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Nonlocal amplification of intense vorticity in turbulent flows
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The nonlinear and nonlocal coupling of vorticity and strain rate constitutes a major hindrance in understanding
the self-amplification of velocity gradients in turbulent fluid flows. Utilizing highly resolved direct numerical
simulations of isotropic turbulence in periodic domains of up to 12 2883 grid points and Taylor-scale Reynolds
number Rλ in the range 140–1300, we investigate this nonlocality by decomposing the strain-rate tensor into local
and nonlocal contributions obtained through Biot-Savart integration of vorticity in a sphere of radius R. We find
that vorticity is predominantly amplified by the nonlocal strain coming beyond a characteristic scale size, which
varies as a simple power law of vorticity magnitude. The underlying dynamics preferentially align vorticity
with the most extensive eigenvector of nonlocal strain. The remaining local strain aligns vorticity with the
intermediate eigenvector and does not contribute significantly to amplification; instead it surprisingly attenuates
intense vorticity, leading to breakdown of the observed power law and ultimately also the scale invariance of
vorticity amplification, with important implications for prevailing intermittency theories.
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Complex nonlinear physical systems are often character-
ized by formation of extreme events, which strongly deviate
from Gaussianity, necessitating anomalous corrections to
mean-field descriptions [1–3]. Fluid turbulence, described
by the three-dimensional incompressible Navier-Stokes equa-
tions (INSE), is an emblematic example of such a system,
where extreme events are associated with intermittent forma-
tion of large velocity gradients, organized into thin filaments
of intense vortices [4–7]. The amplification of such intense
gradients is readily described by the vortex-stretching mech-
anism, which expresses the nonlinear stretching of vorticity
ω, by the strain-rate tensor Si j in the INSE (written as the
vorticity equation)

Dωi

Dt
= ω jSi j + ν∇2ωi, (1)

where ν is the kinematic viscosity.
The canonical description based on angular momentum

conservation dictates that as vortical filaments are stretched by
strain, they become thinner and spin more quickly, enabling
gradient amplification and simultaneously driving the energy
cascade from large to small scales [8,9]. Though Eq. (1) is
valid pointwise, this multiscale description can be analyzed
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by realizing that vorticity and strain are related nonlocally via
Biot-Savart integral over the entire flow domain:

Si j (x) = PV
∫

x′

3

8π
(εikl r j + ε jkl ri) ωl (x′)

rk

r5
d3x′, (2)

where r = x − x′, r = |r|, and εi jk is the Levi-Civita symbol.
This integral essentially couples all the scales, providing a
direct means to understand the nonlocality of gradient am-
plification, without involving additional complexities such as
the pressure field [10,11]. However, the integral in Eq. (2) is
analytically intractable, leading to outstanding challenges in
turbulence theory and also in establishing the regularity of
INSE [12]. In this Letter, we investigate the nonlocality of vor-
ticity self-amplification by tackling the Biot-Savart integral in
Eq. (2) via direct numerical simulations (DNS) of INSE [6].

To analyze the nonlocality with regard to a scale size
R, the integration domain in Eq. (2) is separated into a
spherical neighborhood of radius r � R and the remaining
domain [13–15]:

Si j (x) =
∫

r>R
[· · ·]d3x′

︸ ︷︷ ︸
=SNL

i j (x,R)

+
∫

r�R
[· · ·]d3x′

︸ ︷︷ ︸
=SL

i j (x,R)

, (3)

where SNL
i j represents the nonlocal or background strain acting

on the vorticity to stretch it and SL
i j is the local strain induced

in response to stretching. We utilize DNS to compute SL,NL
i j

and investigate their interaction with vorticity for various R,
allowing us to quantify the degree of nonlocality of vortex
stretching and thereafter relate it to vortical structures in the
flow.
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FIG. 1. Conditional second moment of the alignment cosines between vorticity and eigenvectors of the local (L) and nonlocal (NL) strain
tensors at Rλ = 1300 (solid lines) and 650 (dashed lines), and various conditioning values of enstrophy �. The dotted line at 1/3 in each panel
corresponds to a uniform distribution of the cosines. Note that SL

i j = 0 at R = 0, with the alignments being undefined.

