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Low-frequency quantum oscillations from interactions in layered metals
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Metals composed of weakly coupled, stacked layers possess a Fermi surface that slightly varies in size along
the stacking direction. This appears in de Haas–van Alphen (dHvA) oscillations of the magnetization with a
magnetic field as two close frequencies, corresponding to the two extremal Fermi-surface cross-sectional areas.
We show that, for layered materials of sufficiently high mobility, Coulomb interactions can have a dramatic effect
on the form of the dHvA oscillations: There is also generically an oscillation at the small difference of the two
large frequencies. We determine the size and form of this effect, and show that it probes the short-range part of
the Coulomb interactions within the layered material. We argue that this interaction effect may explain recent
experimental observations of anomalous low-frequency dHvA oscillations in the ultrapure delafossites.
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Introduction. Modern materials science has produced a
wide variety of new sorts of solid state systems, such as those
characterized by nontrivial topology or strong interactions.
The novel properties of these materials have led to reexam-
inations of previously well-understood phenomena. Quantum
oscillations (QOs) of the magnetization as a function of (in-
verse) magnetic field [1], long interpreted in terms of the
geometry of closed Fermi surfaces, and the standard Lifshitz-
Kosevich (LK) theory [2], have been necessarily reexplored
following the discovery of Weyl and nodal semimetals [3–8],
quasiperiodic systems [9,10], and the observation of QOs in
insulators [11–18], systems all featuring unusual or absent
Fermi surfaces.

Following in this vein, recent de Haas–van Alphen (dHvA)
studies on delafossites, a class of layered materials fea-
turing strong interactions and high in-plane mobility, also
display anomalous behavior—large, low-frequency QOs at
the difference of the two natural high frequencies related to
extremal Fermi-surface areas [19,20]. These observations are
not readily explained by existing theory based on magnetic
interactions [21], and require a reexamination of the theory of
the dHvA effect in these new materials settings.

In this Letter, we show that Coulomb interactions can lead
to difference-frequency oscillations of the magnetization, of
a size that can account for these experimental observations.
The mechanism that we identify is often disregarded in treat-
ments of interaction effects on the dHvA effect [21–23], as
it requires the retention of terms that are smaller than those
needed to account for the high-frequency oscillations. How-
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ever, in high-mobility systems such as the delafossites, the
dominant dHvA oscillation at the difference frequency in both
bilayer and multilayer systems can arise from the Coulomb
interaction mechanism we identify. In these circumstances our
theory shows that the measurement of a difference-frequency
oscillation is a signature of strong nonlocal interactions. Our
results indicate that, in general, additional considerations are
warranted when analyzing dHvA oscillations in high-mobility
metals.

To trace the origin of a difference frequency in QOs, first
consider a noninteracting Fermi gas whose Fermi surface
has two extremal orbits of similar areas. As the magnetic
field varies, the Landau quantized orbits sweep through
these two extremal areas, causing thermodynamic quantities
to oscillate at the two frequencies f±. Within a model of
noninteracting electrons at fixed chemical potential these os-
cillations are independent. However, any nonlinearities that
couple these two oscillations at f±, can lead to oscilla-
tions at the difference frequency δ f = | f+ − f−| (as well as
sidebands). One source of nonlinearity is the magnetic inter-
action, by which the magnetic field B = μ0(H + M ) acquires
an oscillatory component through the oscillating magnetiza-
tion M(H ). This leads to a difference-frequency component
of size related to the geometry-dependent demagnetization
field [21,24]. However, this effect is insufficient to explain
the difference-frequency oscillations of magnetization seen in
recent experiments [19,20].

As we will show, a much larger difference-frequency
oscillation can arise from Coulomb interactions. One con-
sequence of the Coulomb interaction is that its long-range
component forces overall charge neutrality in bulk three-
dimensional (3D) materials, requiring one to work at a
fixed electron number density n rather than a fixed chem-
ical potential. This introduces a nonlinearity, mediated by
oscillations in the chemical potential [25,26], that can readily
produce a difference-frequency oscillation in the conductiv-
ity (Shubnikov–de Haas effect) [27], or in the magnetization
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(dHvA effect) in multiband systems [28–32]. We find, how-
ever, that in our system of interest the difference-frequency
oscillation of the magnetization from this effect alone is rather
small. In fact, as we will show, the dominant effect arises from
a full consideration of the Coulomb interactions that also takes
account of the (screened) short-range interactions coupling lo-
cal fluctuations of the charge density. The combination of both
short- and long-range components of the Coulomb interaction
produces a much larger difference-frequency oscillation than
either does independently. We emphasize that both interaction
effects are required to produce a sizable dHvA effect, which
we consider here; for the Shubnikov-de Haas effect a large
difference frequency oscillation can be readily obtained by
fixing density alone, without invoking a short range Coulomb
interaction [27].

