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Fatigue crack growth in an aluminum alloy: Avalanches and coarse graining to growth laws
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In fatigue fracture the crack growth is slow and in many materials exhibits apparent self-similarity as expressed
by the dependence of the growth velocity on a stress intensity factor that grows with the crack size. We study
the intermittency of fatigue crack dynamics in aluminium alloys by optical tracking. A power-law distribution
of crack tip jumps is found with an exponent close to two and a cutoff which increases with time or crack
propagation. The cutoff is related to the crack velocity. We show how such a distribution evolves or coarse
grains with the scale of observation or time window. The correlations of the crack propagation imply short-range
memory effects in the underlying dynamics. Our results show universal features of fatigue cracks and how these
lead to the crack growth and failure in material samples.
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I. INTRODUCTION

Fracture presents interesting fundamental science ques-
tions since the strength of materials as a concept has to deal
with scales from the atomistic to the engineering of materials.
One interesting everyday manifestation is fatigue failure, in
which a load history is imposed on a sample (in the labora-
tory). The viewpoint from the materials science community is
[1–4] that the main influence on the fatigue life and fatigue
crack growth is the typical stress amplitude, for instance,
during a loading cycle in a laboratory experiment. When the
sample fails, the variability and the dependence on the details
of the history are important and so is the impact of the ma-
terial microstructure on these. Statistical physics has had an
impact on fracture mechanics due to an understanding of the
fluctuations in failure [5] such as in the depinning transition of
cracks under applied loads [6–11] and creep dynamics as the
thermally assisted motion of the crack tip [12–14]. Here, we
take such a “crackling noise” [15] approach to fatigue crack
growth (FCG). We show how the mesoscopic crack velocity
arises from coarse graining the short-term and short-distance
fluctuations in the dynamics. The crack tip jumps are widely
distributed and the averaged growth law depends on the dis-
tribution and how it evolves with growth.

We next study the crack growth rate as described by crack
growth laws such as the Paris-Erdogan one [16],

da

dN
= C�Km, (1)
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where a is the crack length, N the number of cycles, C a
material- (and loading-) specific constant, �K the stress in-
tensity factor (SIF) range, and m the material- (and loading-)
specific crack growth exponent. The SIF range can be written
in terms of the peak SIF �K = (1 − R)Kmax using the stress
ratio R = Kmin/Kmax. Note that the peak stress plays only a mi-
nor part. For clarity the results presented here are expressed in
terms of the peak SIF but this corresponds to only a horizontal
shift in the Paris plots.

The apparent self-similarity [3,17] expressed by Eq. (1)
may be misleading as a variety of more complex variants have
been proposed, usually in terms of �K and R. The two main
reasons for this complexity are the history or memory effects
arising from crack closure [18] and the fact that the fracture
process zone encodes the extent of plastic deformation due to
the peak stresses during the fatigue process. Our work con-
centrates on the stochastic nature of FCG: We investigate the
dynamics on timescales (or cycles) shorter than on which self-
similar growth laws are formulated. This in itself presents a
different look on fatigue fracture as a stochastic phenomenon
with fluctuations [19].

Our approach is based on performing typical FCG exper-
iments and following the development of the crack length
optically (see Methods). This allows us to accomplish two
goals. One is the determination of the “jumps” or steps that
the crack length makes depending on the measurement time.
Analogous data with a high resolution may be derived from
acoustic emission (AE) studies [20–22], but the AE method is
only an indirect measure whereas crack length measurements
connect directly to the SIF.

The second step is the analysis of the scaling in the
vein of Eq. (1) and its relation to the underlying dynamics.
The main results that we obtain thus are threefold. First, a
step size distribution is of power-law form with an exponent
that differs from the usual values. Second, there is a slowly
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FIG. 1. (a) A schematic drawing of the experimental setup where the crack growth is monitored with a camera. The crack tip position is
determined from the images by binarizing them and taking the edge pixel of the binarized area to correspond to the crack position. (b) The
crack length a resulting from the crack tip tracking as a function of cycle number N (blue line). This jumpy raw signal is averaged to produce
the smooth signal (orange line) used in the Paris plot. The inset shows a zoomed-in view of the two signals, highlighting the jumpy behavior.

increasing cutoff. Third, the dynamics exhibit short-range
correlations.

