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Protein induced lipid demixing in homogeneous membranes
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Specific lipid environments are necessary for the establishment of protein signaling platforms in membranes,
yet their origin has been highly debated. We present a continuum, exactly solvable model of protein induced
local demixing of lipid membranes. The coupling between a local composition and a local thickness of the
membrane induces lipid domains around inclusions with hydrophobic mismatch, even for temperatures above
the miscibility critical point of the membrane. The model qualitatively explains the experimentally observed
formation of lipid domains induced by anchoring of reconstituted actin in flat supported lipid bilayers.
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The formation of macromolecular platforms involving a
number of proteins is the backbone of many cellular func-
tions. Their assembly is strongly linked to particular lipid
environments [1,2], which requires reorganization of the het-
erogeneous lipid membrane [3,4]. The guiding principle for
the formation of macromolecular assemblies is conceptually
simple—different lipid species show varying interactions with
each other or with membrane proteins, resulting in distinct
domains of preferential lipid order and molecular interactions.

It is often considered that cellular membranes are tuned
close to the miscibility critical point [5,6]. However, living
cellular membranes show only nanoscopic domain formation
[7,8], dynamically forming assemblies of tens of nanometers
in size [9], as suggested in studies of reconstituted membranes
[10]. These observations practically preclude demixing phase
transition as a mechanism of formation of heterogeneous
organizations such as lipid nanodomains (“rafts”) in living
cellular membranes. In the mixed phase above the critical
temperature 7;, heterogeneities in the composition can appear
due to thermal fluctuations; thus, they are small in size and
do not last long. Demixing phase transition is found in model
membranes, which are lipid mixtures containing cholesterol
[10], as well as in giant plasma membrane vesicles (GP-
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MYVs) where the lipid and protein makeup is close to cellular
levels [5,11].

When considering spatial heterogeneities in membranes,
one cannot neglect the role of anchored proteins or lipids.
Perturbations induced by them can have a profound effect
on the lipid membrane composition and ordering [12,13]. In
particular, it was suggested that they may stabilize membrane
composition fluctuations above T, fostering ordering around
the perturbation centers [13]. Furthermore, direct coupling
between membrane Composition, spontaneous curvature, and
protein recruitment was clearly demonstrated theoretically
[14-18] and experimentally using membrane tethers [19,20].
In these systems, proteins with hydrophobic mismatch (dif-
ferent length of the hydrophobic core as compared to the
lipids [21-25]) attract lipids that fit the spontaneous curvature,
thereby building a concave or convex shape to fill in the height
mismatch.

Here, we investigate a complementary mechanism in
which mismatched proteins attract lipids of the right chain
length [Fig. 1(c)]. So far, this effect has been studied only
through a numeric solution of the resulting shape equations
[26]. Here, we present a fully solvable model that couples the
membrane thickness described by a Helfrich-like Hamiltonian
[27], with the composition of the membrane accounted for
by a functional of a Landau-Ginzburg type. We find that this
coupling can recover the formation of lipid domains around
lipids linked to a reconstituted actin cortex filament [28].

Specifically, we make a supported lipid bilayer from a mix-
ture of saturated lipids (DPPC), unsaturated lipids (DOPC),
and cholesterol in a ratio of 35:35:30 mol % (for experimental
details, see the Supplemental Material [29]).
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FIG. 1. (a) Experimental image of an actin network bounded to Lo or Ld anchors (Lo or Ld pinning). The membrane was stained by a
Ld marker (magenta) and the actin network by a green marker. The rightmost panel shows an overlay of both markers. The phases induced
on the membrane bridge the gaps between the anchors. The image was taken below the critical temperature 7; of a bare membrane (for the
control panels, see the Supplemental Material [29] as well as [28]). Similar domains have also been observed above 7; [28]. (b) Schematic
illustration of the experimental system. The actin fiber is pinned to the membrane with streptavidins (yellow) that are anchored to either Lo
or Ld lipids. The anchors induce local demixing (magenta) of the membrane. (c) Schematic illustration of the mechanism of formation of the
lipid domains in the membrane discussed in this paper. Depending on the sign of the excess hydrophobic mismatch A, the lipid composition
around the anchor will preferentially be in one of the two phases (Lo or Ld), represented here by the mixtures of blue and yellow lipids. In the
theoretical model, the phase is characterized by the sign of the composition order parameter ¢. Away from the critical point of demixing, the
domain size is of the order of the correlation length £ at the dimensionless temperature 7 as defined in the text.