Bilayer (2D). To illustrate the essential physics underlying
this mechanism, we first consider a bilayer model. (We neglect
possible strongly correlated phases that can arise from strong
interactions in 2D Landau quantized systems.) We consider a
pair of identical, parallel 2D gases of spinless electrons, with a
parabolic in-plane dispersion of effective mass m∗. Interlayer
hopping, of amplitude �/2, splits the energy eigenstates into
symmetric and antisymmetric subbands, and a perpendicular
magnetic field B reorganizes the in-plane states into Lan-
dau levels. The spectrum is then εl,s = h̄ωc(l + 1/2) − s�/2,
with ωc = eB/m∗ the cyclotron frequency, l = 0, 1, 2, . . .

indexing Landau levels, and s = ± marking even and odd
subbands. For a chemical potential μ, the densities of the
two subbands at B = 0 are n±(0) = (μ ± �/2)m∗/(2π h̄2)
and there are two distinct Fermi surfaces. At nonzero B these
give rise to QOs in the magnetization at frequencies f± =
en±(0)/h = m∗(μ ± �/2)/eh̄. Within LK theory these are
the only two frequencies in the magnetization oscillations.

At a fixed chemical potential μ, the occupations of the two
subbands, n±(B), both oscillate with B. For h̄ωc � � � μ,
so that many Landau levels are occupied and n± have similar
average values, these oscillations are on the scale of n� =
B/�0, the degeneracy of each Landau level per unit area, with
�0 = h/e the magnetic flux quantum. Keeping only the first
harmonic, we write

n±(B) ∼ n±(0) − ηn� sin

(
2π

μ ± �/2

h̄ωc

)
, (1)

where η � 1 is introduced phenomenologically to account for
any disorder and temperature effects that suppress oscilla-
tions. The oscillations in density Eq. (1) lead to oscillations
in the Coulomb interactions that can also have components at
the difference frequency. Taking the ionic background charge
density to be nI in each well, and computing the expectation
value of the electron-electron interactions in the noninteract-
ing ground state leads to the interaction energy

Eint ∼ V (n̄(B) − nI )2 − V (δn(B)/2)2, (2)

with n̄ ≡ (n+ + n−)/2 and δn ≡ n+ − n−. The first term in (2)
is the Hartree energy, related to the overall electrostatic energy
of fluctuations of the total charge density. The second term is
the Fock term, describing the suppression of short-range re-
pulsion due to exchange [33]. Since the subband densities n±
oscillate at the frequencies f±, the cross term n+n− produces

a small component that oscillates at the difference frequency
δ f = | f+ − f−|, with an amplitude of order V η2n2

�.
To account for the effects of the long-range part of the

Coulomb interaction, we enforce charge neutrality, requiring
n̄(B) ≡ nI . The chemical potential μ becomes an oscillating
function of B, which to first order in η is

μ(B) ≈ μ(0) + ηh̄ωc

2

∑
s=±

sin

(
2π

μ(0) + s�/2

h̄ωc

)
. (3)

With this oscillating μ(B) inserted in Eq. (1), one finds that the
density n±(B) oscillates not just at f± but also at the difference
frequency δ f (and at other sidebands). The restriction to fixed
n has a large effect on the interaction energy. The Hartree
term vanishes exactly, leaving just the Fock exchange energy
−V [δn/2]2, which contains an oscillatory term of size

∼V ηn�δn(0)
∑
s=±

s sin

(
2π

μ(B) + s�/2

h̄ωc

)
+ · · · . (4)

This gives rise to oscillations at the difference frequency δ f ,
with amplitude of order V η2n�δn(0). This is larger than the
δ f oscillation we identified at fixed chemical potential by
a factor of δn(0)/n� = �/(h̄ωc), which can be large at low
fields.