II. METHODS

A commercially pure aluminum 1050 alloy was used in this
study. Plates of thickness 5 mm were received from Alumeco
Ltd. in strain-hardened and partially annealed condition cor-
responding to H24 temper. Specimens were polished using
a final Struers DP suspension with 3-μm particles. For FCG
tests standard compact tension specimens were produced us-
ing electrical discharge machining [Fig. 1(a)] so that the crack
propagation occurs in the direction normal to the rolling direc-
tion. A MTS 858 hydraulic fatigue testing machine was used
to load the samples using alternating force with a sinusoidal
waveform and 10 Hz frequency. First, three types of tests were
performed to test the effect of stress ratio R (fixed Fmax = 1.5
kN with R values 0.1, 0.3 and 0.5). Additionally, tests with
Fmax = 1.3 kN and R = 0.1 were performed to study the effect
of the peak force with constant R. The tests were performed
as described by the ASTM E647 standard [23] and the SIF
determined accordingly.

To carry out crack propagation experiments the following
procedure and data processing scheme was developed. The
experimental setup consisted of a Canon EOS R digital cam-
era imaging the sample every 4 s using a Canon MP-E 65-mm
macrolens equipped with a ring light-emitting diode (LED)
lamp. Uniform direct light created by the ring lamp gets
deflected by the deformed surface in close proximity to the
crack, illuminating it. We define the crack tip as the edge pixel
of a contrast region on the binarized area in the vicinity of the
visible crack tip using averaged local background intensity
as the threshold value. To take the effect of specimen shift
into account, the crack tip position was extracted relative to
a stationary point on the specimen’s surface. The accuracy of
such an approach is of the order of one pixel and therefore
comes down to image resolution (6720 × 4480 pixels in the
present work), and was equal to 4.5 μm per pixel (or 112 nm
per cycle, when the jumps are smeared over the whole imaging
interval spanning 40 cycles). Such an approach is able to pro-
vide visual crack length tracking with an accuracy higher than

the electric potential difference technique which is limited to
9 μm for titanium (300 μm for aluminum) [23]. We apply
this procedure sequentially to every image and additionally re-
quire the crack length to increase monotonously. This is done
by constructing a monotonously increasing upper and lower
envelope of the crack length signal and taking their average
to correspond to the true crack length. This requirement can
produce crack advancement jumps less than 100 nm per cycle
but we have excluded such jumps from further analysis.

The estimation of the exponent γ and the cutoff �a0 from
the distributions was done by a maximum likelihood estima-
tion [24]. First, the value of the exponent γ was estimated
by computing the maximum likelihood for a pure power law
p(�a) ∝ �a−γ by considering the R = 0.1 and R = 0.3 cases
where the cutoff is high enough for the power-law region to be
clearly visible (the estimation was done in a region excluding
the cutoff). This yields an exponent γ = 2.0 ± 0.3. After that
a maximum likelihood estimate was computed for the cutoff
[for distribution of the form of Eq. (2)], using a fixed value
γ = 2.0 for the exponent. A different shape for the cutoff was
considered by varying the exponent φ in the more general
p(�a) ∝ �a−γ exp[−(�a/�a0)φ] but when considering all
the different cases, the best fit was found with φ close to unity.

III. RESULTS

By visually observing the crack advancement during an
experiment [see Fig. 1(a) and Methods for details] we see that
the crack advancement is not smooth but occurs in intermittent
jumps [see Fig. 1(b)]. This jumpy crack position signal a can
be coarse grained by applying averaging schemes, which yield
the smooth crack velocity da

dN (which is just the average crack
advancement per cycle) used in Paris plots [see Fig. 2(a)].

Another direction would be to study these crack advance-
ment jumps. Here, a jump �a is defined as the advancement of
the crack between two images divided by the number of cycles
between these images. This smearing of the observed jumps
over the time interval between images serves just to compare
the jump sizes with the coarse-grained crack velocity. We
emphasize this difference between jumps in the crack position
signal �a and the coarse-grained crack velocity da

dN by using
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(a) (b) (c)

FIG. 2. (a) The crack advancement per cycle da
dN as a function of the peak SIF Kmax. The blue dots correspond to the jumps �a in the

crack position signal and the orange line represents the coarse-grained crack velocity da
dN . (b) The Paris curves (crack velocity da

dN vs the peak
SIF Kmax) for three different values of stress ratio R. The power-law fits (black lines) around the region where the Paris-Erdogan law holds
(Kmax from 7 to 13 MPa

√
m) show that the exponent m decreases with increasing R. (c) The Paris curves for two different values of Fmax. The

power-law fits (black lines) around the same region as in (b) show that the exponent m is constant and the prefactor C increases very slightly
with increasing Fmax.

different notations. Figure 2(a) shows this difference for a
single experiment as a function of Kmax. The Paris curve da

dN
(orange line) results from the crack advancement jumps �a
(blue dots) via coarse graining. One should note that the lower
values of da

dN compared to �a are due to the intermittency of
the jumps (sometimes no crack advancement is detected).