While computing SL,NL
i j through numerical integration is

possible in DNS [14], it is prohibitively expensive at high
Reynolds numbers [16]. Instead, as derived in our recent
work [15], nonlocal (and local) strain can be efficiently
computed for any R by applying a transfer function to the
total strain in Fourier space: ŜNL

i j (k, R) = f (kR)Ŝi j (k), with
f (kR) = 3[sin(kR) − kR cos(kR)]/(kR)3, thus bypassing the
direct evaluation of the Biot-Savart integral. This approach is
used to analyze a large DNS database, generated using the
canonical setup of forced stationary isotropic turbulence in
a periodic domain [6], utilizing the highly accurate Fourier
pseudospectral methods [17]. Special attention is given to
maintain a grid resolution smaller than the Kolmogorov length
scale η to resolve the extreme events accurately [7]. The
database corresponds to Taylor-scale Reynolds number Rλ in
the range 140–1300, on up to grids of 12 2883 (for additional
details, see Refs. [15,18–20]).

The efficacy of vortex stretching is controlled by the align-
ment between vorticity and strain rate and is commonly
studied in the eigenframe of strain tensor, given by the eigen-
values λi (λ1 � λ2 � λ3) and the corresponding eigenvectors
ei. Incompressibility imposes λ1 + λ2 + λ3 = 0, giving λ1 >

0 and λ3 < 0. (The corresponding quantities for local and
nonlocal strain are defined with superscripts L and NL, re-
spectively.) It is well known that λ2 is positive on average and
vorticity preferentially aligns with the intermediate (second)
eigenvector of the total strain rate [19,21–23]. This alignment
is often regarded as anomalous, since an analogy with stretch-
ing of material lines suggests that vorticity should align with
the first eigenvector of total strain, corresponding to the largest
eigenvalue [24].

The earlier work of Ref. [14], based on direct evaluation
of the Biot-Savart integral for a single value of R = 12η at
very low Reynolds number Rλ ≈ 100, provides some evidence
that vorticity preferentially aligns with the first eigenvec-
tor of the nonlocal strain (similar to stretching of material

lines), whereas the anomalous alignment results from local
dynamics. In the following, we provide a comprehensive in-
vestigation of the alignment properties, as a function of R
and over a drastically larger Rλ range. In addition, we also
condition on the enstrophy, � = ωiωi, to analyze generation
of intense vorticity. To this end, we extract the second moment
of directional cosines: 〈(eL,NL

i · ω̂)2〉, whose averages are indi-
vidually bounded between 0 and 1 (with 1/3 corresponding to
a uniform distribution), and additionally also add up to unity,
i.e.,

∑3
i=1(eL,NL

i · ω̂)2 = 1 [19].
The directional cosines are shown as a function of scale-

size R/η in Fig. 1, and conditioned on �/〈�〉 to separate the
extreme events. The alignments for SL are explored first in
Figs. 1(a)–1(c), corresponding to �/〈�〉 = 1, 100, 1000. We
observe that for all R/η, vorticity preferentially aligns with
second eigenvector of SL, with a tendency to be orthogonal to
first and third eigenvectors. The alignment properties become
more pronounced as � increases. Overall, this result con-
forms to the picture of axisymmetric vortex tubes, where the
velocity field is approximately two-dimensional, resulting in
preferential alignment of vorticity with the second eigenvector
of SL [13,25,26]. Interestingly, vorticity is more orthogonal
to the first eigenvector compared to the third for small R
(�10η), with the difference becoming more pronounced for
large � in Fig. 1(c) (we return to this behavior later). At large
R, this trend is reversed, approaching the well-known result
corresponding to total strain (as SL = S for R → ∞) [19,21].

The alignment of vorticity with SNL is shown next in
Figs. 1(d)–1(f). The known alignment between vorticity and
the intermediate eigenvector of S is recovered at R = 0 (where
SNL = S). However, as R increases, a switch occurs and ω

preferentially aligns with the first eigenvector of SNL, more
strongly as � increases (while vorticity is always prefer-
entially orthogonal to third eigenvector) [27]. These results
clearly demonstrate that vortices are predominantly stretched
by the nonlocal strain in a manner similar to passive material
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FIG. 2. Conditional expectation of the square-norm of local (L)
and nonlocal (NL) strain tensor, normalized by the corresponding
expectation of total strain, as a function of R/η, at Rλ = 1300 (solid
lines) and Rλ = 650 (dashed lines). The curves for local strain start
from zero at R = 0.

lines, with vorticity preferentially aligned with the most ex-
tensive eigenvector. However, in the vicinity of these vortices,
the (local) induced strain causes the alignment to switch from
first to second eigenvector.