Multilayer (3D). We now turn to a model for a multilayer
metal. As above, each layer is described by a parabolic dis-
persion with effective mass m∗, electrons may hop between
adjacent layers with an amplitude that we now denote t⊥,
and a perpendicular field B breaks in-plane states into Landau
levels. At nonzero temperature T the system is described by
the action

S0 =
∑

εn,l,ky

∫
kz

ψ̄l,ky (kz, εn)(−iεn + ξl (kz ))ψl,ky (kz, εn), (5)

where ψ, ψ̄ are the electron field operators in the energy
eigenbasis, εn = (2n + 1)πkBT is the Matsubara frequency,
and ξl (kz ) = h̄ωc(l + 1/2) − 2t⊥ cos(kza⊥) − μ is the single-
particle energy measured from the Fermi level. The discrete
eigenstate index s of the bilayer is replaced by the continuous
quasimomentum kz ∈ (−π/a⊥, π/a⊥] describing dispersion
along the c axis, and we use the notation

∫
kz

= ∫ π/a⊥
−π/a⊥

dkz/2π ,
where a⊥ is the interlayer spacing. With our choice of Lan-
dau gauge, ky indexes the degenerate states in each Landau
level with total number

∑
ky

= An�, with A the sample
area. The frequencies determined by the two extremal cross-
sectional areas of the Fermi surface along kz are f± = m∗(μ ±
2t⊥)/eh̄ [34]. As before we consider spinless electrons, as this
already shows the new effect.

For simplicity, in considering the interlayer interaction
between local charge density fluctuations we approximate
the (screened) Coulomb potential as only acting between
pairs of nearest points on neighboring layers, Vi,i′ (r − r′) =
δi′,i+1e2/4πε|r − r′ + a⊥ẑ| ≈ V λ2δi′,i+1δ(r − r′), where ε is
the permittivity and λ2 is the area of the “patch” on each layer
that participates in the interaction. The interaction term in the
action is

Sint ≈ V λ2
∫ β

0
dτ

∫
dr

∑
i

c̄i(x)c̄i+1(x)ci+1(x)ci(x), (6)
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where x = (τ, r). We also acquire a term SI =
βALzV λ2nI (nI/a⊥ − 2n), where Lz is the extent of the
system in z, which depends only on the total electron density
n and accounts for the interaction between electrons and
lattice ions. Note that here n represents a number per unit 3D
volume, whereas nI is a number per unit 2D area in plane.

To analyze the interaction effects we proceed as follows.
The interlayer interaction can be included to first order with
the Hartree-Fock self-energy �, inserted into the full electron
Green’s function G = (G−1

0 − �)−1, with G0 = (iεn − ξ )−1

the free-electron Green’s function. It is important for our
analysis to keep both the constant, zero-field part �0 and oscil-
latory part �̃(B) of the self-energy; many previous studies of
the dHvA effect including interactions have used the general
relation �̃ � �0 to discard �̃ entirely [21–23], though it
has been appreciated that this term can affect the properties
of dHvA oscillations in 2D metals [35]. We find that this
oscillatory term is responsible for the leading contribution
to difference-frequency oscillations in the layered model we
examine.

From the Green’s function G we calculate the grand po-
tential � via standard field theoretic methods, expanding up
to first order in the interaction constant V . We then obtain
the free energy F as the Legendre transform of the grand
potential, F (B, n) = �[B, μ(B, n)] + nμ(B, n), where n is the
fixed electron density, and μ(B, n) is the oscillatory chemical
potential needed to fix the electron density. To linear order
in V , it is sufficient to fix the density using just the non-
interacting part of the theory, i.e., defining μ(B, n) through
n = −∂�/∂μ|V =0; corrections to μ that depend on V only
lead to terms in F that are of order V 2 and higher [36]. The
result of this procedure—the free energy F (B, n)—is the rele-
vant thermodynamic potential for a system with fixed electron
density, including all first-order interlayer interaction effects.