The traditional analysis of the Paris curves shown in
Figs. 2(b) and 2(c) reveals the effects of R and Fmax in this
alloy. The region where the Paris-Erdogan law [Eq. (1)] holds
corresponds to roughly Kmax from 7 to 13 MPa

√
m and a

power-law fit in this region reveals two things. First, the
exponent m decreases clearly (from 3.95 to 2.34) as R in-
creases from 0.1 to 0.5. Second, as Fmax increases from 1.3 to
1.5 kN the exponent m stays constant (fits give 3.95) but there
is a tiny increase in the prefactor C. These values are typical
for aluminum alloys, where m is usually slightly over three
[25–27] but sometimes smaller [28]. We also note that the
usual models [29–31] of the effect of R only apply a shift in
the SIF term and do not change the slope in the Paris plots and
therefore are not effective here.

Now we can take a crackling noise approach to the crack
advancement jumps. By taking the aforementioned region
where the Paris-Erdogan law holds and observing the prob-
ability density of �a in this region [Figs. 3(a) and 3(b)] we
see that the distributions follow a power law p(�a) ∝ �a−γ

with an exponent γ ≈ 2 for around two decades of jump sizes.
This power-law distribution is also visible when one considers
the region before this Paris-Erdogan regime. There is also a
cutoff at high values of �a so the full probability density can
be written as

p(�a) ∝ �a−γ exp

(
− �a

�a0

)
, (2)

where �a0 indicates the cutoff scale.

One can then fit this type of distribution to the data us-
ing Eq. (2) with γ = 2 and �a0 as the free parameter (see
Methods for details). For the case of different values of R the
probability density distributions with the fitted lines can be
seen in Fig. 3(a). An increase in R clearly corresponds to a

(a) (b)

(c) (d)

FIG. 3. (a) The probability density p(�a) of crack advancement
jumps �a, in the region where the Paris-Erdogan law [Eq. (1)] holds,
for three different values of R. The lines correspond to fits of the
cutoff size �a0 using Eq. (2) with γ = 2. (b) Same as (a) but for two
different values of Fmax with R = 0.1. (c) Same as (a) but only for
the first half of the region (Kmax � 10 MPa

√
m). (d) Same as (a) but

only for the second half of the region (Kmax � 10 MPa
√

m).
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(a) (b) (c)

FIG. 4. The coarse-grained distributions of jump sizes (per cy-
cle) after (a) one decimation, (b) three decimations, and (c) four
decimations for the case R = 0.1 and Fmax = 1.5 kN. Here, decima-
tion refers to the rescaling of the time resolution (number of cycles
between images �N) by a factor of 2.

decrease in the cutoff size. Similarly in Fig. 3(b) one can see
this effect for the different values of Fmax. An increase in Fmax

corresponds to an increase in the cutoff size. Note that the
number of events in this kind of statistics per experiment is
constrained by the distance that the crack propagates in the
power-law growth regime and the average step size—and for
broad distributions the latter tends to be relatively large.

As the crack growth exponents m differ between differ-
ent values of R, the difference in the cutoff sizes should
become more prominent as the SIF increases. We study this
by splitting the Paris-Erdogan region in half (so Kmax from 7
to 10 MPa

√
m and from 10 to 13 MPa

√
m) and looking at

them separately. As expected, the cutoff sizes in the first half
[Fig. 3(c)] are smaller than in the second half [Fig. 3(d)] and
the difference between the cutoffs for different R increases in
the second half.

The coarse graining that happens when one considers the
crack advancement on larger and larger scales is demonstrated
in Fig. 4 where the time resolution of the experiments is
rescaled from the original number of cycles between images
�N = 40. This decimation is done by interpolating the crack
length data to a new grid of N values with a different spacing
(Fig. 4 shows this for �N = 80, �N = 320, and �N = 640,
so after one, three, and four decimations—doublings of the
cycles between images). The change of the distribution as
�N increases shows that the self-averaging hides the larger
crack tip jumps (when considering the jumps smeared over
the whole imaging time window).

The behavior of �a0 we observe corresponds to the in-
crease in the cutoff as the crack velocity increases, both in the
case of differing R and differing Fmax. This behavior can be
quantified by taking the cutoff size determined for each of the
distributions in Fig. 3 and plotting it against the average crack
velocity 〈 da

dN 〉 in the corresponding region of the Paris curve
[Fig. 5(a)]. There is a clear correlation between these cutoffs
determined from the distributions of the jump sizes and the av-
eraged velocities determined from the coarse-grained signal.
As a guide to the eye we plot a

√
�a0 dependence. Correlating

the 〈 da
dN 〉 against the average step size would give a too weak

dependence. Thus we find in Fig. 5(b) that the cutoff has a
direct correlation with the exponent m. The fatigue protocol—
R value—relation to this is shown in Fig. 5(c), where we see
a linear relationship, and thus of course the larger the R, the
smaller is the m. Thus in the “creep limit” R → 1 the crack
velocity would tend to a constant.