Figures 1(d)–1(f) show that the switching of alignment oc-
curs at a distance Ra

c = Ra
c (�), which decreases with �. This

behavior also manifests itself when comparing the relative
magnitudes of SL,NL. Figure 2 shows the R dependence of the
conditional expectation of the norm of SL,NL. They are nor-
malized by the corresponding conditional expectation of total
strain, which constrains the curves for SNL and SL at unity
at R = 0 and ∞ respectively. As � increases, the normalized
magnitude of SL approaches unity at a smaller R, whereas that
of SNL falls off toward zero in a similar fashion. This critical
distance, say Rc(�), at which their relative magnitudes are
equal, steadily decreases with �, qualitatively consistent with
the switching of alignment in Figs. 1(d)–1(f).

The results in Figs. 1 and 2 allow us to identify characteris-
tic length scales, which demarcate the relative importance of
local and nonlocal dynamics, and its dependence on �. The
analysis of Burgers vortices presented in Ref. [13] establishes
that Ra

c (�) 	 Rc(�), and they physically identify the radii of
vortex tubes in the flow [14]. A simple method to obtain the
radius of a vortex tube is from a balance between viscosity ν

and some effective strain S, giving R = (ν/S)1/2 [29]. Utiliz-
ing strain corresponding to mean field, i.e., S ∼ 〈ε〉/ν, where
〈ε〉 is the mean dissipation rate, results in the well-known
expression for the Kolmogorov length scale η = (ν3/〈ε〉)1/4.
However, strain acting on intense vorticity grows with vortic-
ity, given by the power law [7,19]

〈||S||2|�〉 ∼ �γ , 0 < γ < 1, (4)

where the exponent γ weakly increases with Rλ, ostensibly
approaching unity at Rλ → ∞ [28]. Utilizing Eq. (4), and
〈ε〉 = ν〈�〉 from statistical homogeneity, the radius of tubes
R∗ can be written as a function of �:

R∗/η ∼ (�/〈�〉)−γ /4. (5)

To test the result in Eq. (5), Fig. 3 shows the curves for
Ra

c (�) (dashed lines) and Rc(�) (solid lines) extracted from

10-1 100 101 102 103

2

4

6

8
10

14

FIG. 3. The critical distances Rc/η (solid lines) and Ra
c/η (dashed

lines), as a function of �, respectively, corresponding to switching of
alignment in Figs. 1(d)–1(f), and the distance obtained from Fig. 2
where magnitude of conditional local and nonlocal strain are equal.
The black dotted line corresponds �−0.19, based on Eq. (5), with γ =
0.76 for Rλ = 1300 [19,28].

from Figs. 1(d)–1(f) and Fig. 2, respectively. First, we observe
that both Rc(�) and Ra

c (�) are always comparable and follow
the same trend for moderately intense vorticity, consistent
with the power law predicted by Eq. (5) (represented by the
black dashed line). For very intense events (�/〈�〉 � 100),
Rc(�) is still consistent with the power law, but Ra

c (�) starts
deviating. However, these deviations occur at slightly increas-
ing values of � when Rλ increases. We note that over the range
of Rλ (from 390 to 1300), the exponent γ /4 only varies from
0.17 to 0.19 (respectively), and this small change in slope is
also faintly visible for the curves corresponding to Rc. It is
worth noting that such a dependence of vortex radius on �

was not possible to detect in earlier studies at significantly
lower Rλ [5,14].

To analyze deviations of Ra
c at large �, we consider the en-

strophy production term, P� = ωiω jSi j which also represents
the effective strain acting to amplify vorticity by factoring
in the alignments. Similar to Eq. (3), we can also decom-
pose P� as P� = PL

� + PNL
� , where PL,NL

� = ωiω jS
L,NL
i j . The

conditional expectation of the nonlocal production 〈PNL
� |�〉,

normalized by the total conditional production 〈P�|�〉, is
shown in Fig. 4.

For regions of moderately strong vorticity (� � 10〈�〉),
the normalized production term PNL

� behaves qualitatively
similar as nonlocal strain in Fig. 2; it starts at unity for R = 0
and monotonically decreases to zero at R → ∞. However,
when conditioned on extreme values of � (�100〈�〉), the
normalized PNL

� overshoots unity at small R, before decreasing
more sharply at larger R. Since PL

�/P� = 1 − PNL
� /P�, this

observation implies that local production is negative for small
R, and thus counteracts vorticity amplification for large �.
This is in fact a manifestation of the self-attenuation mech-
anism recently identified in Ref. [15], which provides an
inviscid mechanism to arrest vorticity growth and supports
regularity of Navier-Stokes equations. Note that viscosity
plays an implicit role, since stationarity imposes a condi-
tional balance between net inviscid production and viscous
destruction, so that the self-attenuation mechanism manifests
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FIG. 4. Conditional expectation of the enstrophy production
based on nonlocal strain, 〈ωiω jSNL

i j |�〉, normalized by the corre-
sponding enstrophy production for total strain, as a function of R/η,
at Rλ = 1300 (solid lines) and 650 (dashed lines).