Due to the presence of a mica support, the membrane
midplane is essentially flat so that the spontaneous curvature
of the membrane cannot be induced. Naturally, given that
the monolayer profile has a curvature on its own, additional
effects in shaping the boundary between domains may take
place if lipids themselves have curvature preference. How-
ever, these effects are considered to be small, and are hence
neglected in our model.

Below a critical miscibility temperature 7., these mem-
branes phase-separate into Lo and Ld domains [11]. The
Lo phase is enriched in cholesterol and saturated lipids, and it
shows higher extension in the lipid acyl chains as compared to
the Ld phase enriched in unsaturated and less extended lipids
[30,31]. The perturbation to such a membrane is caused by
the reconstituted actin cytoskeleton, the networklike structure
that is locally pinned to the membrane through membrane-
integrated biotinylated lipids and streptavidin-tagged actin
building blocks [Fig. 1(b)]. Notably, if streptavidin were
coupled to saturated or unsaturated lipids, the Lo or the
Ld phase would appear below the actin filaments, respectively
[see Fig. 1(a)]. This organization is observed above T, as
measured in unperturbed membranes (see the Supplemental
Material [29], Fig. 1), and it persists deep below T [28]
[Fig. 1(a)]. The observed domains seem to be a result of
local adsorption phenomena rather than macroscopic phase
separation, presumably because the immobile lipid anchors
destroy the miscibility critical point of the membrane [32,33].

To rationalize this formation of domains around im-
mobilized anchored proteins, and explain our experimental
observations, we devise a minimal theoretical model based on
two (OPs), where membrane excess thickness 4(r) and com-
position ¢(r) are coupled [34]. We assume that the midlayer
of the membrane is flat, and the excess thickness 7 is defined
as a difference between local and bulk thickness of the bilayer
(measured in the direction perpendicular to the midlayer),
whereas the composition field ¢ is a difference between local
concentration of saturated lipids and their concentration at the
critical demixing point. With our membrane being intrinsi-
cally flat, the position r is assumed to be any vector from a

two-dimensional plane, and the OPs are allowed to take any
real value.
The energy of the membrane is thus modeled as

BHolh(r), p(r)] = / dzr[%(Vfﬁ(r))z +1¢%(r)

+ g(fz(r) —ap)? + g(vzﬁ(rnz],
1

where B = (kgT)~'. The parameters o and ¢, like in the
Gaussian model, measure the energy cost of inhomogeneity
of the composition of the membrane and the reduced temper-
ature, respectively. The model is well defined only for r > 0,
and the limit # — O corresponds to approaching the critical
point of demixing from above. The third term in Eq. (1) de-
scribes the coupling between the two OPs. Here, we relate the
local composition of the lipids ¢ (r) with the excess thickness
of the membrane /(r). For simplicity, this relation is assumed
to be linear with a coefficient «. Parameter y regulates the
energy cost of a deviation from the postulated relation. The
final term is the elastic energy stored in the deformation of
the membrane thickness with a bending stiffness «. The latter
is related to the bending stiffness in the Helfrich model as
k = k3 /4 [27]. To reduce the number of free parameters, in

Hamiltonian (1) we neglect the term %(Vﬁ(r))z, describing
the energy cost of changing of the thickness of the membrane;
as we have checked, as long as /,/ky < 2, adding this term
is not changing qualitatively the properties of the model [35].
Moreover, to keep analytic tractability, higher-order terms
are neglected in both the concentration and the thickness
fields [36].

The protein anchors are modeled as rigid, pointlike inclu-
sions [37,38] that have an excess thickness /g,

A N
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FIG. 2. Zones of the model. The top-left panel presents the space of parameters. The average OPs (h) and (¢), and their amplitudes /1y,
and ¢,n, multiplying the leading-order exponential decay for large distances, are shown in the other three panels. All functions have been
calculated for k = 10 for the points in the space of parameters indicated by arrows. Gray vertical lines on the plots of average OPs indicate the

size py of the formed domains.

where N and r; denote the number of inclusions and their
positions. For simplicity, we take A — oo.

