resonance in agreement with the fixed nodes of Eq. (1).
Beyond the driving value at which SN1 and SN2 meet at the
cusp bifurcation c12, the system becomes monostable again,
until the emergence of a new pair of saddle nodes SN3 and
SN4 through a second cusp bifurcation (c34). Theoretical res-
onances corresponding to this regime are shown in Fig. 2(f)
for SL = 2.8. The experimental scans confirm the shape of the
nonlinear resonance and the existence of a bistable region for
�R > 0 [see Fig. 2(g)].

The bifurcation analysis of the DDBH dimer model pre-
dicts that continuous solutions unstable against periodic
perturbations can be encountered for �L � 2.1 and that the
instability leads to the emergence of stable oscillations. Such
a situation is depicted in Fig. 3(a) for �L = 3.1, where the
bistable regions as well as the self-pulsing area in the (�R, SL )
plane of the parameter space are plotted. At SL = 2, the two
saddle-node curves (SN2, SN∗

2) are crossed when scanning
�R. We note that these two lines are actually connected in
coupled ring resonators as they stretch between adjacent res-
onances. At this driving amplitude, the photonic dimer has
two stable states for all �R values, except in the vicinity of
the avoided mode crossing [see Fig. 3(d)], in stark contrast
with the behavior at �L = 1.75. Moreover, the upper state is
completely disconnected from the lower one. Consequently,
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FIG. 2. (a) Phase diagram in the (�R, SL) parameter space for
�L = 1.75. The saddle-node bifurcations SN j are plotted as green
lines, and ci j mark cusp bifurcations. The dimer is bistable in the
shaded green areas. (b), (d), and (f) Bifurcation diagrams showing
the normalized intracavity power, in the driven (blue) and undriven
(red) resonators as a function of �R, for SL = 0.2 (b), 1.5 (d), and
2.8 (f) [see also dashed lines in (a)]. Solid (dashed) lines represent
stable (unstable) solutions of Eq. (1). (c), (e), and (g) Corresponding
experimental forward and backward scans. The arrows show the
direction of the scans.

the system cannot spontaneously jump to the high-power state
by changing the detuning of the undriven cavity. In order to
observe the two states in the bistable region, we perturb �L

to allow the system to switch to the higher state. It then falls
back to the lower one while scanning �R in the forward or
the backward direction. This is seen in Fig. 3(e), where only
the down-switching transition is reported for both scanning
directions. The two �R values at which the switching takes
place coincide well with the theoretical location of SN2 and
SN∗

2 in Fig. 3(d).
At a slightly higher driving strength, two new saddle-node

lines SN1 and SN5 appear as a necking bifurcation [38] is
crossed [see n51 in the inset of Fig. 3(a)]. At this point, SN∗

2
touches the lower state (not shown). It is beyond that power
that self-pulsing occurs. The SN5 line, however, quickly dis-
appears through a cusp bifurcation at c25. Just above the power
corresponding to n51, SN1 and SN2 are located on either side
of the newly formed connection between the lower and upper
states. An example is given in Fig. 3(f) for SL = 2.1. We show
in the experimental scans [see Fig. 3(g)] that this leads to a
hysteresis cycle that stretches between adjacent resonances.
The system jumps to the lower state at SN2 in the forward
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FIG. 3. Same as in Fig. 2, but for �L = 3.1. (a) Phase diagram.
The Hopf bifurcations HB1,2 (red lines) mark the boundaries of the
self-pulsing region, and the Shilnikov bifurcation SB (black line)
marks the boundaries of the area where there is no self-pulsing.
n41, necking bifurcation; ci j , cusp bifurcation. The star indicates the
parameters of the experiment reported in Fig. 4(a). (b), (d), (f), and
(h) Normalized intracavity powers (thin lines) as a function of �R at a
driving SL value of 0.2, 2.0, 2.1, and 2.8, respectively. The thick lines
between the bifurcations HB1,2 show the maximum and minimum
oscillation amplitudes. Note that in (h), HB2 (not shown for clarity)
is located at SN4. (c), (e), (g), and (i) Corresponding forward and
backward experimental scans. See main text for further explanation.

