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Multifractal correlations of the local density of states in dirty superconducting films
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Mesoscopic fluctuations of the local density of states encode multifractal correlations in disordered electron
systems. We study fluctuations of the local density of states in a superconducting state of weakly disordered
films. We perform numerical computations in the framework of the disordered attractive Hubbard model on
two-dimensional square lattices. Our numerical results are explained by an analytical theory. The numerical data
and the theory together form a coherent picture of multifractal correlations of local density of states in weakly
disordered superconducting films.
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Superconductivity and Anderson localization are two
physical effects that result in a rich variety of quantum phe-
nomena. Initially, it was believed that nonmagnetic disorder
does not affect superconductivity (so-called “Anderson theo-
rem”) [1–3]. Later it became clear that Anderson localization
in the presence of disorder cannot only suppress supercon-
ductivity [4–7], but also lead to superconductor-to-insulator
transition [8] (see Refs. [9–11] for a review). In the presence
of Coulomb interaction even a weak disorder was predicted to
be sufficient to destroy a superconducting state [12–21].

In the case of a short-ranged electron-electron interaction
(e.g., if Coulomb interaction is screened), Anderson localiza-
tion can enhance the superconducting transition temperature,
Tc [22–25]. This surprising phenomenon originates from the
multifractality of electron wave functions in disordered me-
dia [26]. The latter leads to an increase in the effective
attraction and, consequently, to growth of Tc. Recently, the-
oretical predictions of Refs. [22–25] have been corroborated
by numerical solutions of the disordered attractive Hubbard
model [27,28] and experimental observations of enhance-
ment of Tc in disordered niobium dichalcogenide monolay-
ers [29,30]. The multifractally enhanced superconductivity is
predicted to be accompanied by strong mesoscopic fluctua-
tions of the local order parameter and the local density of
states (LDOS) [23,28,31–35].

Point-to-point fluctuations of the tunneling LDOS, fre-
quently termed as an emergent electronic granularity, have
been observed experimentally in many studies of disordered
superconducting films [29,30,36–42]. The measurements
yield LDOS maps that are used to extract the statistics of the
energy gap and the LDOS maximum. Recently, the spatial
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correlations of the energy gaps have been analyzed, and the
emergence of a well-defined spatial scale has been demon-
strated [41].

Multifractally enhanced superconductivity was predicted
to occur in a relatively narrow region in the disorder—
interaction plane [24,25]. However, significant point-to-point
fluctuations of the LDOS have been reported in many ex-
periments on superconducting films that do not demonstrate
enhancement of Tc with disorder. Therefore, there is a ques-
tion about the origin of an emergent electronic granularity,
especially in weakly disordered superconducting films.

In this Letter we investigate numerically and with analyti-
cal means, the fluctuations of the LDOS in the superconduct-
ing state of weakly disordered films. We perform numerical
computations of disordered attractive Hubbard model on a
two-dimensional square lattice. We focus on the energy de-
pendence of the variance of the LDOS. Even at the very
low level of disorder we observe pronounced fluctuations of
the LDOS. Our numerical findings are complemented with
the analytical theory for the fluctuations of the LDOS. The
most striking observation both in the numerics and in the
theory is the logarithmic divergence of the LDOS variance
(at energies higher than the energy gap) with a system size L.
Such divergence is a direct signature of multifractal behavior
of the LDOS, originating from mesoscopic fluctuations. We
demonstrate that the numerical findings and the analytical
results form a coherent picture of multifractal correlations of
the LDOS in weakly disordered superconducting films.

Numerics. We consider the attractive-U Hubbard
model [43] on the square lattice in two dimensions with
double-periodic boundary conditions. Within the mean-field
approximation the Hamiltonian reads (U > 0)

Ĥ = −t
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ +
∑
i,σ

[Vi − μ − Un(ri )/2]n̂i,σ

+
∑

i

�(ri )ĉi,↑ĉi,↓ + H.c. (1)
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FIG. 1. Left panels: LDOS-line cuts of typical samples along the axial y direction of the lattice and x = 0 for W = 0.5 (outer left panel)
and W = 1.25 (middle left). Right panels: LDOS maps of the same samples as in the left panels for W = 0.5 (middle right) and W = 1.25
(outer right) on the entire lattice for E = Emax with the peak energy of the disorder-averaged DoS Emax. (Parameters: zero temperature, 0.3
filling, U = 2.2t, L = 192, and NC = 8192.)