Because the Hamiltonian is quadratic in both OPs and
their derivatives, it is possible to calculate the partition func-
tion, OP profiles, and correlation functions analytically using
the method of path integrals [39,40]. To simplify the anal-
ysis (see the Supplemental Material [29]), we introduce the
lengthscale ¢ = (k/y)'/* associated with the bulk membrane
in the absence of coupling to the composition OP. Together
with o, it allows us to define the dimensionless position
p=r/¢, and OPs: h(p) = h(;p)/¢ and ¢(p) = $(¢p)o'/.
Hence, bending stiffness of the membrane x, dimensionless
reduced temperature T = ¢¢? /o, and the dimensionless cou-
pling between OPs i1 = oo ~'/2/¢ remain as free parameters.
Interestingly, « and u enter almost all our equations in the
combination K;ﬂ, which we denote by w.

We first discuss the case of a single inclusion (N = 1),
placed at p; = 0. In this case, due to the rotational symmetry
of the model, the OP profiles (k) and (¢) depend only on the
distance p from the origin. To easily extract their long distance
behavior, it is convenient to decompose the profiles into the
amplitude and exponential decay,

(h)(psk, b, T) = hamp(psk, b, T)exp (—p/€)//p. (3a)

(P)(psk, 1, T) = amp(ps K, 1, T)exp (—p/E)//p,  (3b)

and the amplitudes A,mp and ¢,mp are, as a function of p,
bounded and not decaying to 0. The parameter £ (, ) denotes
the bulk correlation length, i.e., the lengthscale of decay of the
correlation functions. (All three possible two-point correlation
functions—h—h, h—¢, and ¢ —¢p—decay on the same length-
scale £.) The bulk correlation length (in units of ¢) diverges
like (27)~'/2 for t — 0 and has a limit +/2 for T — oco.

Depending on the values of parameters w and 7, we
discover three distinct behaviors of the thickness and com-
position profiles (Fig. 2). For small effective temperatures ©
and large w (zone I), the OPs decay to zero for p — oo with
monotonic amplitudes hymp and @amp. On the other hand, for
small t and w (zone II) the amplitudes show some decaying
oscillations and are typically nonmonotonic. The exponential
decays of OPs, observed in zones I and II, emerge from the
Gaussian model for the composition field, dominating at small
7. For large 7 (zone III), the profiles have a form of damped
oscillations, which is a typical feature of the Helfrich model.
Here, the OP i dominates over ¢ and induces oscillations for
both OPs. We note that crossing the borders between regimes
yields a smooth change of both OPs, i.e., no phase transition
takes place. The border of zone III with other zones is a
Fisher-Widom line [41,42].

The characteristic behavior of the OPs profiles in each of
the zones is not visible because of the fast exponential decay
of (h) and (@), in turn justifying the decomposition in Eq. (3).
In all regimes, notably, the dominant behavior is demixing
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around the anchor at p = 0, due to adsorption of lipids with
a matching thickness, which we identify as a formation of a
distinct domain. We characterize the size p, of the domain by
the inflection point of (¢) as a function of p (Fig. 2). Away
from T, pg is of the order of &, while upon approaching 7
(t — 0), py grows fast but converges to a finite value, while
& diverges [43]. The contrast between the composition of the
lipid domain and the bulk is defined by the intensity of the
protein mismatch fg, and it becomes more pronounced upon
reducing temperature, as noted in the experiments [28].

To mimic lipid-anchored streptavidin attachments to actin
filament as in experiments (Fig. 1), we create an array of N
anchors located in points p, ..., py. To find the profiles (see
the Supplemental Material [29]), we first calculate the two
correlation functions for the membrane without anchors,

1 ® x4+ w+20)T(px)

D)= ey EAD@ A tw) - W
N x Jo(p x)

Q’“”(p)_ﬂfo FrDR+ oot @

where 7, denotes the Bessel function of the first kind of order
0. The resulting profiles are given by

N
(hY(p) =D ho M. Cullpy — p), (5a)
k=
. 1
(@)(P) =Y hoM . Cs(lpp — pl). (5b)
k,k'=1

where the matrix M i = €u,(|p; — px|), and hg = ho/¢. We
note that for N = 1, Eq. (5) reduces to Eq. (3), and for u =0
the results equivalent to those obtained for a deformed mem-
brane are recovered [39,44].