We calculate the Hartree-Fock self-energy in the approxi-
mation that the interaction is independent of the Landau-level
index,

�(kz, B) = V λ2a⊥(n(B) − χ (B) cos(kza⊥)), (7)

n(B) =
∫

kz

n(kz, B), χ (B) =
∫

kz

cos(kza⊥)n(kz, B). (8)

This gives the exact form of � up to first order in V . Here, we
define the 3D number density of occupied states at momentum
kz, n(kz, B) = n�

∫
dε

∑
l nF (ε)A(ε − ξl (kz )), where A is the

spectral density. With the 3D electron density fixed to n(B) =
n = nI/a⊥ we determine the oscillatory chemical potential
μ(B, n) [36], then obtain the free energy F3D = F (0)

3D + F (1)
3D

with

F (0)
3D = n�

∫
kz

∫
dε ε nF (ε)

∑
l

A(ε − ξl (kz )) + n μ(B, n)

(9)

F (1)
3D = −V λ2a⊥χ (B, μ(B, n))2. (10)

As in the 2D case, the interaction part F (1)
3D is given solely by

the Fock energy.
We analytically evaluate the oscillatory part of the free

energy assuming the hierarchy of energy scales h̄ωc �
2t⊥ � μ. Equivalently, this sets a hierarchy of 2D densities

n� � n⊥ � nI , where we define n⊥ ≡ t⊥m∗/π h̄2. The dom-
inant contributions to oscillations at f± and δ f are found
to be [36]

F̃ (0)
3D = h̄ωcn2

�

8π4a⊥n⊥
R2

D,1R2
T,1 sin

(
2π δ f

B

)

− h̄ωcn�

4π3a⊥

√
n�

n⊥
RD,1RT,1

∑
α=±

cos

(
2π fα

B
− απ

4

)

(11)

from the kinetic part, and

F̃ (1)
3D = V λ2 n2

�

2π3a⊥
R2

D,1R2
T,1 cos

(
2π δ f

B

)

+V λ2 n�n⊥
2π2a⊥

√
n�

n⊥
RD,1RT,1

∑
α=±

α sin

(
2π fα

B
− απ

4

)

(12)

from the interacting part, where

RD,p = exp

[
− π p

ωcτqp

]
, RT,p = 2π2 pkBT

h̄ωc

sinh
(
2π2 p kBT

h̄ωc

) , (13)

are the Dingle factor and LK temperature factor, accounting
for finite quasiparticle lifetime τqp and nonzero temperature
T , respectively. Note that in both Eqs. (11) and (12) the
δ f terms are found to depend on the square of these fac-
tors, while the f± terms only depend on a single power of
each.

We verify our analytic calculations by analyzing the clean,
T → 0 limit of the system numerically. The chemical poten-
tial to fix n is evaluated numerically, the full F (0)

3D and F (1)
3D are

evaluated on a set of points evenly spaced in 1/B, a polyno-
mial background is subtracted off, and the spectral content of
the resulting oscillatory data is analyzed via a discrete Fourier
transform. The resulting Fourier spectra are presented in fig. 1.
The amplitudes at f± and δ f given by this analysis are found
to closely match the τqp → ∞, T → 0 limit of the analytic
results, Eqs. (11) and (12).

Discussion. In the above analysis we have determined the
oscillations of the free energy of the 3D system. The os-
cillatory part of the magnetization can be obtained as M̃ =
−∂F̃3D/∂B, and naturally separates into interacting and nonin-
teracting parts in the same way as F3D, M̃ = M̃ (0) + M̃ (1). The
largest contributions arise from the derivative acting on the
oscillating factors themselves, not the preceding amplitudes,
as long as kBT, h̄/τqp � t⊥. Thus, the oscillation amplitudes
of M̃ can be acquired from those of F̃3D in Eqs. (11) and (12)
by simply multiplying each term with a factor of 2π f /B2,
where f is the oscillation frequency of that term.

To compare the predictions of this theory with the ex-
perimental observations on PtCoO2, we use the parameters
reported in Ref. [20] (see Ref. [37]). The investigation
therein of short-range interactions in this material suggests
an on-site Hubbard-like repulsion with U � 6 eV. We take
this to suggest short-range Coulomb interaction energies in
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FIG. 1. The Fourier spectra of the (a) kinetic energy F (0)
3D and

(b) Fock interaction energy F (1)
3D for the 3D multilayer system. The

red dashed lines show the same spectra for the case of a fixed
chemical potential [36]. Frequencies are given in units of favg =
( f+ + f−)/2 = m∗μ/eh̄. We use δ f / favg = 4t⊥/μ = 0.0189, consis-
tent with the parameters of PtCoO2 [20]. Vertical and horizontal
guidelines mark the location and size of the largest difference-
frequency peak in each panel. The insets of each panel expand the
boxed sections of the main figures. The vertical scale of each panel
is set by the appropriate amplitude in Eq. (11) or (12).