Here ĉ†
j,σ and ĉ j,σ stand for the creation and annihilation

operators of a fermion with spin projection σ = ±1/2 at a
site j. An on-site random potential is drawn from the box
distribution Vi ∈ [−W,W ]. The chemical potential μ fixes the
filling factor to 0.3; throughout this Letter the interaction is
taken as U = 2.2t . The local occupation number n(ri ) and the
pairing amplitude �(ri ) are determined self-consistently,

n(ri ) =
∑

σ

〈n̂i,σ 〉, �(ri ) = U 〈ĉ†
i,↓ĉ†

i,↑〉, (2)

where n̂i,σ = ĉ†
i,σ ĉi,σ and the average is taken with respect to

the equilibrium density matrix corresponding to the Hamil-
tonian (1) at zero temperature. We solve Eqs. (1) and (2)
iteratively and terminate the self-consistency cycle [44] when
α(n), the relative change in �(ri ) in iteration n, is at each site
ri smaller than some α,

α(n) = max
ri

∣∣∣∣�(n)(ri ) − �(n−1)(ri )

�(n−1)(ri )

∣∣∣∣ < α. (3)

For system size L = 192, we chose α = 10−3, and for the
smaller system sizes, we chose α = 10−4. We employ the
kernel polynomial method [46] to compute n(ri ), �(ri ), and
the LDOS. The underlying expansion of the time-evolution
operator in Chebyshev polynomials to order NC causes Gibbs
oscillations that we deal with employing the Jackson kernel,
see Ref. [34] for further computational details. The ensemble
averaging over observables involves, typically, several hun-
dred samples.

The dependence of the LDOS on energy E and the spatial
coordinate y along a cut through the sample is shown in Fig. 1
for two values of disorder W . At weak disorder W = 0.5
(left panel in Fig. 1) fluctuations of the local gap are almost
absent and only after an increase up to W = 1.25, the local
gap fluctuations become more visible albeit being still small
(middle panel in Fig. 1).

This observation is qualitatively consistent with an analyt-
ical result for the relative fluctuations of the local order pa-
rameter 〈[δ�(r)]2〉/〈�(r)〉2 = [4/(πg)] ln(ξ0/�) [35], where
g represents the dimensionless conductance in the normal
state, ξ0 represents the coherence length at zero temperature,
and � represents the mean free path. At weak disorder, i.e.,
large g, fluctuations of the local order parameter are small.
With an increase in disorder, i.e., decreasing g, the fluctuations
of the local order parameter becomes more pronounced.

The dependence of the average LDOS and its variance on
E are presented in Fig. 2 for two values of disorder. With an
increase in disorder the maximum in average LDOS becomes
less pronounced as expected. The energy dependence of the
LDOS variance has a form similar to the average LDOS,
in particular, the variance has the maximum. We note that
this maximum is situated at energy Ẽmax which is smaller
than Emax. With an increase in disorder the LDOS variance
increases.

Theory. In order to understand salient features of the nu-
merical data, we consider two-dimensional fermions with a
BSC-type attraction in the presence of a white-noise random
potential, i.e., the continuum limit of the Hamiltonian (1)
without the Hartree term. In the regime of a weak disorder,
one can neglect the spatial dependence of the order parameter
�. Then the LDOS at a given realization of disorder can be
written as

ρ(E , r) =
∑

a;s=±
ϕ2

a (r)(1 + εa/E )δ
(
E − s

√
ε2

a + �2
)
, (4)

where εa and ϕα (r) are eigenenergies and eigenfunctions of
the single-particle Hamiltonian in the absence of �. Using
the well-known results for statistics of eigenenergies and
eigenfunctions of a weakly disordered noninteracting Hamil-
tonian [47], we compute the mean and variance of the local
density of states from Eq. (4).

FIG. 2. The numerical data for the average LDOS and the LDOS
variance for W = 0.5 and W = 1.25.
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The disorder-average density of states is given as
〈ρ(E )〉=ρ0Re XE , where XE=E/

√
E2 − �2

E . Here �E is the
energy-dependent gap function. We emphasize that such an
energy dependence appears naturally in a more accurate
treatment of the disordered electrons in the presence of at-
traction [35]. Although the energy dependence of �E can be
derived microscopically [35] for a sake of simplicity, we will
use the phenomenological Dynes ansatz �E = �E/(E + i�)
with � � � [48]. We note that the maximum of the av-
erage DOS is on the order of ρ0

√
�/� and is situated at

Emax	� + �/
√

3. It is natural to expect that � is enhanced
by increasing disorder, so that the peak value reduces and
the peak position shifts to larger values. Our numerical data,
Fig. 2 are in qualitative agreement with this.