Figure 3 shows a representation of the membrane composi-
tion around a linear array of membrane inclusions, mimicking
the actin filament pinned by a lipid-protein complex. A posi-
tive value of (¢) is used here to indicate a Lo-domain, and a
negative value of (¢) indicates a Ld-domain. Clearly, as the re-
duced temperature t decreases (zones I and II), the amplitude
and the range of developing composition and thickness pro-
files increases, inducing domains around each inclusion with
a composition different from that in the bulk. The composition
of the domain depends on the strength of the hydrophobic
mismatch. When the size ps of the domains is of the order
of the distance between inclusions, the domains coalesce and
form one elongated region of increased ¢. This behavior is
in qualitative agreement with the experimental observations
[28]. Visual inspection of images for temperatures higher than
T. (not shown here) reveals Ld (Lo) -enriched domains around
streptavidin anchors that are not completely connected every-
where. Upon reducing the temperature, these domains become
more pronounced, grow, and coalesce to copy the structure of
the underlying actin network—see Fig. 1(a).

It is plausible that adding a large number of anchors with
only positive (negative) hydrophobic mismatch to the mem-
brane in our experiment completely destroys the critical point
of the bare membrane (or, alternatively, the critical point and
the line of coexistence between Ld and Lo phases is shifted
away from the critical concentration of a bare membrane

Lo pinning/ Ld marker Ld pinning/ Ld marker

0 1 2 -2 -1 0

20 -20 -10 0 10 20

FIG. 3. Mean membrane composition (¢) around a linear ar-
rangement of four membrane inclusions, calculated from the
theoretical model for w = xu? = 2.5 and two different values of
7. All lengths are given in units of ¢. The positions of the in-
clusions are marked by green dots. Contour lines are shown for
(¢) = 0 (dotted), (¢) = £0.5 (dot-dashed), (¢) = £1 (dashed), and
(¢) = 1.5 (solid). The color code is motivated by the colors used
in the experiment: for positive mismatch %y = +1 (left column) it
represents the Ld marker with Lo pinning, whereas for negative
mismatch sy = —1 (right column) it represents the Ld marker using
Ld pinning. The two color codes are used as the homogeneous phase
in the experiment has a different color depending on the type of
pinning. A possible actin overlay is shown in the lower left panel
with green. Upon approaching the critical temperature, the domains
of the ¢ field around the pinning points grow in size, and finally
merge forming a bridge that connects all the actin pinning points.

[45], such that they are not visible in the experimental system
with anchors). Thus, upon decreasing temperature below T
of a bare membrane, the system stays in a single phase. The
observed structure with domains following the actin network
is entirely due to the adsorption phenomenon induced by the
hydrophobic mismatch, where the lipid environment tries to
adapt to the height of the streptavidin anchor.

Finally we note that, since the experimental membrane
with anchors is in the mixed state, our model is capable of
qualitatively explaining the experimental results for the whole
range of temperatures. The relation between the reduced tem-
perature T in the model and the temperature in the experiment
can be established by comparing the correlation lengths.

In conclusion, we have introduced a continuum, exactly
solvable model for protein induced local demixing of lipid
membranes. The novelty in this model lies in the coupling of
membrane composition to the hydrophobic mismatch. Con-
sequently, the stress introduced by the mismatched anchor is
released by locally accommodating composition of the mem-
brane. As such, the anchors serve effectively as adsorption
sites for lipids with similar mismatch, and the transition to the
bulk phase is obtained by gradually changing the thickness
through the modulating membrane composition. This mech-
anism is complementary to demixing via curvature effects,
previously discussed in the literature [14-20]. Consequently,
both mechanisms should be considered together to fully
describe the formation of protein domains in unsupported
membranes.
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Our Gaussian approach relates to Ising systems, and is thus
capable of identifying a characteristic lengthscale &£(7, w) and
¢ for the domain formation, which seems to be recovered in
experiments. Knowing the material constant «, the amplitude
of the correlation length, and the distance between pinning
sites, we can predict the range of temperatures in which, for
a given u, the domains around separate inclusions are big
enough to merge into a single one enclosing all pinning points.
The parameter u could be inferred from the amplitude of the
OPs at the pinning point. Quantitative consistency between
experiments and theory, however, is likely to require more de-
tailed models for both the composition [46] and the thickness
fields [27]. It would be potentially interesting to cast the effect
into the framework of random disorder.

The extension of this model to many dynamic pinning
sites can further be used to study both static and dynamic as-
semblies of membrane heterogeneities, where the fluctuations
will induce protein interactions and affect their organization
and distributions in the membrane [27,44,47]. Furthermore,

the dynamics of these assemblies will be determined by the
dynamics of the pinning sites, which can bind and unbind
from the membrane, as well as the dynamics of the actin
cortex itself. The timescales of heterogeneity assembly and
disassembly could therefore also serve as a measure for actin
activity and protein binding. These are interesting perspec-
tives of this work that will certainly be explored in the
future.
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