general, including V , are on the scale of eV, and use λ2

on the scale of the in-plane area of the PtCoO2 unit cell.
With these parameters, we find that the difference-frequency
amplitude of M̃ (0) is less than that of M̃ (1) for all fields
B < 4πV λ2n⊥m∗/h̄e ∼ 600 T. The experimentally relevant
low-field regime is far below this threshold, so within our
theory dHvA oscillations at δ f are dominated by the interac-
tion contribution M̃ (1). This amplitude is given by |M̃ (1)|δ f =
2V λ2 δ f R2

D,1R2
T,1/(π2�2

0a⊥), where, assuming spin splitting
to be small, we now include the effect of spin via an overall
factor of 2. Note that this depends on magnetic field strength
only through the squares of the Dingle and LK temperature
factors, while the corresponding amplitude of the noninteract-
ing term M̃ (0) depends on an additional factor of B itself. This
form of |M̃ (1)|δ f qualitatively matches the experimental results
of the field dependence of the low-frequency oscillations in
Ref. [20], and its magnitude is of the same order of magnitude
as the measured effect [38]. Future measurements, focusing
on the quantitative size of this low-frequency component, have
the potential to allow for a better understanding of the strength
and nature of interlayer interactions.

The careful reader may note that the inequality δ f � f±,
inherited from t⊥ � μ, suggests that the dHvA oscillations
our theory predicts at δ f should always be much smaller than
those at f±, contrasting with Ref. [20] where they are observed

to be comparably sized. But since our theory is in decent
agreement with experiment regarding the δ f oscillation am-
plitude, the discrepancy lies in an overestimate of the size
of the f± oscillations, for which our theory coincides with
standard LK theory. Indeed this same anomaly was noted in
the experimental findings of Ref. [20], where the size of the f±
oscillations was observed to be much smaller than that antici-
pated from LK theory using the Dingle factor computed from
the mean-free path. This apparent problem can be resolved by
considering long-range disorder, producing a slowly varying
spatial inhomogeneity of the average μ (or the fixed local
density) and small-angle scattering. Long-wavelength spatial
inhomogeneity is known to significantly suppress QO ampli-
tudes through phase smearing [21,39] without a significant
impact on transport, suggesting that this observation may be
related to long-range disorder in the system.

Importantly, the difference-frequency oscillations are in-
sensitive to the phase smearing effect, being entirely indepen-
dent of μ. Therefore, long-range disorder strongly suppresses
only the high-frequency oscillations, and allows oscillations
at δ f and f± to be of a comparable scale. Thus our theory
naturally recovers the observation of Ref. [20], that the Din-
gle suppression of the high-frequency oscillations is much
larger than that expected from the transport lifetime, while
the Dingle suppression of the difference-frequency oscillation
is much closer to that based just on the transport lifetime.
This starkly different dependence on sample inhomogeneity
suggests that some measure of long-range disorder may be
obtained by comparing Dingle measurements of difference
and main frequency oscillations.

We also compare the size of this Coulomb interaction
effect to that generated by magnetic interactions [21]. The
magnetic interaction effect at δ f is determined by the product
of the oscillation amplitudes of the magnetization at f±, which
we can determine from Eq. (11). Since long-range disorder
strongly suppresses these oscillations, as noted above, this
will likewise be strongly suppressed. Using the same parame-
ters as above and the Dingle temperatures identified for low-
and high-frequency oscillations in Ref. [20], we find that the
magnetic interaction contribution to oscillations at δ f is much
smaller than the Coulomb interaction effect we identify, being
∼10−7–10−3 times smaller for B = 7.5 − 35 T [36].

In summary, by considering oscillations of the self-
energy that are neglected in standard theories [21–23], we
have shown that Coulomb interactions can give rise to
sizable low-frequency dHvA oscillations in high-mobility lay-
ered materials. These difference-frequency oscillations are
highly sensitive to short-range disorder, their amplitude be-
ing suppressed by the square of the Dingle factor, but are
insensitive to long-range disorder. They can therefore be-
come a dominant feature of oscillations in very high-mobility
materials such as the delafossites. Our theory shows that
the size of the difference-frequency oscillation is a mea-
sure of the strength and form of the interactions beyond
the on-site Hubbard U . Although we have focused on sim-
ple layered metals, our results suggest that dHvA studies
may be of use to probe properties beyond just Fermi-
surface geometry in more general bilayer and multilayer
systems.
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