In order to compute the LDOS variance, we use the follow-
ing well-known result for the irreducible part of the dynamical
structure factor of noninteracting electrons in the diffusive
regime (see, e.g., Ref. [49]),

∑
a,b

〈
ϕ2

a (r)δ(E − εa)ϕ2
b (r)δ(E ′ − εb)

〉
irr

	 ρ0

2π

∫
d2q

(2π )2

Dq2

(Dq2)2 + (E − E ′)2
. (5)

Here D=g/(4πρ0) denotes the diffusion coefficient. Using
Eqs. (4) and (5), we find the variance of the normalized local
DOS at T = 0 to the lowest order in 1/g,

σ 2 ≡ 〈[δρ(E , r)]2〉
〈ρ(E )〉2

= 4

πg
Re

[
ln

LE

�
− 1 + |XE |2

4(Re XE )2
ln

(
ETh

E
+ Im

1

XE

)

+ 1 − X 2
E

4(Re XE )2
ln

(ETh

E
− i

XE

)]
. (6)

Here ETh=D/(2L2) stands for the Thouless energy and
LE=√

D/(2E ). Also we extend the result for the variance
to the energy-dependent gap function(see Ref. [35] for de-
tails). Below we assume that the following condition holds
��√

���ETh��. This corresponds to the parameters of
our numerical analysis.

Specifically, Eq. (6) predicts that at energies outside the
gap-region (E−�)����, the normalized variance becomes
almost independent of E , and, in particular, is logarithmically
divergent with the system size,

〈[δρ(E , r)]2〉/〈ρ(E )〉2 	 [4/(πg)] ln(L/�). (7)

The prefactor in front of ln L in Eq. (7) coincides with the
known result for the multifractal exponent for a weakly disor-
dered metal �2=−4/(πg) [26]. The result (7) implies that the
spatial correlation function of the LDOS at (E−�)����

behaves as 〈[ρ(E , r)ρ(E , r′)〉 ∝ (L/|r − r′|)−�2 . Such power-
law behavior is surprising for the system with the spectral gap
and the finite coherence length ξ0.

FIG. 3. The average DOS. Comparison between the numerics
and the Dynes expression. The position of the maximum is Emax ≈
1 for L = 192 and Emax ≈ 1.08 for L = 96. [Parameters: W =
0.5t, U = 2.2t , and NC = 2048 (L = 96), 8192 (L = 192).] The
inset: Dynes parameter � versus system size for L = 48, 96, 192.

This logarithmic characteristics is a manifestation of mul-
tifractality in the superconducting state. It can be understood
on the basis of Eq. (4). To obtain the variance, each side
of (4) needs to be squared; two different contributions to the
LDOS-variance arise: The first one correlates the electronlike
part of the LDOS [s = + in Eq. (4)] with the holelike part
(s = −). This contribution is sensitive to the gap since the
energy difference between electron and holelike states cannot
fall below 2�. The second contribution resembles correlations
between purely electronlike or holelike states. The corre-
sponding energy difference can be arbitrarily small even in the
presence of the gap and, therefore, fourth-order moments of
wave-function amplitudes can exhibit significant correlations
that are the characteristic precursors of multifractality.

Multifractality of the LDOS can be seen in the average
values of the higher moments of ρ(E , r). In the regime
of weak disorder g � 1, the scaling of higher moments
of the LDOS is fully determined by the second moment
〈ρq(E , r)〉=〈ρ(E )〉q[〈ρ2(E , r)〉/〈ρ(E )〉2]q(q−1)/2 [32,35,50].
Therefore, using the result (6) we can find the distribution
function for the LDOS. After introducing the logarithm of the
normalized LDOS, x = ln[ρ(E , r)/〈ρ(E )〉], its distribution
function acquires the log-normal form

f (x) ≈ exp[−(x + σ 2/2)2/(2σ 2)]/
√

2πσ 2, (8)

where σ 2 is given by Eq. (6).
Discussions. In Fig. 3 we compare the average DOS ob-

tained from numerical solution of Hamiltonian (1) with the
Dynes ansatz. We observe a reasonable agreement at weak
disorder W = 0.5 and not too small energies. We note that the
Dynes parameter � depends linearly on 1/L2 (see the inset in
Fig. 3). This behavior is caused by our choice of the number
of Chebyshev polynomials NC used in the expansion of the
LDOS [51].