at increasing � values with Rλ [15], in agreement with the
deviations of Ra

c (�) in Fig. 3.
A breakdown of individual contributions from each eigen-

value for both PL,NL
� , normalized by the total production, is

shown next in Fig. 5. Figures 5(a) and 5(b) show that the first
eigenvalue of nonlocal strain provides most of the production,
with the contributions from the second and third eigenvalues
largely canceling each other, except at small R, where the
second eigenvalue provides a small but significant contribu-
tion. The contributions to the local production in Figs. 5(c)
and 5(d) show a very weak role of the intermediate eigenvalue
for small R, despite the very strong alignment observed in
Figs. 1(a)–1(c). Rather, the contributions from first and third
eigenvalues are more prominent, with the third eigenvalue
ultimately leading to overall negative local production at large
� and small R [which can also be traced to the slightly
better alignment of vorticity with the third eigenvector in-
stead of the first, also observed in Figs. 1(a)–1(c)]. These
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FIG. 5. The individual contributions from each eigenvalue to the
nonlocal (NL) and local (L) enstrophy production terms, normalized
by the production based on total strain, at Rλ = 1300.
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FIG. 6. The critical distance RP
c /η for which non-local enstrophy

production accounts for 90% of total production (as derived from
Fig. 4).

results highlight the nontrivial role of nonlinearity, going be-
yond a simple kinematic alignment switching as hypothesized
earlier [13,25].

The results in Figs. 4 and 5 reiterate that vorticity is
predominantly amplified nonlocally, analogous to linear dy-
namics of material line stretching, whereas the nonlinear
effects are local and restricted to small distances but still
play an important role. Since vorticity is amplified beyond
a threshold, the local effects directly counteract further am-
plification, reflecting a fundamental change in the nature of
extreme events. It marks a breakdown of scale invariance
(self-similarity) of vorticity amplification at small scales, also
explaining why the power law derived in Eq. (5) fails to
capture the behavior of Ra

c (�) (in Fig. 3) for large �. In
contrast, for Burgers vortices, for which Ra

c (�) = Rc(�), the
stretching produced by local strain is always zero [13]; i.e.,
the self-attenuation mechanism is always absent.

The breakdown of scale invariance can further be shown
by considering the critical scale RP

c = RP
c (�), defined by the

condition that nonlocal enstrophy production recovers most
of the total production (as shown in Fig. 6). Remarkably, we
find that RP

c seemingly becomes constant at large �, marking
a critical scale below which the nonlocal effects do not pene-
trate and local dynamics dominate. A comparison with Fig. 3
shows that the value of RP

c and range of � where its constant
are consistent with where Ra

c deviates from Rc—once again
consistent with the onset of self-attenuation mechanism [15].

The breakdown of scale-invariance (self-similarity) of vor-
tex stretching leads to some important consequences for
turbulence theory and modeling. Prevalent intermittency the-
ories postulate that gradient amplification and the resulting
energy cascade is self-similar across scales, until regularized
by viscosity. In fact, such an assumption is directly built into
celebrated Kolmogorov’s hypotheses and also multifractal and
shell models [30]. However, current results point to an in-
tricate role of nonlinearity, which acts in conjunction with
viscosity to attenuate the most extreme events. This casts
serious doubts on the dimensional estimate of the scale where
viscous effects become prevalent, as used by phenomenolog-
ical models. In fact, there is mounting evidence that such
models are inadequate at characterizing extreme events, even
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at large Reynolds numbers [7,18,31]. A similar situation also
applies to large-eddy simulation, where local dynamics are
unresolved (by definition). The current results call for devel-
opment of new models which can, for instance, appropriately
capture the self-attenuation mechanism.

In conclusion, using state-of-the-art DNS, we have an-
alyzed nonlocality of vorticity amplification by directly
tackling the global Biot-Savart integral. We show that vor-
ticity is predominantly amplified by nonlocal strain, with
the underlying dynamics being linear. We identify the char-
acteristic scale of nonlocality, which varies as a simple
power law of vorticity magnitude. The nonlinear effects are
captured by the remaining local strain, revealing that the

nature of extreme events is fundamentally different due to
the self-attenuation mechanism [15], ultimately leading to
a breakdown of the observed power law and scale invari-
ance of vortex-stretching mechanism. Further investigations
are ongoing and are expected to provide essential ingre-
dients for improved intermittency theories and turbulence
models.
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