(a) (b)

(c) (d)

FIG. 5. (a) The cutoff size of the jump distributions �a0 plotted
against the average crack velocity 〈 da

dN 〉 in the corresponding regions
of the Paris curves. The line is a square-root dependence. (b) The
cutoff size of the jump distributions �a0 plotted against the Paris-
Erdogan law exponent m. (c) The Paris-Erdogan law exponent m as
a function of R. (d) The conditional average of the subsequent jump
size �ai+1 given the size of the previous jump �ai as a function of
the size of the previous jump. The averages are calculated in bins of
at least 50 jumps.

Looking more closely at the distributions in Fig. 3 reveals
that in addition to the cutoff behavior there is a slight excess
of larger jumps. This can be seen as a bump visible in the
distributions around �a = 1 μm which has previously been
suspected [32] to arise from summing of several jumps into
one. Here, we offer another explanation by looking at the
correlations of subsequent jumps. One can compute the con-
ditional average of a size of a jump �ai+1 given the size
of the previous jump �ai, which is notated as 〈�ai+1|�ai〉
[see Fig. 5(d)]. Here, the averaging is done in (overlapping)
bins centered at �ai and the width of the bins is chosen so
that each bin contains at least 50 jumps. All of the curves
increase at a point corresponding to the location of the bump
in the distributions (Fig. 3) and before and after this value
the value is roughly constant. This would imply a presence
of a memory effect: Small jumps tend to be followed right
after by small jumps and large jumps (�a > 1 μm) tend to be
followed right after by larger jumps. These “large” jumps are
however smaller compared to the previous, large one.

IV. CONCLUSIONS

What we find when following in detail the fatigue crack
growth is that the crack tip undergoes intermittent motion.
These steps have a size distribution which is characterized
by a particular power-law exponent, roughly two, with an
increasing cutoff. The dynamics appears thus “critical” but
the exponent value has no theoretical comparison in models
of crack propagation in brittle materials [5,11,33], where the
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theory of depinning transitions is applied to crack fronts. The
typical avalanche size exponents are in fact limited above by
a value of two in such theories even for elastic manifolds
with long-range elasticity or interactions. Such coarse-grained
theory includes mechanics (of elastic fields) and the material
properties via a frozen, time-independent disorder field and is
at best able to give predictions about crack fluctuations and
creep rates in the limit of slow crack growth.

Here, we do not observe directly the avalanches along the
fatigue crack in space and time, or the jumps in the average
position of the crack with time. Instead, we follow the re-
sulting integrated crack advancement over windows of time.
The exponent value as such makes one expect that the mean
step size has a weak dependence on the cutoff, contrary to
such cases where the avalanche exponent is clearly smaller
than two. The experimentally found cutoff increases with the
crack advancement, and thus the step size and the typical
crack growth rate averaged over longer times. This then relates
the size distribution evolution to the “crack growth law,” the
Paris-Erdogan law [Figs. 5(a) and 5(b)]. This is often the most
important part in FCG in that it terminates in rapid crack
growth and thus is crucial for the sample lifetime.

On short scales the dynamics exhibit correlations such that
they seem to imply pinninglike dynamics but with time and
crack growth these get washed out, in analogy to the “average
Paris law”-like dependence of the velocity on �K which in
the spirit assumes Markovian, memoryless dynamics. The
fluctuating character of the crack advancement implies, like-
wise, that the intrinsic noise or the fluctuations of the velocity
depend on the timescale of observation.

The importance of our work is in that it shows that slow
fatigue crack growth, typical of materials, follows from av-
eraging over an intermittent dynamics. How quickly a crack
grows in the self-similar regime of crack growth depends

on how quickly the cutoff scale of the crack avalanches or
jumps grows. This is then the direction for understanding how
materials can made more resistant and how the loading history
leads to faster growth [Figs. 5(b) and 5(c)]. The “material
parameters” in the Paris-Erdogan self-similar growth law (or
its relatives) such as the prefactor C and the power-law ex-
ponent m follow directly from the dependence of the crack
statistics on the SIF. This dependence encodes the impact of
the fatigue cycle details on how big jumps may happen and
thus in particular on the exponent m.

Several questions and further directions are left. What
is the origin or theoretical explanation of the statistical
properties we find? Does the apparent intermittency follow
universality, in particular in terms of the exponent of the distri-
bution from one material to another? In summary, we expect
that the fluctuations in fatigue failure in general and around
the behaviors summed up by empirical growth laws are due to
the small-scale crack avalanches. This presents fundamental
questions about how to model fatigue failure, how predictable
it is, and the role of such fluctuations in general.
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