We continue the discussion with the LDOS variance. A
detailed comparison between the numerical data at weak
disorder W = 0.5 and the analytical prediction Eq. (6) is pre-
sented in Fig. 4. The logarithmic growth of the LDOS variance
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FIG. 4. The LDOS variance. Comparison between numerics and
theory. The parameters are the same as in Fig. 3. Fitting to Eq. (6), we
extract g = 35.4 and � = 6 for the fit. The position of the maximum
is Ẽmax ≈ 0.97 for L = 192 and Ẽmax ≈ 1.03 for L = 96. The inset:
The LDOS variance at large energies E∞ 	 3� versus system size
for L = 48, 96, 192.

with the system size agrees with numerical data as shown in
the inset of Fig. 4. Incidentally, the logarithmic dependence
of the LDOS variance on L allows us to extract values of g
and �.

In agreement with numerical data, see Fig. 2, Eq. (6)
predicts that the DOS variance has the maximum situ-
ated at energy Ẽmax which is smaller than the energy
Emax of the LDOS maximum. In particular, one can find
Emax−Ẽmax∝�/ ln(L√

��/�)��. We note that the differ-
ence Emax−Ẽmax is enlarged with increase in �, i.e.,
of disorder. In accordance with Eq. (6), the height of
the maximum in 〈[δρ(E , r)]2〉 becomes on the order of
[4ρ2

0�/(πg�)] ln(L√
��/�). Again, this result is in agreement

with the numerical data in Fig. 2 in which the height of
the maximum of the DOS variance is enhanced with in-
creasing disorder. Therefore, the expression (6) provides a
reasonable description of the LDOS variance for a weak
disorder.

In Fig. 5 we present a comparison of the distribution
function for the logarithm of the normalized LDOS taken at
two energies E = Emax and E = 3Emax and obtained from the
numerical solution of Hamiltonian (1) against the theoretical
prediction of weak multifractality theory Eq. (8). There is
reasonable agreement between numerics and the theory. Also
in Fig. 5 we plot the curves which corresponds to normal
(rather log-normal) distribution of the LDOS (with the same
variance). As one can see, the log-normal distribution is much
more in agreement with numerical data for the distribution
function than the normal distribution. This supports that the
fluctuations of LDOS seen in numerics are of multifractal
origin.

Finally, we mention that our numerical and analytical re-
sults are also in qualitative agreement with the experimental
data [52]. Although the average and variance of the local DOS
computed numerically as well as analytically demonstrate
all features observed in the experiments, a more quantitative
comparison is not indicated at this point; it would require

FIG. 5. The distribution of the logarithm of the normalized
LDOS x = ln[ρ(E , r)/〈ρ(E )〉] at two different energies E = Emax

and E = 3Emax. The normal distribution for the LDOS in terms
of the normalized LDOS has the following expression: fn(x) =
exp[x − (ex − 1)2/(2σ 2)]/(

√
2πσ 2) with σ 2=〈δρ2(E , r)〉/〈ρ(E )〉2

taken from numerics, see Fig. 4. (Parameters: W = 0.5t,
U = 2.2t, L = 192, and NC = 8192.)

to include, e.g., also repulsive terms into our model, which
goes beyond the scope of our present Letter. We note that
in experimental samples the infrared logarithmic divergence
of the variance should be cut off by the energy-dependent
dephasing length (instead of the system size) [35].

Summary. To summarize we report the results of numerical
and theoretical analyses of the energy dependence of fluctua-
tions of the local DOS in weakly disordered superconducting
films. We found that the local DOS has pronounced fluctua-
tions and the variance has the energy dependence similar to
the one for the average density of states. Our numerical and
analytical approaches demonstrate that the DOS variance at
energies higher than the energy gap diverging logarithmically
with a system size L. Our numerical findings and the analyt-
ical results make up together coherent picture of multifractal
correlations of the local DOS in weakly disordered supercon-
ducting films.
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