direction and then goes back to the upper state thanks to the
connection in the avoided crossing region. In the backward
direction, it first switches to the upper state at SN1; then it
goes back down and stays on the lower state until the next res-
onance. Moreover, as seen in the experimental backward scan,
the system spontaneously oscillates in a narrow range of �R

which coincides with the self-pulsing region located between
the two Hopf bifurcations HB1 and HB2. Increasing the driv-
ing further, the self-pulsing region grows while SN1 moves
away from the avoided crossing and appears on the other side
of the resonance. The stable and unstable homogeneous solu-
tions of Eq. (1) are plotted for SL = 2.8 in Fig. 3(h), as well
as the boundaries of the oscillation amplitudes between the
Hopf bifurcations. The measurements of the intracavity pow-
ers in the two resonators as �R is scanned back and forth are
reported in Fig. 3(i). They show a hysteresis cycle on the left
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FIG. 4. (a) Normalized power in the left (blue) and right (red) resonators, recorded over more than 2000 lifetimes (10 000 round trips) and
demonstrating periodic oscillations. The parameters are SL = 2.8, �L = 3.1, and �R = 2.3. (b) Zoom over ≈12 periods and (c) corresponding
trajectory in the (|ψL|2, |ψR|2)-phase plane showing a limit cycle. (d) Sustained oscillations and (e) limit cycle obtained by numerical integration
of Eq. (1). (f) Spectrum of the hybrid modes (F denotes the discrete Fourier transform operator) corresponding to the self-pulsing shown in
(d) and (e).

and self-starting oscillations on the right, whose locations are
in excellent agreement with the bifurcation analysis of Eq. (1).
We stress that the evolution of the nonlinear resonances with
�R for increasing SL and the emergence of self-pulsing for
detunings �L at which SN∗

2 exists is not specific to low-
coupling DDBH dimers (see Supplemental Material for larger
couplings [35]).

At a driving power close to SL = 2.8, the bifurcation di-
agram displayed in Fig. 3(a) shows that the system crosses a
second cusp bifurcation (c34). This results in the emergence of
two new continuous states separated by a pair of saddle-node
bifurcations SN3,4. In between these lines, the self-pulsing
undergoes a Shilnikov homoclinic bifurcation (SB) [33,39].
Here, the self-pulsing cycle is destroyed, and a homoclinic
orbit appears, leading to type II excitability of the photonic
dimer [40]. This is not reported because of the power limita-
tion in our experiment. By further increasing SL, only SN3 and
SN4 remain, similar to the case shown in Figs. 2(f) and 2(g).

To prove that the oscillations seen in Fig. 3(i) correspond to
self-pulsing, we stabilize the second cavity around �R = 2.3,
i.e., in the middle of the unstable region. A stable oscillation
in both cavities is measured over 2000 cavity lifetimes, i.e.,
10 000 round trips [see Figs. 4(a) and 4(b)]. The trajectory in
the (|ψL|2, |ψR|2)-phase plane reported in Fig. 4(c) shows a
limit cycle behavior consistent with the numerical simulation
of Eq. (1) displayed in Fig. 4(e). This confirms the occur-
rence of self-pulsing in a driven-dissipative nonlinear bosonic
Josephson junction. We note that the deviations from the av-
erage orbit in the experiment are attributed to the limitations
of the stabilization technique of the two cavity detunings.

Self-pulsing in coupled cavities can be explained by the
beating between the photons at the driving frequency and new
photons generated by nonlinear scattering, with signal (idler)
photons emitted at the frequency of the bondinglike (anti-
bondinglike) mode [19,23]. The period of the self-pulsation
is thus expected to be close to the beating period 2π/�′ =
2π [C2 + (�L − �R)2/4]−1/2. However, this simple picture
only holds in well-defined regions of the parameter space
of DDBH dimers. Self-pulsing with a longer period is also

possible and is typically found for �L ≈ 2C, for which the
bondinglike mode is mainly excited (see Supplemental Mate-
rial [35]). Besides, cascades of period doubling, an increasing
oscillation period in the vicinity of a Shilnikov bifurcation,
as well as chaotic pulsing, are also predicted to occur [33].
The spectrum of the self-pulsing plotted in Fig. 4(f) in the
basis of the hybrid modes shows that in our experiment the
bondinglike mode is the dominant mode at the driving wave-
length and that the two main sidebands are composed of both
hybrid modes. The measured oscillation angular frequency
(0.94) is also significantly smaller than the beating frequency
�′ = 1.16.

In summary, we have explored, with ring cavities, the bifur-
cation structure of driven-dissipative Bose-Hubbard dimers.
The ability to individually tune the two cavity detunings with
respect to the driving field has been leveraged to study bifurca-
tions in the (�R, SL ) plane of the parameter space for different
�L. We have shown the key role played by the driven cavity
detuning (�L) in the emergence of self-pulsing, which we
have linked with the existence of the saddle-node SN∗

2. The
experiments are in very good agreement with the canonical
driven-dissipative Bose-Hubbard dimer model, demonstrating
that coupled ring resonators are well suited to study nonlinear
Bose-Hubbard systems and, in particular, bosonic Josephson
junctions. This model notably predicts the existence of a
Shilnikov bifurcation, which enables excitability that may find
applications in all-optical computing [41–43]. Our results are
also relevant for the dynamics of hopping solitons, in photonic
dimers and for solitons in a lattice of coupled resonators [28],
which involve the synchronous oscillation of multiple modes.
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